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Abstract— Computer segmentation of abdominal organs
using CT and MRI images can benefit diagnosis, treatment,
and workload management. In recent years, UNETs have
been widely used in medical image segmentation for their
precise accuracy. Most of the UNETSs current solutions rely
on the use of single data modality. Recently, it has been
shown that learning from more than one modality at a time
can significantly enhance the segmentation accuracy,
however most of available multi-modal datasets are not
large enough for training complex architectures.
In this paper, we worked on a small dataset and proposed a
multi-modal dual-stream UNET architecture that learns
from unpaired MRI and CT image modalities to improve
the segmentation accuracy on each individual one. We
tested the practicality of the proposed architecture on Task
1 of the CHAOS segmentation challenge. Results showed
that multi-modal/multi-stream learning improved accuracy
over single modality learning and that using UNET in the
dual stream was superior than using a standard FCN. A
“Dice” score of 96.78 was achieved on CT images. To the
best of our knowledge, this is one of the highest reported
scores yet.
Keywords—medical
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L INTRODUCTION

Semantic segmentation is a computer vision problem [1],
where each pixel in an image is labeled. In recent years, semantic
segmentation for medical images has become very popular due
to providing more accurate and objective diagnoses [2], which
in turn leads to more efficient treatments and better pre-operative
planning. In addition, being an automated solution,
segmentation could greatly impact the field of imaging-based
screening through reducing the workload and screening time
considerably [3]. Examples of widely used imaging modalities
include ultrasonography (US), computed tomography (CT),
magnetic resonance imaging (MRI) and positron emission
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tomography (PET) [4]. These give clear images of the various
organs such as the liver, spleen, and kidneys, among others.
However, since each of these devices uses a different imaging
technique, the visual output produced from each modality is
completely different. Acquiring sufficient datasets for machine
learning from only one of these modalities is very challenging.
Therefore, segmentation using multiple imaging modalities (two
or more imaging modalities) was introduced with a potential to
provide better results and more accurate segmentation compared
to single modalities [5]. Two examples of multiple imaging
modalities [6] are image fusion and dual stream architectures,
which will be discussed in the current work.

After obtaining data from different medical imaging
modalities, training through deep learning models is used to
segment these data. Utilizing deep convolutional neural network
(CNN) architectures [7] for semantic segmentation has shown
superior segmentation performances compared to traditional
techniques, especially in medical imaging. One of the most
widely used techniques of CNN is fully convolutional networks
(FCN) [8]; a basic deep semantic segmentation architecture
which inspired most of the subsequent deep semantic
segmentation techniques and later UNET [9]. Hence, UNET is a
refined architecture based on FCN that provides the best
semantic segmentation performance so far in many domains and
applications, including single and multiple medical image
segmentation.

Availability of imaging data with reasonable sizes is a
challenge in itself; most of previously built FCN models need a
large amount of data to be able to produce competing results in
segmentation [10]. Most of medical imaging data are relatively
small, but can include images from multiple modalities [11], for
example both MRI and CT images, with each having different
features. Therefore, there exists a need for developing
computational tools that can provide accurate semantic
segmentation for small data as well as being able to combine the
various features produced from multiple imaging modalities.
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Our main aim in this paper is to capitalize on the superior
performance of the UNET in the medical semantic
segmentation. this paper proposes a multi-modal, multi-stream
architecture which employs the UNET as the segmentation core
in each stream. This will allow achieving more accurate
segmentation through exploiting the advantages gained from
multiple modalities and multi-stream architecture.

We also show that using dual stream has improved the
segmentation of each modality compared to a separate UNET
for each modality .

1L REALTED WORK

A main approach for semantic segmentation is using encoder
decoder architectures such as FCN [8], UNET [9], SEGNET
[12] and Mask-R-CNN [13].

A.  Architechtures of medical image segmentation

It is definite that CNNs are doing great progress in this field,
leading to outstanding performances in many medical problems
[14]. Most available medical image segmentation architectures
and applications are built by fully convolutional neural network
FCN [8] or UNET [9] .

In FCN [8], a dense pixel segmentation is achieved. To
recover the original resolution of the input image, the prediction
is up-sampled. To improve prediction abilities, skip connections
are incorporated to recover some of the lost spatial data [15].

UNET [9], on the other hand, contains two paths. The first is
the contraction path (also called the encoder), which is used to
capture the context in the image. The encoder is a stack of
convolutional layers and max pooling layers. The second path is
the symmetric expanding path (also called the decoder) which is
used to allow exact localization using transposed convolution
layers. Skip connections or transfer layers are used to
concatenate the features from contraction and expansion path
layers. This allows for retrieval of lost features during the
encoder path thus maintaining localization [16].

SEGNET [12] contains both encoder and decoder networks,
but with no fully connected layers; only convolution layers. The
transferred pool indices output from each layer in the encoder
network is inputted to the corresponding one in the decoder
network.

Mask-R-CNN [13] consists of two stages, stage 1 applies a
suggestion to where an object in a picture might be, then in stage
2, it predicts the classes of objects defined in stage 1, refines the
boundaries of the boxes around predicted objects and finally
generates a pixel level mask of the object predicted in the first
stage.

Mali proposed a single stream 3D UNET model [17], using
the Combined Healthy Abdominal Organ Segmentation
(CHAOS) challenge dataset [18]. His approach involved two
phases, first, pre-training the model using unsupervised data and
second, training/fine tuning using supervised data. Both pre-
training and training were applied on three models: CT data
only, MRI data only and finally using combined CT and MRI

data. Rather than using CT and/or MRI slices, he used patched
3D images to create the unsupervised dataset for the pretraining.

B. Dual streams architectures

Dual streams architectures are used when one or more
modalities are represented in the medical dataset. They are
particularly useful if the datasets available are not large. They
are applied on all single stream architectures like those
previously mentioned, and they are mostly created by
duplicating the architecture and adding some connecting layers
in the middle for feature sharing between two streams.
Therefore, dual streams benefit from different modalities in
order to improve segmentation accuracy [19].

Another previous study by Valindria et al used an encoder-
decoder FCN architecture with residual layers for multi-organ
image segmentation [20]. To effectively merge the multi-modal
features from CT and MRI, they proposed a dual-stream network
architecture and used individual streams for each modality.
However, FCN loses a lot of information in the decoding phase,
which is a drawback in case of medical imaging segmentation
where every piece of information is crucial. Four versions (v1,
v2,v3, v4) for the segmentation process were used by this study
[20].

*V1: Two encoders, one for each modality and one decoder.

eV2: both modalities share same encoder and decoder,
however, a separate stream layer (one for each modality)
is applied before the encoder.

*V3: One encoder where both modalities are inputted in the
same stream, and two decoders.

®V4: separate encoder and decoder for each modality, but they
were connected in the middle to share weight between
encoders and decoders.

According to the results reported by Valindria et al [20], the
2-encoder and 2-decoder architecture V4 has outperformed the
other versions. Thus, this architecture was adopted in our study,
however, UNET was used instead of FCN to capitalize on its
superior performance and efficient utilization of limited training
data.

111 METHODOLGY

In the current study, the proposed model is a dual stream
UNET that accepts inputs from different modalities , in this case
MRI and CT scans. The model consists of two encoders and two
decoders, merged with a convolution layer before the decoder
section as shown in Fig. 1.We built our model based on UNET
architecture because of its ability to keep the localization
information through the transfer layers, as opposed to FCN
which lacks transfer layers. Since the dataset was in DICOM
form, the Pydicom [21] library was used to convert the input
images to PNG.

In our architecture there were two input layers that take RGB
images (256*256*3), Keras [22] layers were used to build the
model, it contains two identical streams, each comprising an
encoder and a decoder path. The two encoders were merged by
a convolutional layer.
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Each encoder path consisted of 5 convolutional layers, each
layer is followed by a max pooling layer and a merging layer.
The decoder constitutes five convolutional layers, each layer
followed by a convolutional transpose layer. Each convolutional
— convolutional transpose pair was concatenated with
correspondent layers from the encoder path. All activation
functions used were Relu (rectified linear unit).
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Fig. 1. Proposed dual stream UNET architecture
IV. EXPERIMENTAL SETUP

In this section, the dataset used and the proposed model will be
discussed in details.

A. Dataset and pre-processing

We used the CHAOS challenge dataset [18] [14] [15]. The
aim of the challenge is to perform segmentations on abdominal
organs (liver, kidney, and spleen) form CT and MRI images. The
challenge contains five tasks from which participants can
choose.

. Taskl: Liver Segmentation (CT & MRI)

. Task2: Liver Segmentation (CT only)

. Task3: Liver Segmentation (MRI only)

. Task4: Segmentation of abdominal organs (CT &
MRI)

. Task5: Segmentation of abdominal organs (MRI only)

In this project, Task1 was selected; segmentation of liver using
two modalities CT and MRI. The training dataset consisted of
CT DICOM images of 40 patients and MRI DICOM images of
120 patients, while the MRI images are divided into two
different sequences, TI-DUAL (in phase: 40 datasets and out
phase: 40 datasets) and T2-SPIR (40 datasets).

The testing dataset provided contained the same amount of
DICOM images as the training data set but without ground truth,
therefore we were not able to utilize it in this project. Instead,
the training dataset was divided into two folders, 70% for
training and 30% for testing. The dividing process was carried
out randomly and repeated three times, creating three training
folders and three testing folders.

After conversion of the images to PNG format, the
annotations for the ground truths were removed from all organs
except the liver (coloured as white).

B.Training

The model was implemented using the basic UNET
architecture, but with two encoders and two decoders joined with
a convolution layer at the middle.

The model was trained using Adam optimizer with mini batch
of size =1. The number of filters for each layer of the encoder
was 32, 64, 128 and 256, while for the decoder, it was 256, 128,
64 and 32. Loss was calculated [24] using binary cross entropy,
dice coefficient [25] and accuracy were used as metrics for
evaluation, and finally the model was trained for 30 epochs to
achieve best results. Each train batch had a validation split of
20% of unseen data.

For evaluating the segmented data output, dice
coefficient was used, which represents the overlap between two
masks where score 1 is perfect match or exact overlap (masks
identical) and score 0 means no overlap whatsoever [25].

2 XTP

DICE =
(TP + FP) + (TP + FN)

V. RESULTS AND DISCUSSION

Using Multimodal learning can use the information from both
modalities in one pass, unlike normal single modal/stream
models that learn sequentially from each modality. In the current
study, we demonstrate that multi stream/modality architecture
gives accurate results than traditional architectures.

As mentioned before, our data was randomized into 3 training
folders and 3 corresponding test folders, each training folder
comprised 70% of the whole data and each test folder was the
remaining 30%. Therefore, the final dataset included 3 training
folders (trainl, train2, train3) and 3 test folders (testl, test2,
test3).
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VL TABLES AND FIGUERS

Table 1 training results on 3 training batches

Point Ot.‘ Train 1 Train 2 Train3
COmparlSOl'l

Modality | «p | R |er [MR |cT | MR
type

Dice 0.967 | 0.795 | 0.967 | 0.799 | 0.956 | 0.769

Accuracy 0.997 | 0.996 | 0.997 | 0.996 | 0.997 | 0.997

loss 0.005 | 0.008 | 0.005 | 0.009 | 0.005 | 0.009

Table 1 shows the training on the 3 different batches of
training data, all training parameters were the same for the 3 runs
as previously mentioned. CT was found to perform significantly

better than MR.
Table 2 dice results on 3 testing batches

Table 4 dice results comparison between proposed UNET and related work

Point Of Testl Test2 Test3
Comparlson

Modality cT |MR |cT |MR |cT |MR
type

Dice 0952 | 0.687 | 0.961 | 0.701 | 0.976 | 0.721

Point of comparison CT MR
on Average Dice segmented segmented
images images
Our Proposed multi 0.963 0.703
stream/modal UNET
Shruti Atul’s 3D 0.946 0.478
UNET CT [17]
Shruti Atul’s 3D 0.947 0.493
UNET MRI [17]
Shruti Atul’s 3D 0.946 0.510
UNET COMBO [17]
Vanya’s multi
stream/modal FCN 0.919 0.914
(20]

Table 2 demonstrates the performance of the 3 testing unseen
images when attempting segmentation. CT achieved >0.95 in dice
while MR didn’t perform as well, due to using different modalities
of MR on the same stream. However, this helped the CT to get
higher results because of the dual architecture used and the
merging between the layers of both streams. Table 3 presents a
clear comparison between the same UNET layers in dual stream
vs single stream with CT and MR as inputs.

Table 3 comparison between dual stream vs. single stream UNET

Point of CT segmented MR segmented
comparison Dice images images
Our Proposed multi
stream/modal 0.963 0.703
UNET
Single stream
UNET 0.893 0.344

Table 4 shows average results of dice for all CT and MRI
segmented images in comparison to related work. The above-
mentioned study [20] used the same idea on a dual stream
FCN but with single MR modality and CT unlike the current
study where two MR modalities were used in the same stream.
Therefore, our proposed method outperformed the previous
study in terms of CT modality, but not MRI. Since both
provided MRI types (T1-DUAL, T2-SPIR) were used, our
approach succeeded to benefit the CT modalities to achieve
better results (0.963 DICE) but deteriorated the MRI output
due to segmentation-associated noise.

Our model has also outperformed the work done by
Mali et al. in CT and MRI segmentation on the three models
they applied. It is showing in our model outperformed theirs
in CT and MRI segmentation on the three models they
applied. It should be noted that both our study and theirs used
the same CHOS dataset and that their model is also UNET-
based.
Examples of segmented images are given in Table 5, where it
can be seen with the naked eye that the segmentation is so
close to the ground truth with some noise resulting from using
two different MR modalities. This noise causes significant
reduction of DICE.
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Table 5 segmented images examples

Modality Input Ground Output
type image truth images
MR T1
DUAL
MR T2
SPIR d -

VI CONCLUSION

This work demonstrates the value of multi-modal learning
on unpaired multi-modal multi-stream CT and MRI
segmentation. A dual-stream network architecture was
presented. By multi-modal learning, shared representation on
both modalities can help the network to segment at high
efficiency with limited training data. Experimental results on
both MR and CT demonstrate that the CT was improved on the
liver segmentation task. The power of learning on multi-streams
from different datasets appears to be encouraging to examine
further more in future work as its results are quiet promising,
finally it is also shown that using the UNET in the proposed
architecture is superior than using the FCN.
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