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ABSTRACT 
Optical Coherence Tomography (OCT) is a noninvasive recent imaging technique that has 

been increasingly used to diagnose and manage a variety of retinal diseases and glaucoma. OCT 

examinations can aid in the detection of many retina disorders in early stages that could not be 

detected in traditional fundography retinal images. Also, it can be used to identify and quantify 

retinal thickness changes in response to therapy.  

Retinal disorders are often diagnosed and treated by an ophthalmologist. However, to 

accurately assess a retinal disease, ophthalmologist would need time consuming qualitative and 

quantitative analysis of the disease. Moreover, the disproportionate increase in workload relative 

to workforce leads to overloading medical experts resulting in missed critical cases. Also, there 

is a criticality for early detection of retinal disorders for better prognosis and to avoid the 

occurrence of complications that may lead to vision loss. For the previous reasons, there should 

be an automated computer aided diagnosis (CAD) system to assist ophthalmologists for accurate 

early diagnosis of different retinal disorders. 

In this thesis, a new hybrid computer-aided OCT diagnostic system (HyCAD) is proposed 

for classification of retinal disorders: Diabetic Macular Edema (DME), Choroidal 

Neovascularization (CNV) and drusen disorders, while separating them from Normal retinal 

structure using OCT images. The proposed HyCAD hybrid learning system assimilates a range 

of techniques including RoI localization based on deep learning, hybrid feature extraction, 

followed by classification and diagnosis. An effective feature fusion phase has been introduced 

for combining the OCT image features, extracted by Deep Convolutional Neural Network 

(CNN), with the features extracted from the RoI segmentation phase. This fused feature set is 

used to predict multiclass OCT retina disorders. The proposed segmentation phase of retinal RoI 

regions adds substantial contribution as it draws attention to the most significant areas that are 

candidate for diagnosis. A new modified deep learning architecture (Norm-VGG16) is 

introduced integrating a kernel regularizer. Norm-VGG16 is trained from scratch on a large 

benchmark dataset and used in RoI localization and segmentation. 

 Various experiments are carried out to validate the effective performance of the proposed 

system on Large Dataset of Labeled Optical Coherence Tomography (OCT) v3 benchmark 

dataset compared with others in literature. The experimental results show that the proposed 

model achieves relatively high-performance in terms of accuracy, sensitivity and specificity. 

Experimental evaluation showed outstanding performance compared to others in literature, the 

proposed (HyCAD) model achieves a high classification sensitivity to urgent cases. The 

HyCAD models’ results are compared to the results of its backbone CNN (Norm-VGG16) and 

other famous deep learning architectures. It achieved a significant increase in accuracy, 

sensitivity and specificity. The experimental results reflect that the fusion phase can effectively 

improve the identification ratio of the urgent patients’ diagnostic images.   

In this thesis, HyCAD a highly performing general computer aided diagnosis system 

architecture is introduced. The proposed architecture can be trained and applied on similar 

problems, since no underlying specific assumptions were made that would hinder its 

generalization.  
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1 INTRODUCTION 

In this chapter, an overview of Computer Aided Diagnosis (CAD) systems and the 

availability of different retinal imaging techniques is presented. Retinal disorders will be 

introduced in this chapter as well. Moreover, the problem statement, the motivation and the 

main objectives of the thesis will be provided. A brief description of thesis layout is given at the 

end of this chapter. 

 

1.1 Overview 

Computer Aided Diagnosis (CAD) systems were introduced in the 1990s [1]. It could assist 

medical experts in different number of ways, ranging from providing quantified image metrics 

to calculated probabilities of various diagnoses. The integration of machine learning and deep 

learning in development of an automatic CAD systems leads to solving different problems in 

medical imaging fields. CAD systems can be used in identification of regions of interest (ROIs), 

which could lead to significant time-savings for medical experts [1]. CAD systems help in 

detecting different diseases and disorders in various medical images modalities. The 

development of multimodal medical imaging techniques in radiology lead to accurate 

explanations of different complementary structures and function information of human bodies. 

Medical imaging modalities such as X-rays, Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), Optical Coherence Tomography (OCT), etc…  play an important role in early 

detection and diagnosis of numerous diseases [2]. It provides direct visualization to see through 

the human bodies and produce and informative medical images to the minute anatomical 

changes and biological processes that helps in early detection of diseases. The two major 

advancements in medical images which assist both scientists and medical physicians are the 

improvement in the depth and clarity at which they can view tissues. Therefore, The ultrasound, 

CT, and MRI can penetrate inside the body with high penetration depth; however, they do not 

have sufficient resolution to capture cellular detail [3]. Electron microscopy can pick up 

extremely fine details; however, it is not able to view living samples within the body [3]. 

Recently, OCT has attracted much attention in many clinical  and  basic  research fields due to 

its high sensitivity for noninvasive high-resolution imaging at cellular level.  The diagnostic 
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capability of OCT has revolutionized many fields such as ophthalmology, dermatology, 

cardiology, etc.  In terms of other medical imaging devices, OCT is the one best offered 

currently [3]. OCT is becoming rapidly an important biomedical tool for imaging tissues and 

engineered tissues. Figure 1-1 shows the comparison of OCT with presently existing clinical 

imaging modalities. 

 

Figure 1-1. Comparison of different clinical imaging modalities in terms of their resolution and 

penetration depth 

Medical imaging usually requires experienced medical doctors to best interpret the 

information revealed in the images [2]. However, because of various subjective factors as well 

as limited analysis time and tools, it is common that early detection of different diseases could 

be hard and subjective to medical experts experiences [2]. Recently, developing a computer-

aided diagnosis (CAD) has become a major research field, applied widely in the detection and 

differential diagnosis of many types of abnormalities in medical images [4]. Recently, CAD has 

become a part of the routine clinical work for detection of different diseases from medical 

images.  
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1.2 Retinal disorders case study 

According to the World Health Organization (WHO), at least 2.2 billion people all over the 

world suffer from vision impairment or blindness [5]. At least 1 billion of them have a vision 

impairment that could have been prevented or has yet to be addressed. Retinal diseases are from 

the most common causes of losing eyesight at an early age [5]. Most of these diseases affects a 

thin layer of tissue inside the back wall of the eye which is called retina. Optical Coherence 

Tomography (OCT) imaging is a type of optical biopsy that is used to view and capture small 

changes that occurs to the retina. It generates cross sectional 3D images by measuring the echo 

time delay or the magnitude of back reflected light [6].  Compared to traditional regular retinal 

fundus examinations, OCT has major advantages in identifying the presence of various ocular 

pathologies. A wide range of macular diseases such as Macular Edema, Choroidal 

Neovascularization, Macular Hole, Pigment Epithelium Detachment and Central Serous 

Retinopathy can be detected by OCT [7]. OCT examinations can aid the detection of the 

previously mentioned disorders in an early stage.  

 

1.3 Problem Statment 

The main problem with visually diagnosing medical images is that diagnosis is restricted to 

experts as it is based on their experiences. CAD models can automatically learn the patterns 

differences and provide efficient and fast diagnosis of abnormalities with high accuracy. These 

models can be used as a supportive decision system to the physicians in the early detection of 

edemas and abnormalities. The early detection of tumors and abnormalities can accelerate in 

serving the severe cases. Moreover, it is important to provide a framework that is highly 

performing, understandable and has a generalization ability to meet the requirements of medical 

applications. 

 

1.4 Motivation 

First, Most of CAD systems are developed using earlier fundography that was a widely used 

technique to detect retinal diseases. It can detect retinal disorders but it’s subjective and 

insensitive to small retinal thickness changes, macular breaks and Retinal Pigment Epithelium 
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(RPE) elevation. Major symptoms of Macular Edema do not appear in early stages even the 

patient himself does not know about the disease at that time[7]. On the other hand, cystic and 

sub retinal swellings are overt in early stages in OCT imaging, while they remain undetectable 

in retinal fundus images [7]. Moreover, it can also give an objective evaluation of macular and 

ocular pathology as it shows a cross sectional region of macula and optic disc [7]. In addition, 

OCT is noninvasive and quantifiable without pupil dilation. Hence, OCT scanning leads to a 

breakthrough in the screening, diagnosis and assessment of the necessity and efficacy of 

treatment for particular diseases.  

Second, a major limitation in existing segmentation techniques of most of the deployed 

retinal disorders CAD systems is that they need the intervention of medical experts in the 

segmentation of retinal layers or in retina flattening before detecting different diseases. Finally, 

different CAD models were proposed in literature to detect abnormalities in OCT images, but 

they suffered from 

 Focusing on detecting a specific retinal disorder. 

 Lack of understandability (interpretation). 

Therefore, our motive is to develop a model that automatically detects different retinal 

disorders in early stages from OCT images that overcomes the limitations of current systems. 

Moreover, to build a framework that is highly performing, understandable and has a 

generalization ability to meet the requirements of medical applications (not only retinal 

disorders).  

 

1.5 Challenges 

First challenge imposed by the images acquired from OCT imaging technique is the noise 

accompanied with the cross-sections of SD-OCT. The noise generated from the OCT capturing 

devices must be filtered for correct segmentation of retinal layers.   

The second challenge is the segmentation of retinal layers. Most of techniques depends on 

experts manual flattening and segmentation. Medical knowledge was needed to correctly detect 

retinal layers and/or changes in layers’ thickness and/or assist in retinal flattening. Such 

dependence on experts’ availability gives rise to another concern, which is having poor 

generalization to other domains and puts a heavy load of work on medical systems. 
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The final challenge is that some of the retinal disorders need an immediate medical 

intervention to prevent any further complication that may lead to blindness. Accordingly, these 

retinal disorders need to be detected accurately and marked as critical at their early stages to 

prevent further complications. 

1.6 Objective 

The objective of the thesis is to design a robust computer-aided diagnostic (CAD) 

framework capable of diagnosing different diseases from different modalities of medical 

images. The framework shall provide high performance, which would be customizable 

according to the specific problem under study. The proposed CAD system shall provide a 

segmentation technique to segment the Region of Interest (RoI) for an efficient and accurate 

classification which will bring about a change in the roles of radiologists and other clinicians 

alike.  

 Radiologists will be able to spend less time screening images and concentrate on 

decision-making.  

 Non-radiologist physicians will use CAD system to have digital assistance to interpret 

medical images, making them less reliant on hospital radiology departments.  

The CAD model shall present partially explainable results and can be generalized to meet 

requirements of different medical applications. Finally, the proposed CAD model needs to have 

a competitive performance to state-of-art and different deep learning architectures to prove its 

accuracy and robustness in classification of different diseases. 

 

1.7 Contibution 

The contribution of the paper can be summarized as 

 A hybrid computer aided diagnosis (HyCAD) system used for retinal disorders 

detection from OCT images. 

 HyCAD integrates automatic features extraction of deep learning and hand-crafted 

features to attain high accuracy classifications and provide relative insight into the 

classification decision. 
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 A modified deep learning architecture is proposed and used in automatic detection 

of Region of Interest (RoI). It achieved an outstanding training time performance 

(compared to other CNNs). 

 HyCAD provides automated RoI localization using Grad-CAM which helps advance 

the diagnosis process. 

The proposed models is validated on Large Dataset of Labeled Optical Coherence Tomography 

(OCT) v3 [8] benchmark for multi class classification of different retinal disorders. 

 

1.8 Thesis Layout 

The thesis is organized as follows:  

Chapter 2 provides the medical background about Optical Coherence Tomography (OCT) 

Principles and different retinal diseases.  

Chapter 3 illustrates some of work presented in literature and surveys the common steps used in 

segmentation of retinal layers and classification of retinal disorders from OCT images. 

Moreover, it explains the concept of deep learning and explanation of different machine 

learning-based classifiers. 

Chapter 4 introduces the proposed model. It gives a detailed description of the methods used in 

the proposed model. It contains an overlook on image preprocessing, automatic Region of 

Interest (RoI) segmentation, a new modified deep learning architecture, handcrafted feature 

extraction and classification.  

Chapter 5 describes all the experiments conducted to validate the proposed model. It also 

illustrates the performance indicators used in evaluating the system’s performance and the 

experimental results. It provides also a comparison with state-of-the-art studies. 

Chapter 6 illustrates the conclusion and future work. 
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2 MEDICAL BACKGROUND 

Medical imaging produces visual pictures of different anatomical structures inside the 

body. It is used in clinical examination and subsequent medical interference. Medical Imaging 

reveals internal structures hid by the skin and bones, it is used as a diagnostic tool for several 

diseases and has a vital role in monitoring treatment effects and predicting outcomes [9]. 

Technological advances in medical imaging increase the sensitivity of different techniques such 

as MRI, CT, Ultrasound, etc… It lead to high quality images that increase the sensitivity of 

detecting abnormalities leading to early diagnosis of different diseases and saving thousands of 

lives [9]. Radiologists have been involved in these technological developments in different 

medical images and have been responsible for much of the evaluation of the strengths and 

weaknesses of different investigations [9]. In this chapter, a focus is given on a recent retinal 

imaging technique called Optical Coherence Tomography (OCT). In addition, a review is given 

on different retinal disorders that cause major problems in humans eyes reaching blindness. 

There are different retinal disorders that could affect the vision sight and could cause 

more serious complications leading to vision loss. Different imaging techniques were used to 

assess the retinal layers to try to early detect these disorders to assist physicians to have a correct 

treatment procedure. Earlier, Fundography imaging was the widely used technique to detect 

these diseases. It can detect retinal disorders but it’s subjective and insensitive to small retinal 

thickness, macular breaks and Retinal Pigment Epithelium (RPE) elevation. Major symptoms 

of a disease called Macular Edema do not appear in early stages even the patient himself does 

not know about the disease at that time [7]. In OCT, cystic and sub retinal swellings are overt 

in early stages, while they remain undetectable in retinal fundus images [7]. Moreover, it can 

also give an objective evaluation of macular and ocular pathology as it shows a cross sectional 

region of macula and optic disc [7]. In addition, OCT is noninvasive and quantifiable without 

pupil dilation. Hence, OCT scanning leads to a breakthrough in the screening, diagnosis and 

assessment of the necessity and efficacy of treatment for diseases. Several properties of OCT 

are sated as follow [10]: 

 OCT captures image with axial resolutions of 1 to 15 µm. This resolution allows tiny 

morphology and some cellular features to be resolved unlike other imaging techniques. 
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 Imaging can be performed in situ, without the need to excise a specimen. This enables 

imaging of structures in which biopsy would be hazardous or impossible. 

 Imaging can be performed in real time, without the need to process a specimen as in 

conventional biopsy and histopathology. This allows pathology to be monitored on 

screen and stored on high-resolution video tape. Real-time imaging can enable real-time 

diagnosis, and coupling this information with surgery, it can enable surgical guidance. 

 Finally, OCT is compact and portable, an important consideration for a clinically viable 

device. 

 

2.1 OCT imaging principles 

OCT performs high-resolution of cross-sectional imaging of the internal microstructure in 

retinal layers by measuring echoes of backscattered light [10]. OCT imaging technique is always 

compared to ultrasound imaging technique because of the similar working principles. Both 

medical imaging techniques direct waves to the tissue under examination, where the waves echo 

off the tissue structure [11]. The reflected waves are analyzed and their delay is used to measure 

the depth in which the reflection occurred [11].  

OCT imaging technology mainly consists of OCT camera which uses a low coherence 

interferometry in which low coherence visible light is allowed to penetrate human retina and it 

is reflected back to interferometer producing a cross sectional image of retina [7]. The delays of 

the back reflected waves cannot be measured directly, so a reference measurement is used [11].  

Interferometers are investigative tools used in many fields of science and engineering. They 

produce interference fringes by splitting a light beam into two. The interferometers is used to 

direct part of light to the sample and another portion is sent to a reference arm with a well-

known length [11].  

 

 

2.1.1 Time domain OCT (TD-OCT) 

In the first implementation of OCT is time domain OCT (TD-OCT) shown in Figure 2-1 
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Figure 2-1 TD-OCT Imaging System based on Michelson interferometer [7] 

The light of a low-coherence source is passed to the fiber-based interferometer. In a 

system using bulk optics the fiber coupler is replaced by a beam splitter [11]. The input 

beam is split into the sample beam and into the reference beam travelling to a mirror on a 

translational stage. The back-reflected light from each arm is combined and only interferes 

if the optical path lengths match and therefore the time travelled by the light is nearly 

equal in both arms. Modulations in intensity, also called interference fringe bursts, are 

detected by the detector [11]. For each sample point, the reference mirror is scanned in 

depth (z) direction and the light intensity is recorded on the photo detector [11]. As a 

result, a complete depth profile of the sample reflectivity at the beam position is generated, 

which in similar to ultrasound medical imaging technique that is called A-scan (amplitude 

scan) [11]. To create a cross-sectional image (or B-Scan), the sample beam is scanned 

laterally across the sample [11]. The scanned lateral sample is similar to the originated in 

ultrasound imaging and called B-Scan that means brightness scan. 
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2.1.2 Fourier domain OCT (FD-OCT) 

Fourier domain OCT (FD-OCT) is the second generation of OCT technology and 

provides a more efficient implementation of the principle of low-coherence interferometry. In 

contrast to TD-OCT, FD-OCT uses spectral information to generate A-scans without the need 

for mechanical scanning of the optical path length [11]. As the speed of mechanical moving 

part is slow and each A-scan is captured and accumulated sequentially so the scan time of TD-

OCT is slow [7]. The FD-OCT based on spectrometer, which is commonly referred to as 

spectral domain OCT (SD-OCT) was first proposed by Fercher et al. in 1995  [12]. It is used 

to capture all A-scans at all wavelengths in parallel using the spectrometer which replaces the 

point detector of the TD-OCT. The spectrometer uses a diffractive element to spatially 

separate the different wavelength contributions into a line image which is recorded by a high-

speed line scan camera [11]. The SD-OCT is shown in Figure 2-2. 

The advantage of SD-OCT over TD-OCT is that no need for mechanical moving reference 

which leads to high scanning speed of retinal layers. SD-OCT is 40–110 times faster than TD-

OCT [13]. Moreover, It has higher sensitivity than TD-OCT [14]. 

 

Figure 2-2 SD-OCT imaging system based on Michelson interferometer [7] 
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Regarding the previously stated advantages of SD-OCT, the images acquired for retinal disorder 

analysis are produced from SD-OCT retina scanning.  

 

2.2 Retinal disorders 

OCT enable the identification of a range of disorders with various severity levels through 

imaging the retina and its layers. Retina contains several layers with different thicknesses and 

intensities. Segmenting and measuring the thickness of each layer are considered as essential 

markers in assessing the health of the retina. The shape and width of the individual layers are 

considered two of the most important factors that reveal the current status of retina [13]. They 

may thicken or thin according to different diseases that indicate the current progress or status of 

a disease [13].  

Many retinal diseases can be diagnosed from the irregularities in OCT images, such as 

Glaucoma, DME, CNV, Age-related macular degeneration (AMD), Cone-Rod Dystrophy 

(CRD),  Retinitis Pigmentosa (RP) and Achromatopsia [13]. Any change in retinal thickness or 

absence of certain layer(s) in the retina can be used as a reference for diagnosis, disease 

progression and treatment monitoring [15]. Different studies are conducted, some of them define 

intraretinal layer while the rest of studies focuses on the most critical retina layers that are 

needed to identify a disease [13]. The minimum number of layers to be detected from OCT 

images are 13 1ayers  which are Internal Limiting Membrane (ILM), Retinal Nerve Fiber Layer 

(RNFL), Ganglion Cell Layer (GCL), Inner Plexiform Layer (IPL), Inner Nuclear Layer (INL), 

Outer Plexiform Layer (OPL), Outer Nuclear Layer (ONL), External Limiting Membrane 

(ELM), Photoreceptor Layer (PR), Retinal Pigment Epithelium (RPE), Bruch’s Membrane 

(BM), Choriocapillaris (CC) and Choroidal Stroma (CS) [16]. Figure 2-3 shows an OCT retinal 

image with its 13 distinctive layers. 
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Figure 2-3 OCT retinal image with its distinctive 13 layers for a typical healthy person [13] 

The 12 retinal layers detected in OCT retinal images can be used as a sign for healthy or diseased 

eyes. Recently, there are many studies, which are conducted to analyze the OCT retinal images 

to classify the healthy from diseased patients [13]. Each disease can be classified depending on 

some characteristics that can be absent or found in the OCT images. The morphological features, 

such as the shape and distribution of macular holes (MHs), cysts, drusen and blood vessels, can 

be visualized from OCT imaging and used as sign for different retinal disorders [13]. The next 

sections will discuss the characteristics of healthy eyes and diseased eyes. Moreover, the 

complications of each retina disorder are stated. 

 

2.1.2.1 Normal healthy eye  

OCT technology depicts tissue reflectivity. It is dependent on the tissue optical 

properties, microscopic refractive index of subcellular structures variations and the amount of 

light signal that the tissues absorb [13]. There is no standard number for retina layers for the 

OCT retina imaging. Different studies estimate different numbers, which are four, seven, ten, 

eleven, or twelve layers. On the other hand, normal retinal thickness differs from one device to 

another due to different characteristics, such as age, gender, race, and refraction. In addition, all 
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measurements using SD-OCT have higher values than using TD-OCT due to the higher 

resolution [14]. Figure 2-4 represents an OCT retinal image for a normal person in retina 

macular region. 

 

 

Figure 2-4 OCT normal retinal image [13] 

2.1.2.2 Glaucoma 

Glaucoma is a set of neurodegenerative eye diseases that leads to the loss of vision and 

blindness. It is the second leading cause of blindness in the world [17]. Both NFL thickness 

and the Euclidian distance between the Inner Limiting Membrane (ILM) and NFL can be 

used as sign for the presence of glaucoma disease. The glaucoma patient has a decreased 

NFL thickness as compared to the typical healthy subjects [18]. Recently, both of the 

choroid thickness and the measure of separation between Bruch’s Membrane (BM) and 

choroid can also be used as a sign of the presence of glaucoma disease [18]. Figure 2-5 

shows an OCT image for a glaucoma patient.  

 

 

Figure 2-5 OCT glaucoma retinal image [18] 
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2.1.2.3 Central serous chorioretinopathy (CSC) 

CSC is a chorioretinal illness that is not understood completely with systemic 

associations and it causes vision loss [13]. It has a multifactorial etiology with a very 

complicated pathogenesis [13]. Ophthalmoscopic indications of CSC range from mono- or 

paucifocal RPE lesions with a noticeable increase of the neurosensory retina by clear fluid 

to shallow detachments overlying large patches of irregularly depigmented RPE [13]. The 

irregular depigmented RPE results of a fluid that is accumulated under the retina distortions. 

Detecting the changes in both of fluid and RPE layer between normal retina and CSC 

disorder retina can help in diagnosing this disease [13]. Figure 2-6 shows an OCT retinal 

image for a CSC patient. 

 

 

Figure 2-6 OCT CSC retinal image [13] 

2.1.2.4 Unilateral anterior ischemic optical neuropathy (AION)  

AION is causing damage to the optic nerve from inadequate blood supply that results in 

loss of vision. AION has two main types: Arteritic AION (AAION) and Non-arteritic AION 

(NAION) [13]. In AAION the retinal nerve fiber layer thickness. In NAION, the retinal NFL 

layer thickness is significantly increased in the acute stage. Then, it is significantly decreased 

in the resolving stage. Figure 2-7 shows an OCT retinal image for a NAION patient. 

 

 

Figure 2-7 OCT NAION retinal image [13] 
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2.1.2.5 Choroidal Neovascularization (CNV)  

It is the creation of new blood vessels in the choroid layer of the eye. Neovascular 

Degenerative maculopathy is commonly accompanied with extreme myopia, malignant 

myopic degeneration or age-related developments [19]. It is a major cause of visual loss. 

An example of active myopic choroidal neovascularization with a neovascular 

membrane under the  fovea  together  with  subretinal  fluid  collection  and destruction  of  

underlying Bruch’s  membrane [19]. Figure 2-8 shows an OCT retinal image for a DME 

patient. 

 

 

Figure 2-8 OCT CNV retinal image [19] 

2.1.2.6 Age-related macular degeneration (AMD) and DRUSEN 

AMD is a degeneration of the eye that is leading to severe visual impairment and visual 

loss for people who are 55 years old or older [13]. This disease is detected by searching for 

drusen, which is defined as abnormality between the basal lamina of RPE and the inner 

collagenous layer of BM [13]. Drusen is small yellow deposits of fatty proteins (lipids) that 

accumulate under the retina. They are tiny pebbles of debris that build up over time and can 

result in central vision loss [20]. Figure 2-9 shows an OCT retinal image for AMD patient 

with DRUSEN.  

 

Figure 2-9 OCT Drusen retinal image 
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2.1.2.7 Diabetic Macular Edema (DME) 

Macular Edema is the swelling of the central part of the retina [21]. It is considered 

one of the most common retinal disorders. Increased blood sugar levels, in people with 

diabetes, can damage the retinal blood vessels or result in tiny bulges protruding from the 

vessel walls, leaking or oozing fluid and blood into the retina. This leads to the serious eye 

complication called Diabetic Macular Edema (DME) [22]. 

 DME causes cystoids called Cystoids Macular Edema.  It affects the full thickness 

of the retinal tissue involving the anatomic fovea [23]. People over 60 years old are more 

prone to this retinal disorder [23]. It affects visual acuity and may lead to loss of vision or 

even blindness [22]. Figure 2-10 shows an OCT retinal image for a DME patient. 

 

 

Figure 2-10 OCT DME retinal image 

2.3 Summary 

In this chapter, a medical background review on different medical images techniques and their 

importance was explained. A comparison between different retinal screening techniques such 

as fundography and OCT imaging techniques were depicted. According to literature, it was 

depicted that OCT is more sensitive to changes in retinal layers shape and thickness. Moreover, 

two different systems of OCT imaging were explained and compared. The result of that 

comparison shows that SD-OCT has improved the sensitivity and speed of capturing retinal 

layers images. Finally, a full description of the effect of different retinal disorders on the retinal 

layers were explained.
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3 LITREATURE SURVEY 

Machine learning and deep learning are used in many medical applications for 

diagnosing different diseases or disorders from different medical imaging techniques such as 

Magnetic Resonance Imaging, Computed Tomography, X-rays, Mammograms, Fundography, 

Ultrasound, Optical Coherence Tomography, etc….. This chapter provides a summary of the 

recent studies in retina segmentation. Moreover, it illustrates the machine learning concept and 

its importance in OCT retinal disorders early detection and classification. It provides a 

description of traditional machine learning based classifiers. Finally, deep learning concept and 

different architectures are explained. 

 

3.1 Literature Review on Retina Segmentation 

In particular, segmentation has received considerable attention recently as it is an important 

step in aiding diagnosis since it helps determine the RoI.  

Different studies are conducted, some of them define intraretinal layer while the rest of 

studies focuses on the most critical retina layers that are needed to identify a disease [13]. Bagci  

et al. [24] were able to detect six different retinal layers, which are NFL, IPL + GCL, INL, OPL, 

ONL + PIS, and POS from normal healthy eyes. Lu et al. [25] identified and measured the 

thickness of six layers extracted from 3D images of healthy subjects. These layers were NFL, 

PIS, POS, retinal ganglion cell (RGC), IPL, and OPL. 

Garvin et al. [26] proposed a method to segment five layers (NFL, GCL+IPL, INL+OPL, 

IS, OS) in OCT retinal images. The layers were identified using constructed geometric graph 

and computed a minimum cost closed set. This graph is constructed from the edge/regional 

information and a priori determined surface smoothness and interaction constraints. 

Ghorbel et al. [27]  proposed a method for the segmentation of eight retinal layers in 

Heidelberg spectralis SD-OCT images. Global segmentation algorithms such as active contours 

and Markov random fields are used. In addition, a Kalman filter was designed. It is used to 

model the approximate parallelism between the photoreceptor segments [27]. 

 Shi et al. [28] were able to detect 10 retinal layers in 3D images of patients with retinal 

pigment epithelial detachments (PED) by using multi-resolution graph search based surface 
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detection. Sugmk et al. [29]  identified the retinal pigment epithelium (RPE) layer. This layer is 

important in detecting the shape of drusen. Moreover, the RPE layer is used to localize the 

retinal nerve fiber layer (RFL) and to detect a bubble of blood area in RFL complex. 

In the work of Salarian et al. [30], a method that uses graph theory and the shortest path 

algorithm was presented to detect certain layers. The aim was to choose the RoI that could be 

used to distinguish normal cases from abnormal ones. They discovered that using changes in 

some parts, such as inner limiting membrane (ILM), retinal nerve fiber layer (RNFL) and retinal 

pigment epithelium (RPE), leads to separating these layers easily. The proposed technique was 

applied to all B-Scan images of 16 people, including low-quality images and some images with 

diseased eyes. The results were accurate according to manual segmentation of an expert.  

 A comparison between different edge detectors was conducted by Luo et al. [31]. They 

studied and compared the performance of canny edge detector [31], the two-pass method 

proposed by Bagci et al. [24] and Edgeflow technique [32]. All of these techniques were used 

with retinal OCT images to delineate the retinal layer boundaries. From the evaluation of the 

results, it was shown that the two-pass method outperforms the Canny detector and the 

EdgeFlow technique that is used with OCT images to delineate the retinal layer boundaries. In 

addition, the mean localization deviation metrics show that the smallest edge shifting problem 

is caused by the two-pass method. The study suggests that the two-pass method is the best one 

for retinal OCT boundary detectors.  

ElTanboly et al. [33] used a joint Markov-Gibbs random field (MGRF) model of intensities 

and shape descriptors to detect 12 different layers, which are GCL, NFL, INL, IPL,  OPL, ONL, 

external limiting membrane (ELM), myoid zone (MZ), ellipsoid zone (EZ), outer photoreceptor 

(ORP), interdigitating zone (IZ), and RPE layers of healthy retinas.  

Dash et al. [34] proposed a graph-based segmentation technique for separating four layers 

which are ILM, RPE, INL and ONL. Dodo et al. [35] proposed fully automatic method for 

annotation of retinal layers in OCT images comprising of fuzzy histogram hyperbolisation 

(FHH) and graph cut methods to segment 7 retinal layers across 8 boundaries. The boundaries 

are (NFL-GCL, INL-OPL, IS-OS, RPE, ILM, IPL-INL, OPL- ONL, OS-RPE). 

Table 3-1. summaries retina segmentation methods stated in the literature survey with stating 

their results and limitations. 



 

 

Table 3-1. Retinal Layers segmentation literature survey 

Author Year Techniques applied Results Limitations 

Bagci et al. [24] 2007 Two pass edge detection algorithms to segment 6 layers 

(NFL, IPL + GCL, INL, OPL, ONL + PIS, and POS 

layers). 

The RMSE for detection of 

boundaries ranged between 2.6 and 5.5 

pixels, corresponding 

to 5.2 and 11.0 microns. 

 Applied only on 

normal trace 

 Detect 6 layers only 

from retinal OCT 

Garvin et al. 

[26] 

2008 

 

The five layers (NFL, GCL+IPL, INL+OPL, IS, OS) in 

OCT retinal images were identified using constructed 

geometric graph and computed a minimum cost closed 

set. This graph is constructed from the edge/regional 

information and a priori determined surface smoothness 

and interaction constraints. 

Overall mean unsigned border positioning 

error of 2.9 microns.  

Inner retinal layer thickness for the affected 

eye was (21%) smaller on average than for 

the unaffected eye (verified by 3 medical 

experts) 

 Applied only on 

unilateral anterior 

ischemic optic 

neuropathy (AION) 

 Detect 5 layers only 

from retinal OCT. 

Lu et al. [25] 2011 The five layers (NFL, PIS, POS, retinal ganglion cell 

(RGC), IPL, and OPL) where identified. OCT image is 

first cut into multiple sections by the retinal blood 

vessels that are detected through an iterative polynomial 

smoothing procedure. The non-vessel OCT sections are 

then filtered. Finally, the layer boundaries of the filtered 

non-vessel OCT sections are detected, which are further 

clustered to differentiate retinal layers to determine the 

complete retinal layer boundaries. 

The boundary positional error ranges 

between 1.78 ±0.79 and 4.89 ±2.39 
 Limited number of 

subjects (only 4 

patients) 

 Detect 5 layers only 

from retinal OCT. 

Ghorbel et al.  

[27] 

2011 proposed a method for the segmentation of seven retinal 

layers (RNFL, GCL+IPL, INL, OPL, ONL, IS+OS and 

RPE). Global segmentation algorithms such as active 

contours and Markov random fields are used. In 

addition, a Kalman filter was designed. It is used to 

model the approximate parallelism between the 

photoreceptor segments. 

An overall sensitivity of 90.57% is achieved 

on Topcon database and 90.71% on 

Spectralis database. 

 Applied only on 

normal trace 

 Detect 6 layers only 

from retinal OCT. 
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Table 3-1 (cont.).  Retinal Layers segmentation literature survey 

Author Year Techniques applied Results Limitations 

Shi et al. [28] 2014 

 

Proposed a model that was able to detect 10 retinal 

layers (NFL, GCL, IPL, INL, OPL, ONL+ISL, CL, 

OSL, VM and RPE) in 3D images of patients with 

retinal pigment epithelial detachments (PED) by using 

multi-resolution graph search-based surface detection 

overall mean unsigned  border  positioning  

error  for  layer  segmentation  is  7.87±3.36 

μm and  is  comparable  to  the  mean  inter-

observer  variability  (7.81±2.56 μm). 

 

 Limited number 

Pigment Epithelial 

detachments patients 

 Detect 10 layers only 

from retinal OCT 

Sugmk et al. 

[29] 

2015 

 

Proposed an algorithm based on thresholding to 

segment the retinal pigment epithelium (RPE) layer. 

This layer is important in detecting the shape of drusen. 

Moreover, the RPE layer is used to localize the retinal 

nerve fiber layer (RFL) and to detect a bubble of blood 

area.  

 

Segmentation is used for classification of 

DME and Normal classes which achieves 

87.5%. 

 

 Extracts only 2 layers 

which is not sufficient 

for detecting DME 

disease 

Salarian et al. 

[30] 

2015 proposed a method that uses graph theory, and the 

shortest path algorithm was presented to detect certain 

layers. They aim to choose the RoI that could be used 

to distinguish normal cases from abnormal ones. They 

discovered that using changes in some parts, such as 

inner limiting membrane (ILM), retinal nerve fiber 

layer (RNFL) and retinal pigment epithelium (RPE), 

leads to separating these layers easily.  

The results were accurate according to 

manual segmentation of an expert. (no 

results are stated) 

 No result values were 

stated (only depends on 

expert opinion) 
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Table 3-1 (cont.).  Retinal Layers segmentation literature survey 

Author Year Techniques applied Results Limitations 

Luo et al. [31] 2017 They studied and compared the performance of canny 

edge detector, the two-pass method proposed by Bagci 

et al. 2007  and Edgeflow technique. All of these 

techniques were used with retinal OCT images to 

delineate the retinal layer boundaries.  

The two-pass method achieved accuracy of  

0.98 ± 0.0033 while canny edge detector and 

edgeflow technique achieves  0.98 ± 0.0026 

and 0.97 ± 0.0027 respectively  

The mean localization of two-pass method, 

edge detector technique and edgeflow 

technique are 1.02 ± 0.2484, 1.27 ± 0.3340 

and 1.05 ± 0.1831 respectively. 

The study suggests that the two-pass method 

is the best one for retinal OCT boundary 

detectors. 

 The limitation of this 

comparison is that they 

uses a dataset with 

normal traces only. 

 The comparison is 

limited to 

segmentation of 6 

layers only to have a 

fair comparison 

between these different 

techniques 

ElTanboly et al. 

[33] 

2017 Used a joint Markov-Gibbs random field (MGRF) 

model of intensities and shape descriptors to detect 12 

different layers, which are GCL, NFL, INL, IPL,  OPL, 

ONL, external limiting membrane (ELM), myoid zone 

(MZ), ellipsoid zone (EZ), outer photoreceptor (ORP), 

interdigitating zone (IZ), and RPE layers of healthy 

retinas. 

Overall segmentation accuracy was 73.2 ± 

4.46. 
 Segmentation accuracy 

is not high 

 Some important layers 

like Bruch’s membrane 

is not segmented. 

 Applied on normal 

traces only 

Dash et al. [34] 2018 Proposed a graph-based segmentation technique for 

separating four layers (ILM, RPE, INL and ONL) 

Overall segmentation sensitivity was 90%.   Detect 4 layers only 

from retinal OCT  

Dodo et al. [35] 2019 Proposed fully automatic method for annotation of 

retinal layers in OCT images comprising of fuzzy 

histogram hyperbolisation (FHH) and graph cut 

methods to segment 7 retinal layers across 8 

boundaries. The boundaries are (NFL-GCL, INL-OPL, 

IS-OS, RPE, ILM, IPL-INL, OPL- ONL, OS-RPE) 

RMSE of layers NFL, GCL+IPL, INL, OPL, 

ONL+IS, OS and RPE are 0.2688 ±  (0.0185), 

0.5762 ± (0.0590), 0.6307 ± (0.0785), 0.4839 

± (0.0410), 0.6596 ± (0.0823), 0.4401 ± 

(0.0362), 0.4369 ± (0.3291) respectively 

 Applied only on 

normal trace 

 Detect 7 layers only 

from retinal OCT  

 



 

 

3.2 Literature Review on Retina Disorder Classification Using 

OCT 

Although the previous studies present effective segmentation techniques, there is a need to 

develop comprehensive diagnostic systems that emphasize RoI and perform disease 

classification. Such systems can help alleviate the burden on medical care systems. Current 

automated diagnostic systems either use traditional ML techniques of feature extraction, 

segmentation and classification or utilize deep learning architectures with unprocessed images. 

An example of these automated systems with OCT imaging can be found in the work of 

Srinivasan et al. [36]. It described an automated method for detecting retinal diseases using 

features extracted by Histogram of Oriented Gradients (HOG) techniques and SVMs to classify 

three classes namely DME, dry AMD and Normal. Their method does not rely on the 

segmentation of inner retinal layers; however, retinal flattening is performed. The proposed 

model achieved 100% for both DME and dry AMD classes and 86.67% for normal class. 

Another example of traditional approach is that of Alsaih et al. [15]. They proposed a pipeline 

model that generated a large set of extracted features using HOG and Local Binary Pattern 

(LBP) at four levels of the multiscale Gaussian lowpass image pyramid. These features were 

either reduced using Principle Component Analysis (PCA) or directly passed to SVM classifier, 

which was used to classify two classes: DME and normal. Their best model achieved an 

accuracy of 81%. Naz et al. [6] addressed the problem of automatic classification of OCT 

images through SVM (leave one out) technique after image denoising and extraction of features 

from thickness profile and cyst spaces. This technique was based on extracting features from 

segmenting the retinal layer (ILM and choroid layer) and from the changes in thickness of these 

layers. Naz et al. [6] applied that technique for the identification of patients with DME versus 

normal subjects. The proposed model achieved an accuracy of 79.65%. 

These traditional approaches [6, 15, 36], which employed hand-crafted feature for the 

classifiers, were shown to obtain promising results. However, these approaches shared a common 

disadvantage, which is requiring abundant expert knowledge. Medical knowledge was needed to 

correctly detect retinal layers and/or changes in layers’ thickness [6] and/or assist in retinal 

flattening [15, 36]. Such dependence on experts’ availability gives rise to another concern, which 

is having poor generalization to other domains [37]. Despite these limitations, hand-crafted 
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features remain to provide intuitive information, which enables the needed analysis of the model 

[38]. Hence, the generation of hand-crafted features that are not heavily reliant on experts’ 

knowledge would provide the required balance of providing explanation of the model without 

being dependent on an expert. This balance learning techniques were employed to perform 

embedded feature extraction implicitly. Awais et al. [39]used a deep learning architecture 

(VGG16) for extracting features from different layers of the network. Classifications were made 

using KNN and Decision Tree based on the extracted features. The model is used to classify two 

classes: DME and normal. The best model got an accuracy of 87.5%. 

Perdomo et al. [40] proposed a new CNN architecture for OCT classification. The new CNN 

consists of two blocks, the first block contains four subblocks with convolutional layers and max 

pooling and the last block has two fully connected layers. The new CNN was evaluated with 

different learning rates, until it was able to correctly detect DME with a classification accuracy of 

93.75% between two classes: DME and normal at learning rate 0.00001. 

Motozawa et al. [41] developed a pipeline model consisting of two CNNs. The first is used to 

differentiate AMD class from normal class and the second CNN model is used to divide the AMD 

class into those with exudates and without exudates using transfer learning. The first CNN 

achieved an accuracy of 99% and the second one achieved an accuracy of 93.9%. Despite that the 

models attained high accuracies; the classification was limited to two classes which simplifies the 

problem. The work of Kermany et al. [42] established a diagnostic tool based on a deep learning 

framework for the screening of patients with common treatable blinding retinal diseases. They 

applied their approach on an OCT dataset [8] with four classes which are DME, CNV, DRUSEN, 

NORMAL. They used transfer learning inception model which achieved 96.1% average accuracy. 

Their approach demonstrated performance comparable to that of human experts in classifying age-

related macular degeneration and diabetic macular edema. Using the same dataset, Li et al. [37] 

adopted a transfer learning VGG16 network that achieved an accuracy of 98.6%. Both studies 

applied deep learning approaches [37, 42] to classify four different classes including serious 

diseases (DME, CNV) and achieved promising results. However, the problem for deep learning 

models (CNNs) presented in the work of Kermany et al. [42] and Li et al. [37] is that its sensitivity 

to urgent referrals classes (CNV/DME) is unsatisfactory. This is the main argue point against the 

approaches in the work of Kermany et al. [42] and Li et al. [37]. Another common concern of deep 

learning architecture is the limited interpretability of the constructed models. The incorporation of 
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hand-crafted features can provide an adequate solution to deep learning issues. Hand-crafted 

features can offer complementary information that increase the understandability of the 

classification decision [43, 44]. In addition, the use of hand-crafted features was shown to 

considerably improve the performance of pure deep learning approaches [45]. Recently, similar 

studies for image classification and recognition have shown that the integration of deep and 

traditional learning yield better performance. Examples of these studies include the work of Zhang 

et al. [46] for face recognition and Xie at al. [47] for lung nodule classification. Moreover, deep 

learning architectures in return can provide automated localization of the retinal RoI, which 

overcomes the need for an expert to aid in the specification of the RoI, required for traditional 

feature extraction. 

Table 3-2. summaries retina disorders classification stated in the literature survey with 

stating their results and limitations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3-2. Retinal Disorders classification Literature Survey 

Author Year Techniques applied Results Limitations 

Srinivasan et 

al. [36] 

 

2014 

 

Proposed an automated method for detecting retinal diseases 

using features extracted by Histogram of Oriented Gradients 

(HOG) techniques and SVMs to classify three classes namely 

DME, dry AMD and Normal. Their method does not rely on the 

segmentation of inner retinal layers; however, retinal flattening is 

performed.  

 

The proposed model 

achieved 100% for both 

DME and dry AMD 

classes and 86.67% for 

normal class. 

 

 The disadvantage of it is requiring 

abundant expert knowledge 

 Medical experts were needed in 

retinal flattening  

 

Alsaih et al. 

[15] 

 

2017 Proposed a pipeline model that generated a large set of extracted 

features using HOG and Local Binary Pattern (LBP) at four 

levels of the multiscale Gaussian lowpass image pyramid. These 

features were either reduced using Principle Component Analysis 

(PCA) or directly passed to SVM classifier, which was used to 

classify two classes: DME and normal.  

Their best model achieved 

an accuracy of 81%. 

 

Naz et al. [6] 

 

2017 addressed the problem of automatic classification of OCT images 

through SVM (leave one out) technique after image denoising 

and extraction of features from thickness profile and cyst spaces. 

This technique was based on extracting features from segmenting 

the retinal layer (ILM and choroid layer) and from the changes in 

thickness of these layers. Naz et al. applied that technique for the 

identification of patients with DME versus normal subjects.  

The proposed model 

achieved an accuracy of 

79.65%. 

 

 The disadvantage of it is requiring 

abundant expert knowledge 

 Medical experts were needed to 

correctly detect retinal layers or 

changes in layers’ thickness  

 

Awais et al. 

[39] 

 

2017 Used a deep learning architecture (VGG16) for extracting 

features from different layers of the network. Classifications were 

made using KNN and Decision Tree based on the extracted 

features. The model is used to classify two classes: DME and 

normal.  

 

The best model got an 

accuracy of 87.5%. 

 

 The classification was limited to 

two classes which simplifies the 

problem.  

 Another common concern of deep 

learning architecture is the limited 

interpretability of the constructed 

models 
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Table 3-2 (cont.). Retinal Disorders classification Literature Survey 

Author Year Techniques applied Results Limitations 

Perdomo et 

al. [40] 

 

2018 proposed a new CNN architecture for OCT classification. The 

new CNN consists of two blocks, the first block contains four 

subblocks with convolutional layers and max pooling and the last 

block has two fully connected layers. The new CNN was 

evaluated with different learning rates. The proposed model 

could separate between two classes: DME and Normal. 

 

The proposed model 

achieved classification 

accuracy of 93.75% at 

learning rate 0.00001. 

 

 The classification was limited 

to two classes which 

simplifies the problem.  

 Another common concern of 

deep learning architecture is 

the limited interpretability of 

the constructed models. 

Motozawa et 

al. [41] 

 

2019 developed a pipeline model consisting of two CNNs. The first is 

used to differentiate AMD class from normal class and the 

second CNN model is used to divide the AMD class into those 

with exudates and without exudates using transfer learning. 

Despite that the models attained high accuracies. 

 

The first CNN achieved 

an accuracy of 99% and 

the second one achieved 

an accuracy of 93.9%.  

 

 The classification was limited 

to two classes which 

simplifies the problem.  

 Another common concern of 

deep learning architecture is 

the limited interpretability of 

the constructed models 

Kermany et 

al. [42] 

 

2018 Established a diagnostic tool based on a deep learning framework 

for the screening of patients with common treatable blinding 

retinal diseases. They applied their approach on an OCT dataset 

with four classes which are DME, CNV, DRUSEN, NORMAL. 

They used transfer learning inception model. 

The proposed model 

achieved an accuracy, 

sensitivity and specificity 

of 96.1%, 97.8% and 

97.4% respectively. 

 

 Limited interpretability of 

deep learning models. 

 No visualization of RoI  

 

Li et al. [37] 

 

2019 Established a diagnostic tool based on a deep learning framework 

for the screening of patients with common treatable blinding 

retinal diseases. They applied their approach on an OCT dataset 

with four classes which are DME, CNV, DRUSEN, NORMAL. 

They used transfer learning VGG16 model. 

 

The proposed model 

achieved an accuracy, 

sensitivity and specificity of 

98.6%, 97.8% and 99.4%, 

respectively. 

 Limited interpretability of 

deep learning models. 

 No visualization of RoI  

 



 

 

3.3 Review on Machine learning-based classification techniques 

The following subsections describe different supervised machine learning classification 

algorithms where each input belongs to a predefined output class during learning phase. 

 

3.3.1 Suppot Vector Machine (SVM) 

Support Vector Machines (SVM) is a group of supervised learning algorithm that can be 

applied to classification or regression. Support Vector Machines (SVMs) are the newest 

supervised machine learning technique. It is theoretically well motivated algorithm: derived 

from Statistical Learning Theory by Vapnik and Chervonenkis since the 60s [48]. SVM works 

by taking a set of input data and predicts, for each given input, which of two possible classes 

forms the output, making it a non-probabilistic binary linear classifier. SVMs revolve around 

the notion of a “margin”—either side of a hyperplane that separates two data classes. The goal 

of SVM is maximizing the margin and thereby creating the largest possible distance between 

the separating hyperplane and the instances on either side of it has been proven to reduce an 

upper bound on the expected generalization error [49]. The SVM is has two phases training and 

testing phases. At training, a set of training data each labelled as depending on one of two 

categories. An SVM training algorithm builds a model that designates new examples into one 

category or the other. This method is a representation of the examples as points in space, mapped 

so that the examples of the different classes are divided by a clear gap that is as wide as possible 

[49]. During testing phase, new examples are then mapped into that same space and estimated 

according to a class based on which side of the gap they fall on [49]IN. SVM has empirically 

good performance and successful applications in many fields such as bioinformatics, text, 

pattern recognition and others. 

 

3.3.2 Neural Networks 

The basic idea of neural networks is the artificial neuron which is based on the functionality 

of the neuron inside the biological brain. Every neuron or node (nerve cell) is connected to each 

neuron in the next layer through a connection link. A nerve cell is made up of axon (output), 

dendrites (input), a node (soma), nucleus (activation function), and synapses (weights). The 

activation function in the artificial neuron acts as the nucleus in a biological neuron whereas the 
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input signals and its respective weights model the dendrites and synapses respectively. Figure 

3-1 illustrates the neuron structure. 

 

Figure 3-1 Artificial Neuron Structure 

3.3.2.1 Perceptron Learning 

In perceptron learning, if ∝1 through ∝2 are input feature values and w1 through w2 are 

connection weight vector (typically real numbers in the interval [−1, 1]), then perceptron 

computes the sum of weighted inputs: ∑i ∝i. wi and output goes through an adjustable threshold: 

if the sum is above threshold, output is 1; else it is 0 [49]. The most common way for learning 

from a batch of training instances is to run the algorithm repeatedly through the training set until 

it finds a prediction vector which is correct on all of the training set [49]. This prediction rule is 

then used for predicting the labels on the test set. The problem with perceptron is that it can only 

classify linearly separable sets of instances. If a straight line or plane can be drawn to separate 

the input instances into their correct categories, input instances are linearly separable, and the 

perceptron will find the solution [49]. Otherwise (if instances are not linearly separable) learning 

will reach to a point where all instances are correctly classified. 

 

3.3.2.2 Artifical Neural Network (ANN) 

An artificial neural network consists of large number of units (neurons) joined together. The 

model is realized with a structure that is made up of input, hidden, and output-layers, as shown 

in Figure 3-2. 
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Figure 3-2 Artificial Neural Network Structure 

Units in a network (shown in Figure 3-2) are usually segregated into three classes: input units, 

which receive information to be processed; output units, where the results of the processing 

are found; and units in between known as hidden units.  the behavior of the ANN is defined by 

the current values of the weights [49]. The weights of the network to be trained are initially set 

to random values, and then instances of the training set are repeatedly exposed to the network. 

The values for the input of an instance are placed on the input units and the output of the 

network is compared with the desired output for this instance. Then, all the weights in the 

network are adjusted slightly in the direction that would bring the output values of the network 

closer to the values for the desired output [49]. ANNs have been applied to many real-world 

problems but still, their most striking disadvantage is their lack of ability to reason about their 

output in a way that can be effectively communicated [49]. For this reason many researchers 

have tried to address the issue of improving the comprehensibility of neural networks, where 

the most attractive solution is to extract symbolic rules from trained neural networks [49]. 

 

3.4 Review on Deep Learning classification techniques 

Deep learning or Deep neural network (DNN) belongs to class of machine learning. It relies 

on the collection of machine learning algorithms which models high level abstractions in the 
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data with multiple nonlinear transformations [50]. DNN is a subclass of neural networks. DNN 

takes learning algorithms and by continuously increasing the amounts of data, the efficiency of 

training processes can be improved [50]. The term “deep” represents the large number of hidden 

layers between the input and output layer. It is also known as hierarchical learning that consists 

of multiple layers which includes nonlinear processing units for the purpose of conversion and 

automatic feature extraction [50]. The hierarchical structure of deep Learning can be shown in 

Figure 3-3. Every subsequent layer takes the results from the previous layer as the input, where 

the higher-level features are defined from lower-level ones. The deep learning algorithms are 

highly motivated by artificial intelligence field which attempts to emulate the human brain’s 

ability to observe, analyze, learn, and make decisions. The deep learning approach is widely 

used in the fields of adaptive testing, big data, cancer detection, health care, document analysis 

and recognition, speech recognition, object detection, natural language processing, pedestrian 

detection, image classification and voice activity detection [50].  

The main difference between traditional machine learning and deep learning is that 

traditional machine learning needs manual feature extraction from the collected dataset. After 

that, various types of automated algorithms that learn to model functions and predict future 

actions from data. In traditional machine learning, algorithms are directed by data analysis to 

examine specific variables in data sets. In deep learning algorithms, deep neural networks pass 

data through many processing layers to interpret automatic data features and relationships. 

Moreover, deep learning algorithms are self-directed on data analysis once they’re put into 

production. Figure 3-4 shows difference between traditional machine learning and deep 

learning. 

 

Figure 3-3 Hierarchical Deep learning networks 
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Figure 3-4 (a) Traditional machine learning approach and (b) Deep learning approach. 

Unlike neural network, learning of DNN takes place not only as discriminative supervised 

learning but also generative unsupervised learning. The next subsections will describe different 

deep learning techniques of discriminative supervised deep networks and generative 

unsupervised deep networks. 

 

3.4.1 Generative unsupervised deep networks 

Generative unsupervised learning technique is used to capture correlation of observed data 

without availability of information about target class availability [51]. The correlation of data is 

useful for pattern analysis and synthesis purposes. From the generative unsupervised deep 

networks are Auto-Encoders (AE), Restricted Boltzmann Machine (RBMs) and Deep Belief 

Networks (DBNs). 

 

3.4.1.1 Auto-Encoders (AE) 

An Auto-encoder (AE) is a type of neural network which is based on unsupervised 

learning technique [50]. The network is trained to generate output that imitates inputs. AE 

architecture is composed of three main layers which are input layer, encoding layer and decoding 

layer. The AE tries to reconstruct/represent its input which allows the encoder layer to learn the 

best representation of the input.  Its architecture consists of three layers which are an encoding 

network, a hidden layer, and a decoding network as shown in Figure 3-5. The encoder network 

is a feedforward neural network that tries to compress the input into a latent space and learn the 
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best representations of the input. The hidden layer which is trying to generate a code which helps 

to represent the input. The decoder network is also a feedforward network, similar to encoder 

network, which tries to reconstruct the input back to its original dimensions. 

 

Figure 3-5 Structure of Auto Encoder Network 

AE are similar to Principle Component Analysis (PCA), both of them tries to minimize 

the objective function. The advantage of AE over the PCA is that it has more flexibility that 

allow the representation of not only the linear transformation, as PCA, but also the nonlinear 

transformations. AEs are trained with a backpropagation algorithm that employs a metric known 

as the loss function [52]. The advantage of the backpropagation algorithm is that it minimizes 

the lost information from input reconstruction helping the AE network to produce a nearly 

identical reconstructed output sample [52]. From the examples of auto encoders are the 

denoising auto encoder network. In denoising auto encoder, part of the input dataset is elected 

randomly and corrupted by noise. Then parameters of the network are adjusted and the hidden 

layer inside the network will learn a code that help in separating the noise during reconstructing 

output sample [52]. 

 

3.4.1.2 Restricted Boltzmann Machines (RBMs) and Deep Belief Network (DBNs) 

Boltzmann machine (BM) is a neural network of symmetrical connected neuron [51]. It 

consists of a number of visible layers and a number of hidden layers. All neurons inside networks 

are connected together. BM make stochastic decisions about whether to be on or off [51]. 

Restricted Boltzmann Machine (RBM) is a special type of BM that is consists of two-layer 

neural network with one visible layer and one hidden layer. RBM differ from BM that it has no 
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hidden to hidden or visible to visible connections [51]. Figure 3-6 shows the connections of 

BMs and RBMs networks. Another special type of BM is Deep Restricted Boltzmann Machine 

(DBM) which consists of many hidden layers. Similar to RBMs, DBM has no connections 

between neurons of same layers [51]. Each layer captures complicated, higher-order correlations 

between the activities of hidden features in the layer below [51]. DBMs can learn more complex 

and highly desirable representations for solving recognition problems [51]. Further, the high-

level representations can be built from a large supply of unlabeled inputs. Very limited labeled 

data (supervised) can be used to fine tune model for a specific task. 

 

Figure 3-6 General Boltzmann Machine and Restricted Boltzmann Machine networks 

Deep Belief Network (DBN) is a stacked layer architecture of several hidden layers. 

DBN is a stacked layer of RBMs. Each RBM network act as a layer inside DBN which is trained 

independently to encode the statistical dependencies of the units within the previous layer. DBN 

training starts by training the lower RBM x layer followed by the upper layer of h1, h2, etc…  

as shown in Figure 3-7 [53] that shows training of one input layer, x, and three hidden layers 

h1, h2, h3. From left to right, each layer of DBN is a RBM network. The bottom layers are 

intended to extract low-level features from the input data, while the upper layers are expected 

to gradually refine previously learned concepts [53]. 
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Figure 3-7 Training process of a Deep Belief Network (DBN)  

3.4.2 Discriminative supervised deep networks 

Discriminative supervised learning technique is used to categorize data where each input has 

a corresponding output target [51]. From the discriminative supervised deep networks are 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Long-Short 

Term Memory (LSTM). 

 

3.4.2.1 Convolutional Neural Network (CNN) 

CNN is a neural network with multiple layers architecture [50]. CNN can extract 

automatic discriminative features which have some invariance properties (e.g. translation 

invariance) [54]. It consists of three main layers which are convolution layers, pooling layers 

and fully connected layers. The early convolution layers of the architecture are used for 

extracting local low-level features from the raw input while the deeper convolution layers of 

CNN are used for combining features together to generate global high-level features [50]. The 

pooling layers are used to down sample the dimensionality of the extracted feature. The fully 

connected layers form an ANN network where each neuron in the previous layer is connected 

to all the neurons in the current layer. The total number of fully connected neurons in the final 

layer determines the number of classes [52]. The advantages of CNNs include that they are 

well suited for end-to-end learning that generates automatic features from the raw data without 

any a priori feature selection. Moreover, CNNs scale well to large datasets. The disadvantages 

of CNNs include that they may output false predictions with high confidence, may require a 

large amount of training data, may take longer to train than simpler models, and involve a 
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large number of hyper parameters such as the number of layers or tIhe type of activation 

functions, the limited interpretability of the constructed models. Some of famous CNN are as 

follow: 

 AlexNet model: It was proposed by Alex Krizhevsky [55]. AlexNet CNN is a 

feedforward network with 8 layers. It contains five convolution layers and three fully 

connected layers [55]. Figure 3-8 shows the structure of AlexNet. 

 

 

Figure 3-8. AlexNet Architecture 

 Visual Graphic Group Net (VGG Net) model: This net was developed by the 

technicians at the Visual Graphics Group from the Oxford and is in pyramid shape. The 

model consists of the bottom layers which are wide and the top layers are deep [50]. 

There are 2 versions of VGG which are VGG-16 and VGG-19. VGG-16 is a combination 

13 convolutional layers and Three fully connected layers as shown in Figure 3-9. The 

VGG-19 is a much deeper network with 16 convolutional layers and three fully 

connected layers [56].  
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Figure 3-9. VGG-16 architecture [50] 

 GoogleNet (Inception) model: They are models developed by Google [57]. It has 

different versions as Inception-v1, Inception-v2 and Inception-v3. All inception models 

are based on the idea inception block. The idea of inception block is based on not stacked 

convolutional layers, but stacked building blocks which them-selves consist of multiple 

convolutional layers. Here single layer carries multiple kinds of the feature extractors 

that help the network to perform better. The inception building block can be found in 

Figure 3-10. The difference between inception versions are the number of repetitions of 

the fundamental inception building block. For example, Inception-v1 has 22-layers deep, 

starts with three convolution layers, followed by 9 inception blocks, and ends with a 

fully connected layer while Inception-v3 consists of 48 layers. It starts with 6 

convolution layers and followed by 10 inception blocks. The full architecture is 

described in detail in [57].  

 

Figure 3-10. Inception Block 
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 ResNet model: It is a type of deep network based on residual learning. There are 

different versions of ResNet which are ResNet-18, ResNet-34, ResNet-50, ResNet-101 

and ResNet-152. All of them has the same building units or residual blocks and formed 

by stacking the building residual blocks over each other [56, 58]. Any ResNet starts with 

block has a structure as shown in Figure 3-11. The residual blocks are divided into two 

types which are Identity shortcut and Projection shortcut. The first block shown in Figure 

3-12(a) is the  identity shortcut bottleneck block which is composed of a sequence of 

convolution layers of kernel size (1 × 1) and stride = 1 connected to a convolution layer 

with kernel (3 × 3) and stride = 1 followed by a convolution layer followed by kernel (1 

× 1) and stride = 2 [59]. This block is used when the input and output of feature map are 

the same. The other block shown in Figure 3-12(b) is the projection shortcut bottleneck 

block which has the same sequence of layers with a newly added convolution layer in 

the projection shortcut which has a kernel size of (1 × 1) with stride = 2 [59]. It is applied 

when shortcuts go across the feature map of two sizes. In the two blocks all the 

convolution layers are followed by batch normalization and RELU activation function. 

The difference between different ResNet versions are the number of stacked residual 

blocks. For example, ResNet-18 with 22-layers are deep, starts with a convolution layer 

followed by 8 residual blocks and ends with a fully connected layer [59]. Another 

example is the ResNet-50 which has 16 residual blocks and ends with fully connected 

layer as shown in Figure 3-13. 

 

Figure 3-11. ResNet Starting Block 
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Figure 3-12. Residual Blocks (a) Identity Shortcut (b) Projection Shortcut 

 

 

Figure 3-13. ResNet-50 architecture 

 Xception model: It has 71 layers. It started by two convolution layers followed by depth 

separable convolution layers, four convolution layers and dense layer [60]. 

 MobileNet model: It is a light-weight network. It has 53 layers which are divide to 52 

convolution layers and the last is the dense layer. The network start with 16 residuals 

and bottlenecks blocks and ends with one convolution layer followed by dense layer 

[61]. 
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3.4.2.2 Recurrent Neural Network (RNN) 

In contrast to the feed-forward network, the RNN employs a recursive approach (recurrent 

network) whereby the network performs a routine task with the output being dependent on the 

previous computation. Figure 3-14 shows the recurrent neural networks concept. This 

functionality is created with inbuilt memory. The most common type of RNN is the Long 

Short-Term Memory (LSTM) network. It has the capability to learn long-term dependencies.  

The LSTM algorithm incorporates a memory block with three gates: the input, output, and 

forget gate. These gates control the cell state and decide which information to add or 

remove from the network. This process repeats for every input [52]. 

1 Input gate: decides what new information is to be stored and updated in the cell state. 

2 Output gate: judges what information is used based on the cell state. 

3 Forget gate: evaluates what information is redundant and discards it from the cell state. 

 

Figure 3-14. Recurrent neural networks concept: (a) RNN extends across time, (b) using the past to predict 

the future 

The previously described deep learning architectures have demonstrated their potential by 

surpassing the performance of traditional machine learning techniques. Moreover, deep learning 

algorithms minimize the need for spatial crafted feature engineering. The big disadvantage is 

that these models is computationally intensive but nowadays, this problem is solved by using 

high-specification Graphics Processing Units GPU to accelerate the training of these models.\ 
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3.5 Summary 

In the first two sections of this chapter, the related work in the field of segmentation of retinal 

layers and classification of different retinal layers disorders was explained. It was depicted that 

the previously model needed manual segmentation before classification. The problem of manual 

segmentation that it needs medical experts and took a lot of time. Moreover, the automatic 

segmentation proposed in literature have limitation in number of layer segmented or was applied 

on normal trace or one retinal disorder. In the third section, two of the most famous machines 

leaning based classifiers are explained which are SVM and Neural networks. In the fourth 

section, an illustration of the deep learning concepts of generative unsupervised deep networks 

and discriminative supervised deep networks. 
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4 HYCAD: HYBRID COMPUTER AIDED DIAGNOSIS  

PROPOSED FRAMEWORK 

In this chapter, the proposed model architecture will be introduced, with an illustration 

of the phases’ description. The proposed model utilizes modified variant of an existing deep 

learning architecture, namely VGG16, with OCT images for efficient diagnosis of retina 

disorders. The proposed deep learning architecture modifications aim at improving the 

performance of the standard basic architectures in terms of attained accuracy and training time 

requirements. The implemented architectures provide RoI localization and feature generation. 

Hand-crafted features are generated from the RoI that is extracted by the deep learning 

architecture. Afterwards, both CNN-based features and hand-crafted features are merged and 

input to the dense layer. Diagnosis is produced based on the classification output by the dense 

layer. The proposed system architecture is shown in Figure 4-1. 

 

Figure 4-1 Proposed Framework diagram 

4.1 Preprocessing Stage 

A range of preprocessing steps are applied to the dataset to limit the processing system 

requirements and to increase the robustness of the models.  

First, individual cross-sectional tomography (B-scans) in the SD-OCT volume are denoised 

using the sparsity-based block matching and 3D-filtering (BM3D) denoising method which 

reduces the speckle noise. It is the filter from the nonlocal means class that looks for local 

neighborhoods of similar shapes and puts them into a 3D matrix [62]. The applied BM3D filter 
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noticeably reduces the speckle noise in images, as can be seen in Figure 4-2. Noise reduction 

helps in achieving good performance metrics. 

 

Figure 4-2 Noised vs. Denoised Images (a) CNV class (b) DME class (c) DRUSEN class (d) NORMAL class 

BM3D filter and grouping is based on the idea of collaborative filtering that has 4 steps which 

are [63]: 

1. Finding the image patches similar to a given image patch and grouping them in a 3D 

block 

2. 3D linear transform of the 3D block 

3. Shrinkage of the transform spectrum coefficients 

4. Inverse 3D transformation 

This 3D filter therefore filters out simultaneously all 2D image patches in the 3D block. By 

attenuating the noise, collaborative filtering reveals even the finest details shared by the grouped 

patches. As shown in Figure 4-3 filtered patches are then returned to their original positions. 

Since these patches overlap, many estimates are obtained which need to be combined for each 

pixel [63]. Aggregation is a particular averaging procedure used to take advantage of this 

redundancy. The first collaborative filtering step is much improved by a second step using 

Wiener filtering. This second step mimics the first step, with two differences. The first difference 

is that it compares the filtered patches instead of the original patches [63]. The second difference 

is that the new 3D group (built with the unprocessed image samples but using the patch distances 
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of the filtered image) is processed by Wiener filtering instead of a mere threshold. The final 

aggregation step is identical to those of the first step [63]. 

 

Figure 4-3. Scheme of the BM3D algorithm 

Second, images are streamed in batches to avoid system crash due to RAM overloading, and 

this is because of the memory limitations. Memory limitations come from training models using 

a RAM size of small bandwidth compared to the large dataset used in training (108,312 images) 

and the large size of our deployed CNN architecture. To solve this problem, our data is 

partitioned into batches of 32 images and the training data was transferred batch by batch from 

the hard disk to RAM during training. After the training of each batch ends, it is discarded, and 

a new batch of images is generated and stored in RAM. So, each training epoch will have 3385 

iterations (equal to number of training dataset/batch size). This technique allows us to train our 

large training set without RAM overflowing. 

Data Augmentation is applied for each batch. Rotation by range from 0 to 30 degrees, 

horizontal flipping and shifting by range between 0 and 30% from left, right, up and down is 

applied randomly on each batch of images in each epoch to allow deep learning architectures to 

train on different orientations of input image, thus improving the robustness of the system. After 

that, all the images are resized to 200 × 200 pixels. 

Each pixel value is normalized to process all images in the same manner because some 

images may have high pixel range that could cause stronger loss and low pixel range that could 

cause weaker loss. Additionally, high pixel range will have a large number of votes to determine 

how to update weights. So, if the values of intensities are normalized to avoid discrepancy in 
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image processing caused by different pixel ranges, this could decrease the gap and make a fair 

competition in votes between high pixel range and low pixel range. 

4.2 RoI segmentation stage 

The performance of deep learning is noteworthy. Nevertheless, a shortcoming of deep learning 

architectures is that they are considered as black boxes which do not provide any insight into 

the classification process. Therefore, in this phase the activation maps are generated by Norm-

VGG16 for our classes to visualize and localize the areas used for classification. The activation 

maps highlight the focus areas, from which most of the CNN-based features were extracted. 

In order to generate discriminative localization map, Gradient-weighted Class Activation 

Mapping (Grad-CAM) module [64] is used. The implemented Grad-CAM module structure is 

shown in Figure 4-4. Grad-CAM Lc
Grad-CAM ∈ Ru×v of width u and height v for any class c. The 

gradient of the score of the class c is computed before the softmax layer (yc) with respect to 

feature maps Ak of a convolutional layer 
∂𝑦𝑐

∂𝐴𝑘
 .These gradients flowing back are global average 

pooled to obtain the neuron importance weights αc
k as shown in Equation (4-1). 

 

∝𝑘
𝑐=

1

𝑍
 ∑   

𝑖

∑  

𝑗

⏞        

𝑔𝑙𝑜𝑏𝑎𝑙 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

⏟
𝑔𝑟𝑎𝑑𝑖𝑎𝑛𝑡𝑠 𝑣𝑖𝑎

𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

 (4-1) 

 

This weight αc
k represents a partial linearization of the deep network downstream from 

A and captures the “importance” of feature map k for a target class c. After that a weighted 

combination of forward activation maps takes place. ReLU is applied on the combination of 

feature maps. ReLU is used to emphasize the positive influencer pixels whose intensity should 

be increased in order to increase yc for a certain class and remove the negative influencer pixels 

that are likely to belong to other categories in the image as shown in Equation (4-2).  

 
 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 ( ∑ ∝𝑘

𝑐 𝐴𝑘

𝑘

)
⏟        

𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

 

(4-2) 
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The ReLU helps in highlighting the positive influencer pixels in the localization maps 

and avoid highlighting the negative influencer pixels, which achieve better localization . The 

generated heat maps (activation maps) seem to clearly portray the RoIs used in classification, 

which can be considered as implicit segmentation. Thus, they provide transparency of the model, 

which is required in medical diagnosis. The generated heat maps for all the four classes are 

shown in Figure 4-5, where the activation maps clearly mark the RoI. 

 

 

 

Figure 4-4 Grad-CAM overview 
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Figure 4-5. Examples of heat maps for each class. 

The shown samples of the activation maps clearly mark the RoI that can be used in 

classification and feature generation. As shown in Figure 4-6, a binary mask is generated for 

each image from the RoI and the corresponding image is segmented using this binary mask.  

The binary masks are generated based on the heat maps output by the Norm-VGG16 deep 

learning architecture. The heat maps highlight the RoI, which allow the generation of binary 

masks. Simple global thresholding [65, 66] is used, where a histogram is plotted for each heat 

map and the respective threshold value is determined. The threshold value is selected per 

individual heat map such that red and yellow areas in the heat map are used to create the mask 

(emphasizing the localized RoI region) as shown in Figure 4-7. The global threshold value is 

used to generate the binary mask. 
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Figure 4-6. Pipeline of segmentation. (a) CNV class (b) DME class (c) DRUSEN class (d) NORMAL class. 

 

Figure 4-7. Mask Generation from heat map (generated from Norm-VGG16 (kernel regularized)). 
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4.3 Feature Extraction and Fusion 

After RoI localization, features are extracted to be used in detection and classification of 

different diseases and disorders in medical images. In this phase, different type of features is 

extracted from the medical images. The features are divided to deep learning features and spatial 

hand-crafted features. 

 

4.3.1 Deep Learning Features 

One of the most prominent deep learning architectures is VGGs Network. VGG16 [56] 

architecture is utilized for its known superior performance, for example, compared to other 

models like AlexNet [55]. This may be attributed to its small kernel size (3 × 3) and more trainable 

parameters, which helps increase the depth of CNN without the problem of gradient loss in deep 

CNNs. A set of modifications to the standard VGG network architecture are proposed to create 

Norm-VGG16 Network variant architecture that enhances the performance of the basic 

architecture.  

First, the number of convolution layers is increased from 13 layers in standard VGG to 16 

convolution layers. Each of the added layers has a kernel of size 3 × 3 and stride = 1. The pipeline 

of the convolution layers starts with input layer which is convolved by 64 (3 × 3) kernels. The 

ending layer of the pipelined convolution layers has 512 (3 × 3) kernels with output of size 3 × 3. 

Each convolution layer is followed by a non-linear layer to trigger function to signal distinct 

identification of likely features on each hidden layer. Between each group of convolution layers 

there is a max pooling layer of size (2 × 2) to down sample the feature tensor to reduce overfitting. 

The second applied modification is adding a global average pooling layer followed by a softmax 

dense layer to reduce the overfitting of CNN. Figure 4-8 shows the Norm-VGG16 architecture. 
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Figure 4-8. Norm-VGG16 proposed architecture 

The Input layer of the proposed Norm-VGG16 is modified to have size of 200 × 200 This 

modification will affect the number of feature maps generated for each layer of the proposed 

Norm-VGG16 as shown in Figure 4-9. 

 

Figure 4-9. Modified Input layer size in Norm-VGG16 
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a. Convolution layers 

Its main role is automatic feature extraction by passing different number of kernels 

(feature maps) on the input image [67]. The kernel weights change during the training stage 

and settle at the end of the training stage to be used in the testing stage [67]. Through the 

training process, each kernel will be convolved with each of the image’s color (RGB layers) 

and compute the dot products between the entries of the kernel and the part of image at any 

position. The results 2-dimentional feature map gives the response of that filter at every 

spatial position. These feature maps will be calculated along the image color channels (depth 

dimension) The process of convolution layers is shown in Figure 4-10. The first convolution 

layers extract low-level features like edges, lines and corners while the last convolution 

layers extract higher level features. 

 

 

Figure 4-10.  process of convolution layer 

b. Non-Linear layer 

Non-linear layers are used in CNNs to produce a non-linear trigger function to signal 

distinct identification of likely features on each hidden layer [68]. There are different non-

linear layer activation functions for examples sigmoid/tanh and Rectified Linear Unit 
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(ReLUs). ReLU can be defined as h = max (0, a). In Norm-VGG16, the used activation 

function is Rectified Linear Unit (ReLUs) because it has advantages over others which are 

stated as follow [68]: 

 Reduced likelihood of the gradient to vanish: This arises when a>0. In this case 

the gradient has a constant value. In contrast, the gradient of sigmoid becomes 

increasingly small as the absolute value of x increases. The constant gradient of 

ReLUs results in faster learning. 

 Sparsity: it arises when a≤0. The more such units that exist in a layer the more 

sparse the resulting representation. Sigmoid on the other hand are always likely 

to generate some non-zero value resulting in dense representations. Sparse 

representations are more beneficial than dense representations. 

 

c. Sub-sampling (Max Pooling / Global Average Pooling) layers 

Sub-sampling layers produce a down-sampled version that is robust against noise and 

distortion [67]. Norm VGG16 uses different types of sub-sampling layers which are max 

pooling layers and average pooling layers. The max pooling layers consider the highest 

activation value of a window of size n × n of each feature map [67]. The max pooling layers 

is used to down sample the feature tensor to reduce overfitting. Figure 4-11 shows the 

operation of max pooling. 

 

 

Figure 4-11. Operation of max pooling layer 
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 The global average pooling layer computes the mean value of each feature map and 

forward it to the softmax in dense layer. The SoftMax in dense layer takes each value and 

converts it to a probability (with the probability of all digits summing to 1.0) [69]. Global 

Average Pooling is a pooling operation designed to replace fully connected layers in 

classical CNNs. The idea is to generate one feature map for each corresponding category of 

the classification task. Instead of adding fully connected layers on top of the feature maps, 

we take the average of each feature map, and the resulting vector is fed directly into the 

softmax layer that normalize the distribution probability of the output classes [70]. 

One advantage of global average pooling over the fully connected layers is that it is more 

native to the convolution structure by enforcing correspondences between feature maps and 

categories. Thus, the feature maps can be easily interpreted as categories confidence maps. 

Another advantage is that there is no parameter to optimize in the global average pooling thus 

overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial 

information, thus it is more robust to spatial translations of the input [70]. Figure 4-12 shows 

the operation of global average pooling. 

 

 

Figure 4-12. Operation of global average pooling layer 

d. Batch Normalization and Dropout layers 

NormVGG16 is a deep CNN which is prone to overfit training data. Batch Normalization 

layers and Dropout layers prevent overfitting of Deep CNNs. In Dropout layers, the term 

“dropout” refers to dropping out units (hidden visible) in a neural network. Dropping a unit 

out means it is temporarily removed from the network, along with all its incoming and 
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outgoing connections [71, 72]. The choice of which units to drop is random. Each unit is 

retained with a fixed probability p independent of other units [71, 72]. Batch Normalization 

allows using higher learning rates and not to care about initialization. It also acts as a 

regularizer and helps dropout layers in avoiding overfitting [71, 72]. 

 

e. Kernel Regulaizers 

Another enhancement to the standard architecture is adding L2 kernel regularization to limit 

overfitting. The added regularization is shown in Figure 4-8 at the last dense layer. Kernel 

regularization was first added in different layers, but the best performance is attained by the 

variant scenario implementing L2 kernel regularization at the dense layer (last layer). The value 

of the hyperparameter of L2 regularizer, which determines the relative importance of the 

regularization component compared to the loss component, is set to 0.01. L2 regularizer puts 

a constraint on the complexity of a network by giving a small value to its weights, which makes 

the distribution of weights regular. This is done by the increasing loss function of the network, 

which has large weights [73]. To explain how the regularizer works, a training function ŷ: f(x) 

should be first defined as a function that maps an input vector x to output ŷ where ŷ is predicted 

value for actual value y. The loss between ŷ (f(x)) and y can be defined for one sample xi with 

corresponding target yi. Loss (L) can be computed as L((yi), ŷi) = L (f(xi), yi) [74]. For all input 

samples xi ……. xn. The sum of all loss functions between each input xi and its corresponding 

output ŷ is minimized as given in Equation (4-3). 

 

min
             f

∑𝐿(𝑓(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

 (4-3) 

 

The regularizer (R(f)) is added to the loss equation to increase the training loss to decrease       

overfitting as shown in Equation (4-4). 

 

𝐿(𝑓(𝑥𝑖), 𝑦𝑖) =  ∑𝐿𝑙𝑜𝑠𝑠𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑓(𝑥𝑖), 𝑦𝑖) +  𝜆𝑅(𝑓)

𝑛

𝑖=1

 (4-4) 
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where λ is a hyperparameter that determines the relative importance of the regularization 

component compared to the loss component [74]. We choose our λ = 0.01. From Equation (1) 

and Equation (2), minimization after adding the regularization would occur to both the 

component of loss and the regularization component. Different values for λ are tested in the 

range between 0 and 1 (0.001, 0.01, 0.02, 0.1, etc.) according to the commonly used values in 

literature [73, 74]. The best results are obtained at λ = 0.01. 

The L2 regularization is a type of regularization that is proportional to the square of the value 

of the weight coefficients (the L2 norm of the weights) [75] as shown in Equation (4-5). 

 

𝑅(𝑓) =  ∑ 𝑤𝑖
2

𝑛

𝑓  𝑖=1

 (4-5) 

 

By substituting Equation (3) into Equation (2), L2 regularization Equation (4-6) is generated 

 

𝐿(𝑓(𝑥𝑖), 𝑦𝑖) =  ∑𝐿𝑙𝑜𝑠𝑠𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑓(𝑥𝑖), 𝑦𝑖) +  𝜆∑𝑤𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

 (4-6) 

 

4.3.2 Spatial hand-crafted features 

After RoI localization and cropping, a set of spatially articulated features are generated. HOG 

and DAISY feature descriptors were generated. 

HOG descriptors are from global features family that generates a compact texture features, but 

they are most sensitive to clutter and occlusion [76]. On the other hand, DAISY descriptors are 

from local features family which generates key descriptors that are calculated in multiple interest 

points of local image and are not sensitive to clutter and occlusion [76]. The key point of 

extracting both, HOG and DAISY descriptors, is to combine different information of different 

families of features, which is expected to improve the results [76].  

HOG descriptors are calculated by normalizing colors then dividing the image into blocks and 

each block is divided into smaller units called cells. Each cell contains number of pixels (pixel 

intensities). First, the gradient magnitude and direction of each cell’s pixel intensities is 

calculated. If (x, y) is assumed as a pixel intensity, then gradient magnitude is calculated from 

Equation (4-7) and gradient angle is calculated using Equation (4-8) [76]. 
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𝐺(𝑥, 𝑦) = √(𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2) 

 

(4-7) 

𝜃(𝑥, 𝑦) = arctan (
𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
) (4-8) 

 

After calculating magnitude and angle, the HOG is calculated for each cell by calculating the 

histogram. Q bins for angles are chosen with unsigned orientation angles between 0 and 180. 

Afterwards, normalization is applied since different images may have different contrasts [40]. 

The pipeline of HOG can be shown in Figure 4-13. In our implementation, a [4 × 4] cell size, [2 

× 2] cells per block and 9 orientation histogram bins creating 8100 features were used. 

 

 

Figure 4-13. Histogram of Oriented Gradients (HOG) descriptor pipeline 

DAISY feature descriptor is an algorithm that generates low dimensional invariant descriptors 

that convert local image regions into low dimensional invariant descriptors, which can be used 

for matching and classification. DAISY feature descriptor is faster than GLOH and SIFT feature 

descriptors [77]. It can be computed efficiently at every pixel unlike SURF. For DAISY 

descriptors generation, eight orientation maps, G, are computed for each image. one for each 

quantized direction, where G (u, v) equals the image gradient at location (u, v) [77].  

 First, orientation maps are computed from the original images, which are then convolved to 

obtain the convolved orientation maps Go
∑i. as show in Figure 4-14. Gaussian kernels of different 

∑ values convolve each orientation map several times to obtain convolved orientation maps for 

different sized regions [77]. 
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Figure 4-14. The calculation process of the convolved orientation maps in DAISY 

If h∑ (u, v) is the vector made of the values at location (u, v) in the orientation maps after 

convolution by a Gaussian kernel of standard deviation Σ as shown in Equation (4-9), after that, 

the If h∑ (u, v) is normalized. 

 

ℎ∑1 (𝑢, 𝑣) = [𝐺1
∑1 (𝑢, 𝑣), ……… , 𝐺𝐻

∑1 (𝑢, 𝑣)  ]
𝑇

 (4-9) 

 

where H refers to number of orientation maps and G1
∑, G2

∑…….GH
∑ denote the Σ-convolved 

orientation maps. The vector is normalized and denoted by ĥ∑ (u, v). To correctly represent the 

pixels near occlusions, the normalization is performed in each histogram independently because 

normalizing the descriptor as a whole would lead to the same point, which is close to occlusions, 

appearing different in two images. The full DAISY descriptors D (u0, v0) for location (u0, v0) is 

then defined as a concatenation of ĥ vectors as shown in Equation (4-10) 
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𝐷(𝑢0, 𝑣0) =

[
 
 
 
 
ĥ∑1 
𝑇 (𝑢0, 𝑣0),                                                                    

ĥ∑1 
𝑇 (𝐼1(𝑢0, 𝑣0, 𝑅1)),…………ĥ∑1 

𝑇 (𝐼𝑁(𝑢0, 𝑣0, 𝑅1)),

ĥ∑2 
𝑇 (𝐼1(𝑢0, 𝑣0, 𝑅2)), …………ĥ∑2 

𝑇 (𝐼𝑁(𝑢0, 𝑣0, 𝑅2)),

ĥ∑𝑄 
𝑇 (𝐼1(𝑢0, 𝑣0, 𝑅3)), …………ĥ∑𝑄 

𝑇 (𝐼𝑁(𝑢0, 𝑣0, 𝑅3)),]
 
 
 
 
𝑇

 (4-10) 

 

Where Q is the number of convolved orientation layers with different ∑’s and  Ij (u, v, R) is the 

location with distance R from (u,v) in the direction given by j when the directions are quantized 

into N values. Figure 4-15 shows the explanation of  DAISY descriptor where each circle 

represents a region where the radius is proportional to the standard deviations of the Gaussian 

kernels and the ’+’ sign represents the locations where the convolved orientation maps center are 

sampled as a pixel location where we compute the descriptor. 

 

Figure 4-15. The explanation of DAISY descriptor.  

In DAISY, a circular grid is used instead of SIFT’s regular one since it has been shown to have 

better localization properties [77]. So, DAISY descriptor is closer to GLOH before PCA than to 

SIFT [77]. Also, the descriptor is naturally resistant to rotational perturbations as well by the use 

of Gaussian kernels with a circular grid. The overlapping regions ensure a smooth changing 

descriptor along the rotation axis and by increasing the overlap, we can further increase the 

robustness up to a certain point. 

One advantage of the circular design and using symmetric kernels is that the descriptor can 

be computed orientation simply rotating the grid without recalculating the convolved orientation 

maps [77].  
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4.3.3 Feature Fusion 

In this stage, spatial hand-crafted feature descriptors of global and local features are 

extracted from RoI medical images and fused with the automatic features generated from 

modified CNN (NormVGG16). The complex networks of CNN (Norm-VGG16) obtains generic 

features, to some extent. The idea behind CNN is to discover multiple levels of representation 

so that higher level features can represent the semantics of the data, which in turn can provide 

greater robustness to intra-class variability [78]. Moreover, HOG descriptors are from global 

features family that generates a compact texture features, but they are most sensitive to clutter 

and occlusion [76]. On the other hand, DAISY descriptors are from local features family which 

generates key descriptors that are calculated in multiple interest points of local image and are 

not sensitive to clutter and occlusion [76]. The key point of extraction of HOG descriptors, 

DAISY descriptors and automatically generated features from Norm-VGG16, is to combine 

different information of different families, which is expected to improve the results [76].   The 

benefit of feature fusion is the detection of correlated feature values generated by different 

algorithms [79]. The fusion of features of different properties and families creates a compact set 

of salient features that can improve robustness and accuracy of classification model [79]. In this 

stage, the global and local features handcrafted features which are 8100 descriptors of HOG and 

400 DAISY descriptors of are extracted from RoI medical images and fused with the 512 

automatic features generated from modified CNN (NormVGG16) and used as input for 

classification stage. 

 

4.4 Classificaiotn 

Classification is considered an instance of supervised learning where a training feature set 

are correctly identified samples is available and used for training the classifier. The new feature 

sample is then tested to identify to which set of categories it belongs.  

During the learning stage, the classifier is trained to learn the differences between the known 

classes on the basis of input feature vectors of known labels. Based on the input feature vectors, 

the classifier creates a “unique‟ description of each predefined classification category. The input 

feature vectors from each class are referred to as “training sets‟. When learning is completed, 
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the classifier is ready to conclude classification-labels on new data that haven’t been used for its 

training.  

A trained model is built to discriminate between different features of different diseases that 

were extracted from different medical images. Two types of classifiers, which are Artificial 

Neural Network and Support Vector Machine, are used to test the degree of correlation between 

the extracted features and discriminating different disorders and stages of diseases.  

4.4.1 Artificial Neural Network (ANN) 

ANN can be composed of different number of neurons. The classification of the extracted 

hybrid features from Norm-VGG16, HOG descriptors and DAISY descriptors is done in 

batches. A Neural Network consisting of three dense layers is used to train these features with 

first layer of input size of 9012 inputs followed by a hidden layer and the final layer contains 

four neurons with a softmax activation to normalize the distribution probability of the output 

classes. The model is trained using Adam optimizer with batch size 32 for 100 epochs. The 

starting learning rate used to train the model is 0.001. 

ANN training is based on idea of training artificial neuron Training neural network is based 

on two passes which are feed forward learning and back propagation error learning. In feed 

forward learning, each neuron is trained on a linear combination of the input variables, ∝1, ∝2, 

... ∝m, multiplied with the coefficients, wji, called 'weights', then a second function serves as a 

'transfer function' (ReLU) to produce a non-linear trigger function to signal distinct 

identification of likely features [80]. Moreover, a bias bji is added to try to approximate where 

the value of the new neuron starts to be meaningful. The output, yj, of jth neuron is calculated 

according to Equation (4-11) 

 

𝑦𝑗 =  𝑅𝑒𝐿𝑈 ( ∑𝑤𝑗𝑖  ∝ji
+ 𝑏𝑗𝑖

𝑚

𝑖=1

) (4-11) 

 

 

In backpropagation, the gradient is calculated efficiently [80].It is used to adjust the weights 

and biases throughout the network, so that the desired output is generated from the output layer. 

The back-propagation method has obtained its name due to its learning procedure where the 
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weights of neurons are first corrected in the output layer, then in the second hidden layer (if there 

is one), and at the end in the first hidden layer, i.e., in the first layer that obtains the signals 

directly from the input [80]. Let last layer as L, second last layer as L-1, output value to predict 

as y, cost function as C, weight (connection from one neuron to another) as w, Bias (added value 

to each activation) as b, z = (w × ∝ + b) and a = ReLU (z). first the cost function for last layer 

can be calculated as shown in Equation (4-12). 

 

𝐶 =  (𝑎𝐿 − 𝑦 )2  (4-12) 

 

Three Equations (4-13, 4-14, 4-15) are needed to calculate the relationships between components 

of neural network. 

 

𝜕𝐶

𝜕𝑤(𝐿)
= 

𝜕𝐶

𝜕𝑎(𝐿)
 
𝜕𝑎(𝐿)

𝜕𝑧(𝐿)
 
𝜕𝑧(𝐿)

𝜕𝑤(𝐿)
  (4-13) 

 

𝜕𝐶

𝜕𝑏(𝐿)
= 

𝜕𝐶

𝜕𝑎(𝐿)
 
𝜕𝑎(𝐿)

𝜕𝑧(𝐿)
 
𝜕𝑧(𝐿)

𝜕𝑏(𝐿)
  (4-14) 

 

𝜕𝐶

𝜕𝑎(𝐿−1)
= 

𝜕𝐶

𝜕𝑎(𝐿)
 
𝜕𝑎(𝐿)

𝜕𝑧(𝐿)
 
𝜕𝑧(𝐿)

𝜕𝑎(𝐿−1)
  (4-15) 

 

 

Finally, the weight and bias are updated for each layer l as in Equations (4-16, 4-17) respectively. 

 

𝑤𝑙 = 𝑤𝑙 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ×  
𝜕𝐶

𝜕𝑤(𝑙)
   (4-16) 

 

𝑏𝑙 = 𝑏𝑙 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 
𝜕𝐶

𝜕𝑏(𝑙)
 (4-17) 

 

ANNs offer a number of advantages which are less formal statistical training, ability to 

implicitly detect complex nonlinear relationships between dependent and independent variables. 
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The main disadvantages of ANN include its “black box” nature and its greater computational 

burden. 

 

4.4.2 Support Vector Machine (SVM) 

Support Vector Machine is a family of nonlinear function-based classification algorithms 

that can be used to classify binary and multi class feature space. The SVM is a kernel-based 

approach with a strong theoretical background, which has become an increasingly popular tool 

for machine learning tasks involving classification and regression. The goal of a Support 

Vector Machine (SVM) is to find a hyper plane that corresponds to the largest possible margin 

between the data points of different classes as shown in Figure 4-16.  

 

 
Figure 4-16. SVM hyperplane principles (a) Examples for possible solutions of the two-class classification 

(b) Illustration of the maximum margin. 

First, SVM for a two-class uses a hyperplane for linearly separable classification problem. 

For two classes A+ and A-, SVM can separate them by a pair of parallel bounding planes. The 

first plane in Equation (4-18). bounds the class A+ and the second plane in Equation (4-19) 

bounds the class A-. w in Equations (4-18, 4-19) represents the normal vector to these planes 

and b determines their location relative to the origin. Figure 4-17 illustrates the linearly separable 

SVM [48]. 

𝑤𝑇𝑥 + 𝑏 =  +1 (4-18) 

𝑤𝑇𝑥 + 𝑏 =  −1 (4-19) 
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Figure 4-17. Illustration of linearly separable SVM 

According to the statistical learning theory, SVM achieves a better prediction ability via 

maximizing the margin between two bounding planes. Hence, SVM searches for a separating 

hyperplane by maximizing  
2

||𝑤||
2

 [48] . It can be done by means of minimizing 
1

2
||𝑤||

2

2
 and leads 

to a quadratic program, as shown in Equation (4-20) 

 

min
(𝑤,𝑏) Ɛ 𝑅𝑛+1 

1

2
||𝑤||

2

2
 , 𝑠. 𝑡.      𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1,2, … .𝑚 (4-20) 

 

The linear separating hyperplane presented in Equation (4-21) is the plane midway between 

the bounding planes in Equations (4-18, 4-19). 

 

𝑤𝑇𝑥 + 𝑏 = 0 (4-21) 

  

The data points on the bounding planes, in Equations (4-18, 4-19), are called support vectors. If 

any point which is not a support vector is removed, the training result will not be changed which 

is one of the SVM characteristics [48]. Moreover, a slack variable is introduced which is called 

penalty term [48]. It is used to increase performance on testing dataset. The parallel bounding 

planes is updated as shown in Equations (4-22, 4-23). 

 

𝑤𝑇𝑥𝑖 + 𝑏 + ξi = +1     𝑓𝑜𝑟        𝑥𝑖  ∈ 𝐴+
 (4-22) 

𝑤𝑇𝑥𝑖 + 𝑏 + ξi = −1      𝑓𝑜𝑟      𝑥𝑖  ∈ A−    
 (4-23) 

Hence, the margin equation between two bounding planes is updated and presented in Equation 

(4-24) 
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min
(𝑤,𝑏) Ɛ 𝑅𝑛+1+𝑚 

𝐶∑ξi

𝑚

𝑖=1

+
1

2
||𝑤||

2

2
 ,

𝑠. 𝑡.      𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) + ξi ≥ 1         ξi ≥ 0, 𝑓𝑜𝑟 𝑖 = 1,2, … .𝑚 

(4-24) 

  

Here C >0 is a positive parameter which balances the weights of the penalty term  ∑ ξi
𝑚
𝑖=1  versus 

the margin maximization term 
1

2
||𝑤||

2

2
 .  Higher complexity of the separating hyperplane may 

cause overfitting leading to poor generalization. The positive parameter C which can be 

determined by a tuning procedure (where a surrogate testing set is extracted from the training 

set), plays the role of balancing this trade off [48]. 

The SVM has high accuracy, robust performance, and low computational load but it is a 

binary classifier, while many problems we are interested in solving, are multiclass. There are 

several approaches to a multiclass SVM. One approach involves constructing and combining 

several binary classifiers. This method is called the “one-against-one” or OAO, which is used in 

the study. In this method, k(k–1) binary classifiers, where k is number of classes, are trained to 

separate a pair of two classes. To classify a new sample, a class that gains most votes of the 

binary classifiers is chosen as the final output [48]. 

 

4.5 Summary 

In this chapter, the main phases of the proposed model had been described in detail. First, a 

preprocessing phase is explained followed by a detailed explanation of a newly proposed 

modified version of VGG16 network (Norm-VGG16). The preprocessing was applied to remove 

the noise from the OCT images and adjust it to be suitable for classification. The proposed 

Norm-VGG16 was used as a feature extractor and used in RoI localization. Second, different 

hand-crafted features were extracted from the RoI, these handcrafted features were used to 

increase the interpretability of the model. Third, the handcrafted features were fused with CNN 

features to have higher level features that can represent the semantics of the data and increase 

the robustness of model. Finally, the fused features are classified using two types of classifier 

that are detailed in fourth section of chapter. In the following chapter, different experiments will 

be conducted to evaluate the efficiency of the proposed model.
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5 OCT RETINAL DISORDERS EXPERIMENTATION 

AND RESULTS 

This chapter presents the dataset and experimental setup used in conduction of experiments. 

Moreover, it presents the results of the experiments that have been conducted to evaluate the 

accuracy and performance of the proposed HyCAD framework using Large Dataset of Labeled 

Optical Coherence Tomography (OCT) v3 benchmark dataset [8]. Different experiments have 

been carried out to validate the efficiency of the proposed HyCAD framework and compared 

with previously proposed methods in the literature.  

 

 

5.1 Dataset description 

The current study uses a Large Dataset of Labeled Optical Coherence Tomography (OCT) v3 

benchmark dataset [8] which consists of 109,312 retinal OCT images. The dataset was selected 

from 207,130 retinal OCT images for 5319 adult patients taken between 2013 and 2017. The 

207,130 retinal OCT images were collected from retrospective cohorts from the Shiley Eye 

Institute of the University of California San Diego, the California Retinal Research Foundation, 

Medical Center Ophthalmology Associates, the Shanghai First People’s Hospital and the Beijing 

Tongren Eye Center [8]. 

Two retinal specialists provided the class labels for the images. Four class labels were available 

CNV, DME, DRUSEN, NORMAL) as shown in Figure 5-1. Furthermore, only 109,312 out of 

207,130 images were clearly distributed between these classes by the agreement of the two 

retinal specialists and formed the dataset while the other images contained severe artifacts. The 

dataset is divided into 108,312 images as training set and 1000 images as testing set, according 

to Li et al. [37]. The distribution of the classes within the training set is illustrated in Table 5-1, 

where both classes: DME and DRUSEN, present a small percentage of the training set and can 

be considered to impose the challenges of minority classes on our classification problem [8]. 

The testing set is sampled to be of equal distribution for all classes as illustrated in  

Table 5-2. 
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Figure 5-1. Dataset classes (CNV, DME, DRUSEN and NORMAL). 

Table 5-1. Training dataset class distribution 

Training Dataset  

Total Urgent Referrals Group Non-urgent Referals Group 

CNV DME DRUSEN NORMAL 

37,206 11,349 8617 51,140 108312 

34.35% 10.48% 7.96% 47.22% 100% 

 

Table 5-2. Testing dataset class distribution 

Testing Dataset  

Total 
Urgent Referrals Group Non-urgent Referrals Group 

CNV DME DRUSEN NORMAL 

250 250 250 250 1000 

25% 25% 25% 25% 100% 
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The classes are categorized as Urgent referrals and Nonurgent referrals groups. The CNV 

and DME classes represent the Urgent referrals group, where patients need to be transferred to 

an ophthalmologist in time for definitive anti-VEGF treatment [37, 42]. The referral is urgent in 

this case because if the treatment is delayed, it would almost cause irreversible vision 

impairment and even lead to blindness. The Nonurgent referrals group, represented by DRUSEN 

and NORMAL classes, does not need immediate Urgent referral from an ophthalmologist [37, 

42]. 

 

5.2 Experimental Setup 

Models implementation, training and results are done using Python language v3.7.6 

(designed by Guido van Rossum and developed by Python Software Foundation, this version is 

released on December 2019) with Numpy v1.18.4 (Travis Oliphant), Tensorflow v2.1.0 (Google 

Brain team), Keras v2.3.1 (François Chollet) and OpenCV v4.2.0 (Intel Corporation, Willow 

Garage, Itseez) packages Experiments are conducted on Google Colab (free cloud service hosted 

by Google). Google Colab consists of 1xNvidia Tesla K80, 12.6 GB RAM and 320 GB Disk 

space. 

All deep learning architectures are trained for 30 epochs from scratch using Adam optimizer 

with starting learning rate of 0.001 on the 108,312 training images. Inputs are divided into 

batches of size 32. Validation accuracy and cross-entropy loss are monitored for each epoch. In 

addition, the learning rate is reduced by factor of 0.2 for each three epochs without improvement 

in validation loss. For the deep learning architectures, the best model is defined as having 

minimum validation loss, then it is stored and applied on the testing set. 

 

5.3 Results and Discussion 

5.3.1 Performance Metrics 

The following measures are used to evaluate the performance of trained models to decide 

which one has advantage over the others. 
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5.3.1.1 Confusion Matrix 

It is a table that is used to visualize and describe the performance of a classification model 

on a testing set of data as shown in Figure 5-2. It is a summary of prediction results in a 

classification problem [81]. In confusion matrix, values of True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN) are represented by assuming Ci one of the 

four classes in our dataset. 

• TP (Ci) = All the instance of Ci. that are classified as Ci. 

• TN (Ci) = All the non-Ci. instances that are not classified as Ci. 

• FP (Ci) = All the non-Ci. instances that are classified as Ci. 

• FN (Ci) = All the Ci instances that are not classified as Ci. 

 

Figure 5-2. Confusion Matrix 

 

5.3.1.2 Accuracy (Acc) 

It is measured by dividing the number of correctly labeled images by the total number of 

test images [81]. Equation (6-1) depicts single class accuracy measurements 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (6-1) 

 

5.3.1.3 Sensitivity (Recall) 

It is determined by dividing the total number of correctly classified Urgent referrals by 

total number of actual Urgent referrals [81]. Equation (6-2) depicts single class sensitivity 

measurements 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (6-2) 

 

5.3.1.4 Specificity (Sp) 

It is determined by dividing the total number of correctly classified non-referrals by total 

number of actual Nonurgent referrals [81]. Equation (6-3) depicts single class specificity 

measurements. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (6-3) 

 

5.3.2 Experimental Results 

In this section, the implemented experimental scenarios used for performance comparison 

and the corresponding results using the described performance evaluation metrics are 

described. 

 

5.3.2.1 Experimental Scenarios 

1. HyCAD Architecture 

The proposed system architecture presented in chapter 6 is applied to the Large Dataset 

of Labeled Optical Coherence Tomography (OCT) v3 benchmark [8]. Norm-VGG16 

integrating kernel regularizer is trained on the dataset from scratch aiming at higher 

performance metrics. It is used for RoI generation and feature extraction. A set of 512 

features are extracted from the global average pooling layer of the CNN network. The hand-

crafted feature extraction methods, namely HOG and DAISY, when applied on the 

segmented RoI generated 8500 features. At the fusion stage of our HyCAD system, all the 

extracted features are fused and fed into different classifiers which are SVM and a three 

sequential dense layer neural network (ANN) for a classification decision. 

 

2. The proposed Norm-VGG16 Deep Learning Architecture 

In this scenario, the modified Norm-VGG16 Deep Learning architecture is applied on 

the OCT dataset. The performed classification is based solely on the CNN-based features. 
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This scenario is presented to elucidate the merit of incorporating human articulated 

features on the performance of the system. 

 

3. ResNet-50 Net (kernel regularized) Deep Learning Architecture 

ResNets [58, 82] can be considered one of the most applied deep learning architectures 

for image recognition and classification. ResNets include residual blocks which allow 

deeper network architecture to avoid information loss during training. In addition, it was 

shown to achieve lower validation loss compared to VGG16 on the ImageNet dataset [44]. 

Therefore, ResNet-50 architecture (shown in section 3.2.2.1) is chosen as one of our 

experimental scenarios, to compare its performance to the proposed HyCAD system. The 

ResNet-50 best model is modified by adding kernel regularization in the final dense layer.  

In addition to these implemented experimental scenarios, the results of HyCAD are 

compared with the work of Kermany et al. [42] and Li et al. [37]. These were chosen as 

their results were reported on the same dataset using deep learning approaches and attained 

high results. 

Our experimental results are shown in two folds. First, bootstrapping is adopted, and a 

limited set of results are reported to show the performance of HyCAD across several testing 

data partitions and investigate its stability relative to Norm-VGG16 and RESNET-50 and to 

clarify the impact of hand-crafted features’ fusion with deep learning architectures. In the 

second fold of experiments, elaborate results are reported on the same training and test 

percentages used by Kermany et al. [42] and Li et al. [37]. The results of the best run are 

displayed to be able to compare to Kermany et al. [42] and Li et al. [37]. 

 

5.3.2.2 Bootstrapping Experiments Fold 

Ten bootstrapping experiments are conducted to evaluate the performance of the models at 

different boot strapped test partitions. In each experiment, the 109,312 images are shuffled and 

a random selection of 108,312 images is used as training dataset and the rest of the 1000 images 

are used as testing dataset. Each new partition tested on our implemented architectures (HyCAD, 

Norm-VGG16 integrating kernel regularizer and ResNet-50 integrating kernel regularizer) 

taking into consideration that the testing dataset is partitioned equally between four classes 

(CNV, DME, DRUSEN and NORMAL). 
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Table 6-3 presents the mean values and the standard deviation of overall accuracy and urgent 

group sensitivity for 10 different bootstrapped partitions. The depicted results reveal the 

improvement achieved through integrating the handcrafted features with Norm-VGG16 

integrating kernel regularizer. The proposed HyCAD-ANN classifier model attains the highest 

mean accuracy and mean sensitivity for the critical Urgent referrals compared to Norm-VGG16 

integrating kernel regularizer and ResNet-50. In addition, it attains the lowest standard deviation 

in comparison to the pure CNN architectures. Compared to Norm-VGG16 integrating kernel 

regularizer, HyCAD-ANN classifier achieves a substantial increase of 2.9% and 4.9% in terms 

of mean accuracy and mean sensitivity of Urgent referrals, respectively. In addition, the 

HyCAD-ANN classifier model has a lower standard deviation relative to the pure deep learning 

architecture Norm-VGG16 integrating kernel regularizer. Such findings emphasize the positive 

impact of fusing hand-crafted features with learned features from deep learning architecture. 

 

Table 5-3. 10 different bootstrapping experiments with selection of 1000 test images 

Model Mean Accuracy 

± Std 

Mean UR Sensitivity 

± Std 

The proposed HyCAD-ANN classifier model 97.2 ± 1.2 98.1 ± 1.1 

The proposed HyCAD-SVM classifier model 96.9 ± 1.7 98.0 ± 1.8 

The proposed Norm-VGG16 architecture 94.3 ± 2.2 93.2 ± 4.6 

 

The Training and Validation losses and accuracies for the two deep learning architecture 

(Norm-VGG16 kernel regularized and ResNet-50 kernel regularized) for each epoch are shown 

in Figure 5-3. The Norm-VGG16 architecture best model achieves training accuracy of 94.86% 

and training loss of 15.75%. In addition, it achieves a testing accuracy of 97.3% and testing loss 

of 8.34%. ResNet-50 achieves a training accuracy of 96.95% and a training loss of 9.02%. In 

addition, it achieves a testing accuracy of 97% and a testing loss of 8.76%. From the shown 

learning curves, it is manifest that the performance stabilizes around the 15th epoch, which can 

lead to reducing the training time considerably. 
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Figure 5-3. Training and Testing Curves for Norm-VGG16 (kernel regularized) and ResNet-50 (kernel 

regularized) (A) Training accuracy curves (B) Testing accuracy curve (C) Training loss curves (D) Testing 

loss curve. 

The confusion matrices of the best models of the presented experimental scenarios on the 

test set are presented in Figure 5-4. ResNet-50 (Figure 5-4D) achieves the lowest testing 

accuracy of 97%. The model’s sensitivity for Urgent referral group is 98.6%, while its specificity 

is 95.4%. The confusion matrix output by applying the best Norm-VGG16 model on the test set 

is presented in Figure 5-4C. The confusion matrix illustrates that 973 out of 1000 testing images 

were correctly classified. The model’s sensitivity for the Urgent referral group is 98%, while its 

specificity is 96.6%. 



Chapter 5: OCT RETINAL DISORDERS EXPERIMENTATION AND RESULTS 

Page | 77 

 

Figure 5-4 Confusion matrices of different proposed models (A) HyCAD-ANN classifier (B) HyCAD-SVM 

classifier (C) Norm-VGG16 (kernel regularized) (D) ResNet-50 (kernel regularized). 

The performance of the models is summarized and compared in Table 5-4. From the shown 

results, it is determined that the best performing models are the HyCAD models (both version 

that uses SVM or ANN). The best metrics where achieved by HyCAD-ANN classifier model 

according to its confusion matrix presented in Figure 5-4A, scoring an accuracy of 98.8%. In 

Urgent referrals group, the HyCAD-ANN classifier model only misclassified 3 images out of 

500 and achieves a sensitivity of 99.4% as shown in Table 5-4. In the Nonurgent referrals group, 

the same model misclassified only 9 images out of 500 images and achieves 98.2%. It is worth 

mentioning that the Norm-VGG16 architecture without Kernel regularization attained a testing 

accuracy of 96.7% when trained on the dataset from scratch. 
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Table 5-4. Comparison between different implemented architectures. 

Model Accuracy Sensitivity (UR) 

(Recall) 

Specificity (UR) 

ResNet-50 (kernel 

regularized) 

97% 98.6% 95.4% 

Norm-VGG16  97.3% 98% 96.6% 

HyCAD-SVM 

classifier model 

98.1% 99% 97.2% 

HyCAD-ANN 

classifier model 

98.8% 99.4% 98.2% 

 

 

5.3.2.3 HyCAD Performance Compared to Pure CNNs Performance and State of the Art 

The accuracy per class is calculated and compared with previous models of Kermany et al.   

[42] and Li et al. [37] in Table 5-5. The per class accuracy is given by dividing the truly classified 

image for each class by their total number. It is noticeable from the accuracies in Table 5 that 

the lowest accuracy scored by HyCAD (both version that uses SVM or ANN)  is of DRUSEN 

class, which is explainable due to the fact that it has the lowest percentage in the training set. 

Nevertheless, HyCAD-ANN classifier with the fused hand-crafted features managed to surpass 

its CNN counterpart Norm-VGG16 in separating the DRUSEN minority class with a difference 

of 3.2%. 

As shown in Table 5-5, the proposed HyCAD-ANN classifier model achieves a significant 

increase in accuracy of CNV, DME, DRUSEN by 4.8%, 2.4%, 2.8%, while it attains similar 

NORMAL accuracy compared to Kermany et al. [42]. The proposed HyCAD models achieved 

an increase in accuracies of CNV class by 3.2% compared to Li et al. [37]. 
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Table 5-5. Accuracy per class comparison between HyCAD proposed models, Kermany et al. and Li et al. 

models. 

Accuracy / Class 

Model 

Urgent Referrals Group Nonurgent Referrals Group 

CNV DME DRUSEN NORMAL 

Kermany et al. 2018 

[42] 

94.8% 96.8% 94.4% 98.4% 

Li et al. 2019 [37] 96.4% 99.2% 99.2% 99.6% 

HyCAD-ANN model 99.6% 99.2% 97.2% 99.2% 

HyCAD-SVM model 99.6% 98.4% 94.4% 100% 

Norm-VGG16 96.8% 99.2% 94% 99.2% 

ResNet-50(kernel 

regularized) 

99.6% 97.6% 90.8% 100% 

 

In order to further examine the performance of our best performing HyCAD (HyCAD-ANN 

classifier) relative to the state of the art, its overall performance is compared to the work of 

Kermany et al. [42] and Li et al. [37]. The comparison is depicted in Table 5-6 and Figure 5-5. 

The values for Kermany et al. [42] and Li et al. [37] are calculated from the best reported 

confusion matrices as shown in Figure 5-6. The HyCAD-ANN classifier model outperforms the 

work of Kermany et al. [42] in terms of accuracy, sensitivity and specificity scoring an increase 

of 2.5%, 1.6% and 0.8% respectively. In addition, compared to Li et al. [37], the proposed 

HyCAD-ANN classifier model achieves a noticeable increase in sensitivity by 1.8%, a 

comparable specificity and a slight increase in accuracy. HyCAD-ANN classifer model attains 

the highest sensitivity, scoring an increase of 1.6% compared to the best model of the state of 

art models [37, 42] to reach 99.4% for the Urgent referral group. Such a high sensitivity is 

required for this group as they represent the critical group, which needs immediate attention. 

This improvement is achieved while maintaining a competitive specificity with the state of the 

art. 
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Table 5-6. Performance metrics comparison between Kermany et al., Li et al. models and HyCAD-ANN 

classifier model performance metrics. 

Model Accuracy Sensitivity 

(UR) 

Specificity 

(UR) 

Kermany et al.2018 [42] 96.1% 97.8% 97.4% 

Li et al. 2019 [37] 98.6% 97.8% 99.4% 

HyCAD-ANN classifier model (Proposed model) 98.8% 99.4% 98.2% 

 

 

Figure 5-5. Performance metrics comparison between Kermany et al., Li et al. models and HyCAD-ANN 

classifier. 

 

Figure 5-6. Confusion Matrices of proposed model and state-of-the-art models (A) HyCAD-ANN classifier model 

Confusion Matrix (B) Li et al. model Confusion Matrix (C) Kermany et al. Confusion Matrix. 
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Another important aspect to study is the performance of our HyCAD-ANN classifier model 

using hybrid integration of Norm-VGG16 CNN features and hand-crafted features in case of 

binary classifications. Hence, multiple binary models of CNV vs. NORMAL, DME vs. 

NORMAL and DRUSEN vs. NORMAL classes are trained and achieve significant results. The 

respective confusion matrices are shown in Figure 5-7 and the results are compared to Kermany 

et al. [42] and Li et al. [37] in Table 5-7. The two binary models CNV vs. NORMAL vs. DME 

and NORMAL achieve an accuracy of 100%, sensitivity of 100% and specificity of 100% 

without any wrong classification of 500 testing set as can be seen from the confusion matrix in 

Figure 5-7A,B. The binary model between DRUSEN vs. NORMAL achieves an accuracy of 

99.79%, sensitivity of 99.6% and specificity of 100% by classifying only one wrong image as 

shown in Figure 5-7C. The CNN features are extracted by training Norm-VGG16 for only 15 

epochs with learning rate starting with 0.001. 

 

Figure 5-7. Confusion Matrices of HyCAD-ANN classifier binary models (A) CNV vs. NORMAL (B) DME 

vs. NORMAL (C) DRUSEN vs. NORMAL. 

Table 5-7. Performance metrics comparison between binary models of HyCAD-ANN classifier, Kermany 

et al. and Li et al. models. 

Models CNV vs. NORMAL DME vs. NORMAL DRUSEN vs. NORMAL 

Acc Sn 

(CNV) 

Sp (CNV) Acc Sn 

(DME) 

Sp (DME) Acc Sn 

(DRUSEN) 

Sp 

(DRUSEN) 

Kermany et al. 

2018 [42] 

100% 100% 100% 98.2% 96.8% 99.6% 99% 98% 99.2% 

Li et al. 2019 [37] 100% 100% 100% 98.8% 98.8% 98.8% 99.2% 98.4% 100% 

HyCAD-ANN 

classifier 

(Proposed Model) 

100% 100% 100% 100% 100% 100% 99.79% 99.6% 100% 
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5.4 Summary 

This chapter started by dataset description followed by identification of the performance metrics 

used in evaluation of our proposed models and comparing it with the state-of-the-art models. 

Finally, the chapter described the implemented scenarios and its results. First, bootstrapping 

experiments were applied on proposed Norm-VGG16, HyCAD with ANN and SVM classifier 

(kernel regularizer) to test the robustness of the HyCAD model. Second, the proposed Norm-

VGG16 and HyCAD models are compared to state of the art models. The winning model of the 

implemented models was the HyCAD model with ANN classifier (HyCAD-ANN classifier) 

which  achieves an accuracy, sensitivity and specificity of 98.8%,  99.4% and 98.2% 

respectively. The results of the HyCAD-ANN model had an improvement over Kermany et al. 

2018 model [42]  in accuracy, sensitivity with 2.7%, and 1.6%  respectively. Moreover, the 

HyCAD-ANN model had an improved sensitivity to urgent referrals compared to Li et al. 2019 

model [37] by 1.6%. Finally, binary models are implemented to detect a single retinal disorder 

and it achieved an accuracy of 100%, 100% and 99.7% for CNV vs Normal, DME vs Normal 

and DRUSEN vs Normal respectively.
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6 CONCLUSION AND FUTURE WORK 

This chapter briefly summarizes and discusses the work completed, followed by conclusions. 

The chapter ends up with a discussion of some directions for the future work. 

 

6.1 Conclusion 

Medical imaging has a key role in early detection and diagnosis of numerous diseases. It 

provides direct visualization and investigation to human tissues, organs and bones. It can provide 

information about any anatomical changes that helps in early detection of diseases. The 

detection of abnormalities especially in early stages of any disease is subjective to physicians’ 

opinions. Recently, different CAD systems are proposed and used in hospitals to assist and 

provide a supportive decision for detecting cancers and other different diseases. 

In this thesis, a novel hybrid computer aided diagnostic system (HyCAD framework) is 

introduced that effectively distinguishes a range of retinal disorders from OCT images scans. 

The proposed HyCAD framework is subjected to different experiments and the results presented 

in chapter 7 of this thesis, highlight the significance and key contribution of this framework.   

The proposed HyCAD architecture integrates deep and traditional learning paradigms to 

present an accurate timely diagnosis. In addition, HyCAD framework provides an explainable 

diagnostic decision through automatic RoI localization and the extraction of human articulated 

features. The automatic RoI localization provides a relative advantage compared to traditional 

segmentation methods as it does not require expert involvement. Our HyCAD architecture 

proves the importance of combining automatic feature extraction and hand-crafted features in 

achieving higher performance metrics. Moreover, the hand-crafted features are more 

interpretable than the learned features by deep learning architectures models. For the employed 

deep learning architecture, a set of modifications are applied on the standard VGG16 

architecture creating the Norm-VGG16 integrating kernel regularizer variant. Our HyCAD 

framework achieves significant results compared to state-of-art methods in literature. 

Our experiments are conducted on Large Dataset of Labeled Optical Coherence 

Tomography (OCT) v3 benchmark. The proposed HyCAD model applies noise filtering on the 
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acquired OCT medical images. After that, the RoI is localized using Norm-VGG16 activation 

maps. Then, the Norm-VGG16 are fused with human articulated features generated from RoI 

and different classifiers are used to in classification process.  Our modified Norm-VGG16 

achieved better results than ResNet-50 and Kermany et al. models. HyCAD outperforms the 

Kermany et al. pure deep learning model in terms of accuracy and Urgent Referrals sensitivity. 

Similarly, our HyCAD architecture surpassed the Urgent Referrals sensitivity of Li et al. In case 

of binary classifications of retinal diseases vs. normal, HyCAD had a superior performance 

compared to both Kermany et al. and Li et al. achieving 100% accuracy, 100% sensitivity and 

100% specificity for CNV and DME. For the bootstrapping experiment, HyCAD showed higher 

mean accuracy and Urgent referrals sensitivity when compared to Norm-VGG16 and ResNet-

50. In addition, the results had lower standard deviation.  

Overall, a new robust diagnostic system is proposed which offers automatic RoI 

segmentation that can be used in assisting physicians in their decision with a range of different 

diseases. Moreover, HyCAD is a general architecture that can be trained and applied on similar 

problems, since no underlying specific assumptions were made that would hinder its 

generalization. 
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6.2 Future Work 

An extension to this study would be to implement and examine the performance of the 

proposed HyCAD system to classify different use cases as classifying different anatomical 

abnormalities in different imaging techniques as MRI, ultrasounds and mammograms. Another 

improvement to system can be implemented by using Natural Language Processing (NLP) to 

combine the reports provided after medical imaging with results of medical image classification 

to generate more robust decision.  Moreover, utilize an adaptive thresholding technique to 

segment the RoI after Norm-VGG16 localization with Grad-CAM. 

Another extension could be modifying the Norm-VGG16 to accept 3D and 4D inputs to try 

to increase correlation between slices of medical images and to compare its results with current 

developed architecture. 

Also, applying different experiments using different global hand articulated features as 

Local Binary pattern (LBP) and Gabor Features and show the effect of fusion of different global 

hand articulated features with each other compared to fusion of automatic CNN features with 

hand articulated features would be worth further investigation.  

Also, applying different feature reduction techniques as Principle Component Analysis 

(PCA) to reduce the number of features and to compare its results with the current developed 

architecture. 

Finally, a stacking technique could be tried to combine a dynamic local hand articulated 

features as SIFT to provide more key points than that of static local hand-crafted features as 

DAISY. 
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APPENDIX: VALIDATION REPORT FROM MEDICAL EXPERT 

 



 

 

 

 

صحة الأداء الفعال للنظام المقترح على مجموعة البيانات الكبيرة لمجموعة البيانات  لاثباتيتم إجراء تجارب مختلفة للتحقق 

بالأداء للنماذج الاخري الموجودة فى الابحاِث. . مقارنة v3 (OCT)المرجعية للتصوير التصوير للترابط البصري المسمى 

دقة  أظهرت النتائج التجريبية أن النموذج المقترح يحقق أداءً عاليًا نسبيًا من حيث الدقة والحساسية والنوعية. تم تحقيق متوسط

الاخري  ة بالأداء للنماذج٪ على التوالي. أظهر التقييم التجريبي أداءً متميزًا مقارن98.2٪ و 99.4٪ و 98.8وحساسية ونوعية 

( المقترح يحقق حساسية تصنيف عالية للحالات العاجلة. نتائج نماذج HyCAD، فإن نموذج ) الموجودة فى الابحاِث

HyCAD  مقارنة بنتائج العمود الفقري لـCNN (Norm-VGG16)  وغيرها من بنى التعلم العميق الشهيرة. لقد حققت

 ة والنوعية.زيادة كبيرة في الدقة والحساسي

 

بنية عامة لنظام التشخيص بمساعدة الكمبيوتر. يمكن تدريب الهيكل المقترح وتطبيقه  HyCADفي هذه الأطروحة ، تم تقديم 

على مشاكل مماثلة ، حيث لم يتم وضع افتراضات أساسية محددة من شأنها أن تعيق تعميمها. تعكس النتائج التجريبية أن 

يمكن أن تحسن بشكل فعال نسبة تحديد   (automatic CNN features and hand-crafted features) مرحلة الاندماج

بالأداء للنماذج الاخري الموجودة الصور التشخيصية للمرضى العاجلين. بالإضافة إلى ذلك ، يتم تحقيق أداء متميز مقارنة 

 .فى الابحاِث

 

مع عرض لأهداف الرسالة والطرق المستخدمة وكذلك مقدمة وتشمل نظرة عامة للموضوع وتطبيقاته،  :الفصل الأول

 .الهيكلة العامة للرسالة

 .نواع امراض الشبكيه المختلفةا للموضوع و فيه الباحث تغطية يعرض :الفصل الثاني

طرق و  لاستئصال طبقات الشبكية و تشخيص امراض الشبكية  CADأنظمة لملامح المميزة ل: تغطية الفصل الثالث

 .التصنيف

 يعرض النموذج المقترح مع شرح للمراحل المختلفة. :ل الرابعالفص

لإثبات  ، نواع امراض الشبكيه المختلفةامجموعة كبيرة من يعرض نتائج تطبيق النظام المقترح على  :الفصل الخامس

 .حساسية ودقة النموذج المقترح، مع مقارنة بالنماذج الأخرى

 المستقبلية.الاستنتاجات والتوقعات   الفصل السادس :



 

 

 ملخص الرسالة
 

هو تقنية تصوير غير جراحية تسُتخدم بشكل متزايد لتشخيص وإدارة مجموعة   (OCT) فحص التصوير للترابط البصري

بمزايا رئيسية في تحديد وجود العديد من أمراض العين بشكل  OCTمتنوعة من أمراض الشبكية والزرق. يتمتع تصوير 

في الكشف عن العديد من اضطرابات  OCTفعال واكتشاف مجموعة واسعة من الأمراض البقعية. يمكن أن تساعد فحوصات 

الثقوب البقعية ، لتحديد  OCTالشبكية في المراحل المبكرة والتي لا يمكن اكتشافها في صور الشبكية التقليدية. تم استخدام 

والخراجات البقعية ، والانفصال الظهاري الصبغي ، وتكوين الأوعية الدموية المشيمية. يمكن استخدامه لتحديد وقياس الوذمة 

 البقعية ، وقياس تغيرات سمك الشبكية استجابة للعلاج.

 

قييم مرض الشبكية بدقة ، سيحتاج طبيب غالبًا ما يتم تشخيص وعلاج اضطرابات الشبكية من قبل طبيب عيون. ومع ذلك ، لت

العيون إلى تحليل نوعي وكمي للمرض. علاوة على ذلك ، تؤدي الزيادة غير المتناسبة في عبء العمل بالنسبة للقوى العاملة 

إلى التناقض والخطأ في تشخيص الأمراض والاضطرابات المختلفة. أيضًا ، هناك ضرورة للكشف المبكر عن اضطرابات 

ة لتحسين التشخيص وتجنب حدوث المضاعفات التي قد تؤدي إلى فقدان البصر. للأسباب السابقة ، يجب أن يكون هناك الشبكي

 ( لمساعدة أطباء العيون في التشخيص المبكر الدقيق لاضطرابات الشبكية المختلفة.CADنظام تشخيص بمساعدة الكمبيوتر )

 

( لتصنيف اضطرابات الشبكية: HyCADنظام تشخيص هجين جديد بمساعدة الكمبيوتر ) في هذه الأطروحة ، تم اقتراح

( واضطرابات البراريق ، مع فصلها عن CNV( ، واضطراب الأوعية الدموية المشيمية )DMEالوذمة البقعية السكري )

مجموعة من التقنيات بما في المقترح  HyCAD. يستوعب نظام التعلم الهجين  OCTبنية الشبكية الطبيعية باستخدام صور 

على أساس التعلم العميق ، واستخراج الميزات الهجينة ، متبوعًا بالتصنيف والتشخيص. تم تقديم مرحلة  ROIذلك توطين 

( ، مع CNN، المستخرجة بواسطة الشبكة العصبية التلافيفية العميقة ) OCTدمج ميزة فعالة للجمع بين ميزات صورة 

 OCT. تسُتخدم مجموعة الميزات المدمجة هذه للتنبؤ باضطرابات شبكية العين RoIمن مرحلة تجزئة الميزات المستخرجة 

متعددة الطبقات. تضيف مرحلة التجزئة المقترحة لمناطق العائد على الاستثمار في شبكية العين مساهمة كبيرة لأنها تلفت 

( بدمج منظم Norm-VGG16لتعلم العميق المعدلة الجديدة )الانتباه إلى أهم المناطق المرشحة للتشخيص. تم تقديم بنية ا

من نقطة الصفر على مجموعة بيانات معيارية كبيرة وتستخدم  Norm-VGG16. يتم تدريب  (kernel regularizer) النواة

.(RoI) للتشخيصالمناطق المرشحة  في توطين وتجزئة
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