

• Engineering strain is the increase in length divided by the original length

$$\varepsilon_E = \frac{L - L_0}{L_0} = \frac{\Delta L}{L_0}$$

 True strain is the increase in length due to a the increase in load ΔP divided by the length at the time the load was applied, true strain is the summation of all strains up to this point in loading

- Is the ability of a metal to deform plastically and to absorb energy in the process before fracture
- Toughness gives an indication about the ductility of the material. Ductile materials will have larger toughness than brittle materials

Effect of Test Speed

 Increasing the rate of loading increases the strength and decreases the ductility for ductile materials while having no effect on brittle materials

<section-header><image><image><image><image>

Steel Specifications (2007)

Steel Grade	Min Yield of proof stress (N/mm ²)	Min ultimate stress (N/mm²)	Min percentage elongation
240/350	240	350	20
280/450	280	450	18
360/520	360	520	12
400/600	400	600	10

Steel Specifications (2017)

Steel Grade	Min Yield of proof stress (N/mm²)	Min ratio of ultimate stress to yield or proof stress	Min percentage elongation
B240C-P	240	1.15	20
B240D-P	240	1.25	22
B400C-R	400	1.15	14
B400WR	400	1.15	14
B350DWR	350	1.25	17
B350DWR	400	1.25	17
B350DWR	420	1.25	16

18

