- Code: 4T4523
- Level Advanced
- Category Engineering and Instumentation
- Total hrs 60
- Course Language Arabic+English
- Email aastcon@aast.edu
- Phone 22665641
studying the the components that collectively form a Hadoop ecosystem: HDFS: Hadoop Distributed File System YARN: Yet Another Resource Negotiator MapReduce: Programming based Data Processing Spark: In-Memory data processing PIG, HIVE: Query based processing of data services HBase: NoSQL Database Mahout, Spark MLLib: Machine Learning algorithm libraries Solar, Lucene: Searching and Indexing Zookeeper: Managing cluster Oozie: Job Scheduling
Overview: Apache Hadoop is an open source framework intended to make interaction with big data easier, However, for those who are not acquainted with this technology, one question arises that what is big data ? Big data is a term given to the data sets which can’t be processed in an efficient manner with the help of traditional methodology such as RDBMS. Hadoop has made its place in the industries and companies that need to work on large data sets which are sensitive and needs efficient handling. Hadoop is a framework that enables processing of large data sets which reside in the form of clusters. Being a framework, Hadoop is made up of several modules that are supported by a large ecosystem of technologies. Introduction: Hadoop Ecosystem is a platform or a suite which provides various services to solve the big data problems. It includes Apache projects and various commercial tools and solutions. There are four major elements of Hadoop i.e. HDFS, MapReduce, YARN, and Hadoop Common Ut