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ABSTRACT Cancer is one of the most influential factors causing death in the world. Adenosine which
is a molecule, found in all human cells by coupling with G protein it turns into an adenosine receptor.
Adenosine receptor is an important target for cancer therapy. Adenosine stops the growth of malignant
tumor cells such as lymphoma, melanoma and prostate carcinoma. Adenosine is activated by interacting
with drugs to stop tumor cells from spreading and cure cancer disease. This research aims to predict drugs
and potential drug candidates that interact with adenosine receptors. We built a machine learning model
using three different classification techniques: Random Forest (RF), Decision Tree (DT) and Support Vector
Machine (SVM) then we chose the best technique after comparing the results. Unlike other researches,
we used the drug side effect integrated into drug fingerprint as a feature to train our model to classify drugs
(interacting and non-interacting) with adenosine receptors. We ranked the interacting drugs with adenosine
receptors based on drug side effects to find the most preferred drug (least side effect) among several drugs,
which helps in drug design. Most existing datasets contain drugs, targets and the interactions between them,
neglecting drug side effects. We formed a new dataset that has the drug side effect. The new dataset is
composed of 400 drugs, 794 targets and 3990 drug side effects. Since the dataset was imbalanced we applied
Synthetic Minority Oversampling Technique (SMOTE). After conducting experiments, RF achieved the best

classification performance with an accuracy of 75.09%.

INDEX TERMS Adenosine, classifier, drug, DTI, drug fingerprint, receptor, side effect, target.

I. INTRODUCTION
Cancer occurs in the form of malignant tumor cause spread-
ing abnormal cells throughout the whole body. There are sev-
eral types of cancer affecting body organs such as Leukemia
cancer forming blood tissues in bone marrow, Myeloma and
Lymphoma, which attacks the immune system and weak-
ens it. Finally, the carcinoma that affects the skin or the tissues
of the body organs such as the prostate. There are also other
types of cancer like sarcoma (affects connecting tissues ex.
cartilage), brain and spinal cord cancers. In this study, we
focus on blood, skin and immune system cancer types [1], [2].
According to the National Cancer Institute, 1,735,350 new
cases are going underdiagnosis in USA and 609,640 peo-
ple are going to die as a result of the disease [3]. There
are several ways to cure cancer such as radiotherapy
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and chemotherapy. A patient is subjected to radiotherapy.
Radiotherapy is therapy using radio waves to control or kill
malignant cells while chemotherapy (hormonal thereby) is
using chemical drugs to treat the damaged cells which are our
concern in this study. Studies prove the presence of high-level
ratios of adenosine molecules in cancer tissues. Chemical
drugs are a good option to treat these molecules [4]. This
adenosine molecule showed a great impact on the growth
of tumor cells, which presented an important medical field
called drug discovery (drug repositioning) [5].

Diseases are cured by drugs such as cancer in our study by
interacting with the target (adenosine). Drugs are designed
and tested before using them this process is called drug
discovery. Discovering drugs and make use of them require
huge time and cost [6]. Machine learning facilitates predict-
ing drug-target interactions and enhances the drug discovery
process in addition to developing new applications for the
existing drugs [7].
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Algorithms and machine learning models help a lot in
predicting drug-target interaction by reducing cost and time
contrast to the molecular docking which simulates the targets
in a 3D form, but it cannot simulate all the targets since they
should have special features as an input which don’t exist
for all targets [8]. Computational models used in predicting
drug-target interaction are classified to supervised machine
learning and semi-supervised machine learning. Supervised
machine learning where input and output data are known
for classification. In drug-target interaction (DTI) known
drug- target interacting pairs are considered positively labeled
while the non-interacting ones are considered negatively
labeled. Classification models use these labels in training.
In semi-supervised machine learning, only some of the data
is labeled while the majority are unlabeled. These unlabeled
data can reduce the accuracy of the classifier, which leads to
bad results.

Adenosine molecule effects appear when it interacts with
G-protein coupled, as a result, Adenosine A3, Al and A2a
are formed [9]. Gi and Gq proteins interact with adeno-
sine molecule to form A3 while pertussis toxin-sensitive G
proteins (Gi0O, Gil, Gi2 and G3) form Al and finally the
AZ2a results from interacting with Gs and Golf proteins [10].
A3 receptors are found in tumor cells in the form of HL60 and
K562 leukemia while Al receptors are found in human
melanoma A375 cell lines and finally, A2a receptors are
found in various cells such as Jurkat lymphoma. Every type of
these receptors has a significant role in treating cancer. These
receptors are activated using drugs which in turn fight cancer.

The Drug side effect has a great influence on the process
of drug design. According to DrugBank, the total drugs are
10562 [11] but only the approved drugs are 3254 which are
eligible to be used by patients due to their accepted side
effects. In 2016, Coelho et al. [12] proposed that integrating
drug side effects to other features would enhance drug-target
interaction prediction.

Since previous studies, focused on matching drugs and
targets in terms of interaction and neglecting their relation
(application) to the medical field. Also, they generated drug
descriptors from the compound’s chemical structure and
neglected an important feature such as drug side effects.
In addition, we ranked the predicted drugs based on the num-
ber of side effects that will help pharmaceutical and doctors
in drug design.

Based on the literature survey most of the existing drug
target datasets are imbalanced as the count of non-interacting
drugs is more than the count of the interacting ones so we
applied SMOTE technique to balance our dataset.

The rest of the paper is organized as follows. Section II
views the previous studies of DTI and the drug side effects.
Section III discusses the dataset, drug features, used machine
learning classification models and model’s performance
evaluation. Section IV illustrates the proposed framework.
Section V states the experiments and results. Section VI
discusses the experimental results. Finally, section VII con-
cludes the paper and suggest future approaches.
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II. LITERATURE SURVEY

In 2008, Campillos et al. [13] predicted targets (proteins)
using side-effect similarity. In their study, they proved that
there was a relationship between drugs and targets connected
through drug side effect as two unrelated drugs may have sim-
ilar side effects by interacting with the same target. In other
words, this strong relation helped in predicting new targets
for old drugs. Their dataset was collected from Matador [14],
DrugBank [15] and Ki DB [16] public databases, which con-
tained 746 drugs, 4857 drug-target relations and a side-effect
network, formed of drug-drug relations. They developed a
side-effect similarity measure using weighting schemes then
they classified drug side-effects using Unified Medical Lan-
guage System (UMLS). By constructing ontology network,
they concluded that there was an inversely proportional rela-
tionship between the recurrence of drug side effect and two
drugs sharing the same target (protein), finally they predicted
2903 drug-target interacting pairs with a probability of 25%.

In 2016, Coelho et al. [12] used two machine learning
classification models SVM and RF to predict DTI. The first
model predicted drugs with reference to the target’s type
while the second model predicted drugs without referring
to the target’s type. They collected their dataset from Drug-
Bank [15] and Yamanishi et al. [7] research, and consisted
of 927 drugs, 1370 targets, and 5127 drug interactions. SVM
model with reference to the target’s type (protein) showed a
great result in terms of AUC (Area Under The Curve). They
suggested a future approach to enhance the prediction of DTI
by using both network centrality metrics and expanding the
area of proteomic space.

In 2016, Galeano and Paccanaro [17] presented the idea of
chemical similarity prediction which was built on the theory
of the drugs that are similar in their chemical structures help
in predicting targets near to them. They collected their dataset
from Biogrid [18] and DrugBank [15] databases, which con-
tained 9336 drugs, and 4612 targets. They built two networks,
the first network consisted of nodes and each node repre-
sented a drug and similarity between drugs was calculated by
using Tanimoto Coefficient. The second network represented
the interactions between proteins and called interactome to
detect the relationship between them. Finally, they measured
the similarity between the two networks to predict similar
targets. The similarity between two networks reached 85% in
terms of AUC, they suggested that enhancing the similarity
ratio would occur when integrating side effect similarity.

In 2017, Sinha et al. [19] used Decision Tree, Support
Vector Machine, Random Forest and Naive Bayes as classifi-
cation techniques to inspect Leishmania Donovani membrane
a special kind of protein. The aim of their study was to predict
the usability of the protein whether to be a drug target or a
vaccine. They used four classification techniques and 28 pro-
teins [20] as an input to their model then they evaluated each
technique and used the best one. Finally, they used another
37 proteins and decided on the role of each protein (drug-
target or vaccine). The best result was obtained by Naive
Bayes with an accuracy of 76.17%.
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In 2017, Hao et al. [21] used Dual-Network Integrated
Logistic Matrix Factorization (DNILMF) to predict DTL.
They proposed that similar drugs and targets could help
in predicting nearby drugs and targets. They formed a
new dataset which contained 829 drugs, 733 targets and
3688 interactions. They used kernel construction techniques
to build drug and target profiles, calculated the matrix pro-
files using kernel techniques, then similar classes were dif-
fused. They predicted DTI using DNILMF which was better
than Neighborhood Regularized Logistic Matrix Factoriza-
tion (NRLMF); they said that using genetic algorithm could
enhance their proposed model.

In 2017, Wen et al. [22] predicted new drug and target
interactions without considering the type of targets by using
a deep learning methodology. They formed their dataset
of 1412 drugs, 520 targets and 2146240 interaction pairs
between drug and target. The data was extracted from Drug-
Bank [15] database. They used Extended Connectivity Fin-
gerprints (ECFPs) to generate drug descriptors and Protein
Sequence Compositions (PSCs) to generate target descrip-
tors. A neural network called Deep Belief Networks (DBN)
was implemented. They tested their model using an external
dataset from DrugBank [23] containing 4383 drugs, 2528 tar-
gets and 7352 interaction pairs between drug and target.
They compared their model to Random Forest (RF), Decision
Trees (DT) and Bernoulli Naive Bayes (BNB) classifiers. The
accuracy of DBN, BNB, DT and RF were 85%, 72%, 76%
and 83% respectively.

In 2018, Manoochehri and Nourani [24] used Deep Matrix
Factorization (DMF) to predict drug-target interaction. They
discussed two approaches. The first approach was to build a
predictive model based on identifying non-interacting nega-
tive pairs (drug-target) in the unlabeled data then using both
positive and negative pairs to build the model. The second
approach was predicting data using Ranking on Top meth-
ods which rank the positive interacting pairs higher than
the non-interacting negative ones. Their model was divided
into two steps. They used K-Nearest Neighbor technique
(KNN) classification technique to extract negative samples
form data then they used DMF i.e. a deep learning approach
to generate latent vectors. They used golden benchmark
dataset constructed by Yamanishi et al. [25] where there were
four different target classes Ion Channels (IC), Enzymes,
G-Protein-Coupled Receptors (GPCR) and Nuclear Recep-
tors (NR) that contains 204, 445, 95 and 54 drugs in IC,
Enzyme, GPCR and NR respectively and 210, 664, 223 and
26 targets in IC, Enzymes, GPCR and NR respectively. They
evaluated their model using Area Under the Precision-Recall
(AUPR) curve, Area Under the Curve (AUC) and 10-fold
cross-validation. Finally, they compared their model with
Neural Matrix Factorization (NeuMF) and DMF with random
sampling. The results were higher using their proposed model
(DMF+KNN) with an average accuracy of 73.65% using Hit
Ratio Metric.

In 2019, Saad et al. [26] used KNN, RF and DT
machine-learning classification techniques to predict DTI.
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They formed their dataset from drug central and spider ver-
sion 4.1 public databases. They built two matrices. The first
matrix was the drug side effect matrix and the second was
the drug-target matrix used in training and testing. They did
three experiments to study the effect of using drug features.
The aim of the first experiment was to use drug fingerprints
to classify drugs and identify their interaction with the corre-
sponding targets, KNN achieved an accuracy of 95.6%. The
aim of the second experiment was to use drug side effects
to classify drugs and identify their relation to targets, KNN
achieved an accuracy of 91.28%. Finally, the aim of the third
experiment was to classify drugs based on using both drug
side effects and drug fingerprint KNN achieved an accuracy
of 97.63%. They came to the conclusion that using drug
fingerprints besides drug side effects enhanced the accuracy
of the used classifiers. TABLE 1 summarizes the previous
related work.

In this study, we extended our work to deeply focus and
concentrate on finding a medical application for the previous
study as it was a general case study. So, we worked on a
specific types of targets (adenosine receptors) and studied
the effect of drugs on these targets in terms of interaction.
We made use of the drug side effect to rank drugs to help in
the drug design process and choose the best drug alternatives
for the patient. We also used new techniques in our experi-
ments such as SMOTE to balance the dataset and SVM for
classification.

Ill. MATERIALS AND METHODS

A. DATASETS

We used the dataset in the study conducted by Saad et al. [26],
it was a combination of two datasets where the first dataset
was a drug dataset extracted from drug central and contained
2736 drugs, 1938 targets and 14521 interactions between
drugs [27] while the other one was a drug side effect
dataset extracted from spider version 4.1 [28] and contained
1430 drugs, 5868 side effects and 139756 drug side effect
pairs.

The new dataset was compiled using joining and merg-
ing techniques. We used the compound ID to join the two
datasets. The resulted dataset is 400 drugs in common that
has multiple targets and drug side effects as shown in
TABLE 2 [26]. After that, we focused on our area of interest
which is the adenosine receptors and their associated inter-
acting drugs with their corresponding side effects.

We used SMOTE to generate new instances from the new
samples from the classes having minor cases (24 drugs in
A3 and 11 drugs in both Al and A2a) by taking instances
from the features in space for the target classes and the nearby
classes then created new samples based on combining the
features of the target classes with the features of the nearby
classes as shown in TABLE 3.

B. DRUG FINGERPRINT
Drugs are represented by a feature vector called drug fin-
gerprint. Drug fingerprint is obtained by simulating the
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TABLE 1. Summary of related work.

Paper authors Objectives Approach Dataset Accuracy
Monica Campillos Predicted targets (proteins) Lo é I\D/IatadBor K .Prechte'd er'lg—Farget
etal. [13], 2008 using side effect similarity 1. Similarity networks | 2. DrugBan interacting pairs

) ? 3.KiDB with a probability of 25%

Edgar D. Coelho

Predicted drug target interactions

1. Random Forests
2. Support-Vector

1. Yamanishi ‘s dataset

1. Average SVM: 92.75%

Ming Hao
etal. [22], 2017

Predicted interactions
between drug and target using DNILMF

1. DNILMF
2. NRLMF

drug-target interaction
dataset using
compound ID

etal. [12], 2016 without considering the type of target Machine 2. DrugBank 2. Average RF: 92.25%
3. Logistic regression
Diego Galeano Predicted targets based . s 1. Biogrid The AUC (Area Under
. 1. Tanimoto similarity The Curve) reached 85
etal. [18], 2016 on drug chemical structure 2. Drugbank R
% in similarity
Research by Kumar et .
. . Predicted usability of 1.SVM al., 2015 titled: I SV_M' 63%
Arvind Sinha the protein whether being a 2. DT “Proteomic analyses 2. RE: 73%
etal. [20], 2017 drup target or a vaccine ¢ 3. RE of membrane enZiched 3. DT: 56.33%
g-targ 4. Naive Bayes A 4. Naive Bayes: 76.17%
proteins..
Compiled a

. Average DNILMF: 97.57%
2. Average NRLMF: 96.9%

Ming Wen
et al. [23], 2017

Predicted new DTI without
considering the type of targets

1.Deep learning

1.Yamanishi ‘s dataset
2. DrugBank

. DBN: 85%
.BNB: 72%
.DT: 76%

1
2
3
4. RF: 83%
1. Average DMF+KNN: 73.65%
2

Hafez Manoochehri | Predicted drug-target 1. KNN | Yamanishi ‘s dataset . Average DMF with
et al. [25], 2018 interactions using DMF 2. DMF ' o ; random sampling: 71.95%
3. NeuMF: 72.47%
1. Using drug fingerprint:
93.57% (DT),
93.84% (RF) and 95.16% (KNN)
| RF 2. Using drug side effect:
Abdelrahman Saad Predicted drug-target interactions using 2' DT 1. Drug cental 89.97% (DT),
et al. [27], 2019 machine learning classification techniques 3' KNN 2. Spider 4.1 90.23% (RF) and 91.28% (KNN)
: 3. Using drug fingerprint
and drug side
effect: 96.89% (DT), 96.97% (RF)
and 97.63% (KNN)
. . . . 1. Adenosine A3: 70.53% (SVM),
5;2%;&1@;3;:?;%2‘5 with 1.SVM 70.26% (DT) and 73.68% (RF)
Our research machine learning 2.DT 1. Dmg central 2. Adenosine Al: 61.90 (SVM),
and ranking predicted drugs based on 3. RF 2. Spider 4.1 66.48% (D.T) and 66.30% (RF)
drug side effects 4. SMOTE 3. Adenosine A2a: 69.78% (SVM),
74.36% (DT) and 75.09% (RF)
TABLE 2. Summary of datasets. @)
No. of features Drugs Targets Side-effect ‘—>T1
Dataset 1 2376 1938 - i
Dataset 2 1430 - 5868 .—>T2
New dataset 400 794 3990
03 T3
TABLE 3. Number of drugs before and after SMOTE. ._. T4
Before SMOTE After SMOTE
No.ofdrugs 3R T T A2a | A3 | Al | A% 6B 15
Interacting 24 11 11 205 | 278 | 278
Non-interacting | 377 | 390 | 390 | 377 | 390 | 390 . - Drug } - Target ——> - Interaction

FIGURE 1. Prediction scenario.

molecules forming the drug. The simulation is based on
molecule information such as the atom numbers and the
bonds between these atoms. This information then used to
generate encoded fingerprints (binary bits) to be used later as
a strong features. Drug fingerprint is used in classification
and drug similarity techniques [29] that help in predicting

new potential drugs for the existing targets and vice versa as
shown in Figure 1. In part (A) each drug interacts with one
corresponding target as pairs [(D1, T1), (D2, T2), (D3, T3),
(D4, T4), (D5, T5)] i.e., drug 1 interacts only with target 1,
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this can be used as a valuable input in drug-target interac-
tion but it is not sufficient for prediction and discovering
hidden interactions between drugs and targets. In part (B)
we can find that not only every drug interacts with only
one target as pairs [(D1, (T1, T2)), (D2, (T1, T2, T3)),
(D3, (T3, T4, TS)), (D4, (T2, T5)), (D5(T4, T5))], i.e. drug 1
interacts with two targets named target 1 and target 2, but each
drug could interact with multiple targets with the helping of
drug fingerprint similarity, for instance, two drugs sharing
same drug fingerprint could interact with the same targets,
thus will help in finding new applications for the existing
drugs.

C. DRUG SIDE EFFECT

Drugs have side effects that cause unpleasant symptoms to
patients e.g. skin rash and dizziness. Side effects highly
impact drug discovery as it limits the use of drugs and
decreases its value. Drug side effects vary from one person
to another depending on the reaction between the chemical
substances in the drug and the targeted cells in the human
body. It has been reported that the severity of side effects
is the second cause for drug manufacturing failure and the
fourth cause leading to death in USA [30], [31].

D. SUPPORT VECTOR MACHINE (SVM)

Support Vector Machine (SVM) is one of the famously used
machine learning techniques. SVM is a machine learning
classification method. It is summarized as follows: inputs,
represented by input vectors are non-linearly mapped to a
high dimensional feature space. A decision surface and a
quadratic formula are constructed to classify between those
input features while ensuring high generalization ability of
the learning machine. It is considered as a robust and powerful
method in data analysis and pattern recognition [32]. Support
Vector Machine (SVM) was proposed by Vapnik and Chervo-
nenkis in the 1990s. There are two types of patterns linear and
nonlinear. The basic idea of SVM is to construct a decision
plane (hyperplane) to separate set of objects belonging to
different classes [33], given the following data set (x;y;) for
i=1...N,x; € R and y; € {—1, 1} for training a classifier
of f(x) as in equation (1)

L ]=0 yi=+1
f(x')LO =1 o

classes are correctly classified when y;f (x;) > 0 in case
of binary classification, but for linear classification classifier
has an equation (2) in the form of

Fx)=w'x+b (2

Since w represents the weight of the vector and b represents
the bias (SVM parameters), for better classification, perfor-
mance the margin is maximized using equation (3)

£ =3 e (x7x) + b 3

VOLUME 7, 2019

where X; are supporting vectors that support the algorithm
and it is defined when the value of «; (weight of the point) is
not zero.

E. DECISION TREE (DT)

Decision Tree (DT) learning is one of the most used meth-
ods for inductive inference. It is a classification method
that approximates discrete-valued target function. Decision
Trees are constructed using only those attributes best able to
differentiate the concepts to be learned [34]. A DT is built
by initially selecting a subset of instances from a training
set. This subset is then used by the algorithm to construct
a DT. The remaining training set instances test the accuracy
of the constructed tree. If the DT classifies the instances
correctly, the procedure terminates. If an instance is incor-
rectly classified, the instance is added to the selected subset
of training instances and a new tree is constructed. This
process continues until a tree that correctly classifies all non-
selected instances are created or the DT is built from the
entire training set. A statistical property, called Information
Gain, is used. Information Gain measures how well a given
attribute separates training examples into targeted classes.
The one with the highest information (information being
the most useful for classification) is selected. In order to
define Information Gain, first, we have to define an idea from
an information theory called Entropy. Entropy measures the
amount of information in an attribute using equation (4)

Entropy(S) = = ) " PetogyPe @
ceC
Given a collection S of ¢ outcomes where p, is the chance
of an instance of § belongs to outcomes c. Another metric
is the Information Gain, which measures how powerful an
attribute can sort data as in equation (5)
S
InformationGain(S, F') = Entropy(S)— Z %Entropy(sf)
rer S

%)

Given a collection S having set of features Sy and count of
elements in § with feature F having value f.

F. RANDOM FOREST (RF)

Random Forest (RF) is proposed by Breiman [35]. A collec-
tion of bagged decision trees based on the idea of ensem-
ble learning where combining several machine algorithms
to form a big generalized machine learning algorithm [36].
Several trees are built using bootstrap aggregating algorithms
by extracting a random subset of data built by the trees [37].
Finally, based on certain splitting criteria such as Gini [38]
trees are built. Trees classify the existing features and nomi-
nate the tree class based on voting then the forest selects the
most voted classification path of all other trees.

The RF algorithm can be implemented as follows:
step 1: Select attributes Y from total attributes X where
Y <X
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step 2: Calculate node N from random attributes Y by build-
ing a split.

step 3: Calculate the next node O using the best split.

step 4: Repeat the previous steps until only one single node
is reached.

step 5: Build N trees by repeating step 1 to step 4.

step 6: Prediction data P is obtained from the N trained trees
using classification voting.

step 7: Build the final model based on the highest voted
predicted attributes.

G. SYNTHETIC MINORITY OVERSAMPLING

TECHNIQUE (SMOTE)

During our first experiment in this study, we found that the
accuracy and the specificity of the used classifiers are high
and the sensitivity (true positive rate) is very low due to the
dataset was imbalanced as the number of drugs interacting
with adenosine molecule is relatively small compared to the
non-interacting drugs. This problem affected our classifica-
tion performance results. We used an oversampling tech-
nique called Synthetic Minority Oversampling Technique
(SMOTE) as proposed by Chawla et al. [39] and used in many
fields such as bio-informatics [40]. In this study, we used
SMOTE which made the number of interacting drugs and
non-interacting drugs with adenosine receptors nearly equal
which balanced our dataset. To balance the dataset SMOTE
uses the following equation

nyn =D; + (Dgun — Dj) xr (6)

where Dyy, is the synthetic data, D; are minority samples,
Dkyy, a sample of k-nearest neighbor from minority samples
and r is a random number between 0 and 1

SMOTE algorithm can be implemented as follows:

step 1: Determine both D; (feature vector) and Dky,
(k-nearest neighbor from minority samples).

step 2: Output the difference between the feature vector and
the k-nearest neighbor from minority samples.

step 3: Multiply output by r (a random number between
Oand 1).

step 4: Add the output to the feature vector D; to select a new
point on the line segment between feature vectors.

step 5: Repeat steps from 1 to 4 to identify new feature
vectors.

H. PERFORMANCE MEASURE

The proposed framework was assessed using Accuracy,
Sensitivity, Specificity, Postive Predicted Value (PPV) and
Negative Predicted Value (NPV) as shown below:

TP + TN

Accuracy = @)
TP+ TN + FP + FN
Sensitivity — s ®)
ensitivity = — N
Specificity = ™ ©
pecificity = = P
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TP
PPV = —— (10)
TP + FP
N
NPV = —— (11)
TN + FN

In this study, TP means true positive (sign of interaction
with adenosine receptors), TN means true negative (drug not
interacting with adenosine receptors), FN (predicted positive
drug-adenosine receptor pairs to be not interacting) and FP
(predicted negative drug-adenosine receptor pairs to be inter-
acting) where positive means there is an interaction between
drug and the receptor while negative there is no interaction
between them.

Pre-processing
Drug-target

0 G I

*Drug-ﬁsﬁeﬁeﬂect

‘. - ‘ Drug+Target+Side effect

NO '
17 Is dataset balanced?
. I
Apply SMOTE l YES

1 1

‘ SVM ‘ ‘ DT ‘ ‘ RF

(B) (©)

Validation (1) 10-Fold cross-validation
(2) Comparing results of classifiers (A) (B) & (C)
(3) Choose the best classifier

Classification

(A)

Predicted drugs

*Ranking using drug-side effect database

FIGURE 2. Proposed drug-adenosine receptors interaction framework.

IV. PROPOSED MODEL

The aim of our framework is to predict drug-target interac-
tions by applying machine-learning techniques and select the
best classifier between these different techniques. We gen-
erated a drug fingerprint for each drug using drug features
enclosed in Structure Data File (SDF) by calling the Chem-
mineR library in R. We resolved the bias in the dataset by
using the SMOTE technique as shown in Figure 2. Afterward,
we used the machine learning classification techniques to
classify drugs based on the drug fingerprint similarity and
the known drug-target interactions to train our model which
will help to predict new interactions. Finally, we ranked the
newly predicted drugs based on the drug side effect feature to
eliminate drugs having dangerous side effects.
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A. PREPROCESSING PHASE

In the processing phase, we combined both datasets and
generated a new dataset as mentioned earlier in TABLE 2.
After that we labeled (represented by a random number)
each drug, target and drug side effect then each label was
encoded. Lastly, we started building matrices, the first matrix
represented drug-target pairs where a drug (D1) interacts
with one target or more (Tk) integrating to this matrix the
drug fingerprint as shown in Figure 3. The second matrix
represented drug-side effect pairs where a drug (D1) had
several side effects (Sm) as shown in Figure 4.

1 0
D1
D2 1 1
Dn

FIGURE 3. Drug-target matrix.

1 0
D1
D2 1 1
Dn

FIGURE 4. Drug-side effect matrix.

We extracted our part of interest in which the drugs inter-
acting with adenosine receptors (A3, Al and A2a) and their
corresponding side effects to form a new matrix then we
applied the SMOTE technique to balance our dataset.

B. CLASSIFICATION PHASE

In the classification phase we trained our model using SVM,
DT and RF with hyper-parameters Sigmoid kernel and Gini
criterion respectively and the data of the adenosine receptors
A3, Al and A2a as an input to the classifiers.
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C. VALIDATION AND TESTING PHASE

We split the data into 70% training and 30% testing then we
applied 10-fold cross-validation technique to test and validate
our data by splitting the training set into 10 folds where k
equals 10 then we trained our models on 9 folds and we tested
it on the one remaining fold, then we took an average of
different 10 accuracies of the model evaluation which helps
in concise analysis. The final step is to compare the results of
the different classifiers and choose the best classifier.

V. EXPERIMENT RESULTS

Drug discovery undergoes many phases before a certain drug
can be approved to be taken by patients to treat a certain
disease. Prediction of these drugs must be highly accurate
because predicting the wrong drugs can affect the patient
causing unpleasant side effects that could lead to death.
Machine-learning (classification) techniques were used to
predict if there is an interaction between drugs and adenosine
receptors. Before, carrying the experiment on the whole data
we held 5% of the real data to ensure the data is synthesized
correctly before applying our model on the whole data using
SMOTE. Three different experiments were conducted on
three different types of adenosine receptors (A3, Al and A2a)
and the results of the three classifiers were compared after
using SMOTE technique.

A. EXPERIMENT ON PART OF THE DATA

Before carrying the main experiment (whole data),
We extracted 5% of the data to validate using the SMOTE
technique on the whole data. The highest accuracy was
obtained by RF with an average accuracy of 70% and an
average sensitivity of 76% while the lowest accuracy was
obtained by SVM with an average accuracy of 60% and an
average sensitivity of 59% as shown in TABLE 4, TABLE 5,
TABLE 6, TABLE 7, TABLE 8 and TABLE 9.

TABLE 4. Adenosine A3 receptor before using SMOTE on part of the data.

(%) Before SMOTE on part of the data (A3 receptor)
SVM DT RF
Accuracy 50 33 66
Sensitivity 50 25 50
Specificity 50 50 75
PPV 66 50 50
NPV 33 25 75

B. EXPERIMENT ON THE WHOLE DATA
In this section, we carried the experiment on the whole data

and showed the results after using SMOTE on the adenosine
receptors (A3, Al and A2a).

1) ADENOSINE A3 RECEPTOR USING

SMOTE ON THE WHOLE DATA

After applying the SMOTE technique on the whole
data, the dataset is balanced with 205 interacting drugs
and 377 non-interacting drugs with adenosine receptors.
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TABLE 5. Adenosine A3 receptor using SMOTE on part of the data.

TABLE 10. Adenosine A3 receptor using SMOTE on the whole data.

(%) Using SMOTE on part of the data (A3 receptor) (%) Using SMOTE on the whole data (A3 receptor)
SVM DT RF SVM DT RF
Accuracy 60 50 70 Accuracy 70.53 70.26 73.68
Sensitivity 50 50 80 Sensitivity 76.84 71.58 76.84
Specificity 75 50 60 Specificity 64.21 68.95 70.53
PPV 75 60 66 PPV 68.22 69.74 72.28
NPV 50 40 75 NPV 73.49 70.81 75.28

TABLE 6. Adenosine Al receptor before using SMOTE on part of the data.

(%) Before SMOTE on part of the data (A1 receptor)
SVM DT RF
Accuracy 33 50 50
Sensitivity 50 100 100
Specificity 25 25 0
PPV 25 40 25
NPV 50 100 100

TABLE 7. Adenosine Al receptor using SMOTE on part of the data.

(%) Using SMOTE on part of the data (A1 receptor)
SVM DT RF
Accuracy 70 70 70
Sensitivity 71 66 75
Specificity 66 75 66
PPV 83 80 60
NPV 50 60 80

TABLE 8. Adenosine A2a receptor before using SMOTE on part of the

2) ADENOSINE A1 RECEPTOR USING

SMOTE ON THE WHOLE DATA

After applying the SMOTE technique on the whole data,
the dataset is balanced with 278 interacting drugs and
390 non-interacting drugs with adenosine receptors. SVM,
DT and RF achieved an accuracy of 61.90%, 66.48% and
66.30% respectively and sensitivity of 56.41%, 60.07%
and 59.71% added to it a specificity of 67.40%, 72.89%
and 72.89% for SVM, DT and RF respectively. Also a PPV
(positive predictive value) of 63.37%, 68.91% and 68.78%
and NPV (Negative Predictive Value) of 60.73%, 64.61% and
64.40% in case of SVM, DT and RF respectively as shown in
TABLE 11. The SVM, DT and RF accuracy ratio decreased
by 8.63%, 3.78% and 7.38% respectively compared to the
accuracy in A3 receptor experiment. While there was a slight
increase in specificity by 3.19%, 3.94% and 2.36%.

TABLE 11. Adenosine A1 receptor using SMOTE on the whole data.

data. (%) Using SMOTE on the whole data (A1 receptor)
SVM DT RF
(%) Before SMOTE on part of the data (A2a receptor) Accuracy 61.90 66.48 66.30
SVM DT RF Sensitivity 56.41 60.07 59.71
Accuracy 33 50 66 Specificity 67.40 72.89 72.89
Sensitivity 0 66 75 PPV 63.37 68.91 68.78
Specificity 33 33 50 NPV 60.73 64.61 64.40
PPV 0 50 75
NPV 100 50 50

TABLE 9. Adenosine A2a receptor using SMOTE on part of the data.

(%) Using SMOTE on part of the data (A2a receptor)
SVM DT RF
Accuracy 50 60 70
Sensitivity 57 66 75
Specificity 33 50 50
PPV 66 66 85
NPV 25 50 33

SVM, DT and RF achieved an accuracy of 70.53%,
70.26% and 73.68% respectively and sensitivity of 76.84%,
71.58% and 76.84% added to it a specificity of 64.21%,
68.95% and 70.53% for SVM, DT and RF respectively. Also
a PPV (Positive Predictive Value) of 68.22%, 69.74% and
72.28% and NPV (Negative Predictive Value) of 73.49%,
70.81% and 75.28% in case of SVM, DT and RF respectively
as shown in TABLE 10.
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3) ADENOSINE A2A RECEPTOR USING

SMOTE ON THE WHOLE DATA

After applying the SMOTE technique on the whole data,
the dataset is balanced with 278 interacting drugs and
390 non-interacting drugs with adenosine receptors. SVM,
DT and RF achieved an accuracy of 69.78%, 74.36%
and 75.09% respectively and a sensitivity ratio of 75.82%,
77.29% and 79.49% added to it a specificity of 63.74%,
71.43% and 70.70% for SVM, DT and RF respectively. Also
a PPV (positive predictive value) of 67.65%,73.01% and
73.06% and NPV (Negative Predictive Value) of 72.50%,
75.88% and 77.51% in case of SVM, DT and RF respectively
as shown in TABLE 12.

C. RANKING THE INTERACTING DRUGS WITH
ADENOSINE TARGETS

Instead of drugs that help cure patients from certain dis-
eases, it causes side effects symptoms that can lead to death.
Therefore we choose 5 random interacting drugs with each
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TABLE 12. Adenosine A2a receptor using SMOTE on the whole data.

(%) Using SMOTE on the whole data (A2a receptor)
SVM DT RF
Accuracy 69.78 74.36 75.09
Sensitivity 75.82 77.29 79.49
Specificity 63.74 71.43 70.70
PPV 67.65 73.01 73.06
NPV 72.50 75.88 77.51

TABLE 13. Adenosine A3 ranked drugs.

Drug Side effects
Adenosine 87
Baclofen 100
Atenolol 112
Caffeine 133
Amiodarone 241

TABLE 14. Adenosine A1 ranked drugs.

Drug Side effects
Lovastatin 34
Clotrimazole 239
Gabapentin 265
Mefloquine 403
Cladribine 557

TABLE 15. Adenosine A2a ranked drugs.

Drug Side effects
Tamoxifen 7
Raloxifene 29
Miconazole 106
nifedipine 131

sildenafil 172

adenosine receptors and ranked it from least to most based
on side effects. For adenosine receptor A3 the interact-
ing drugs were Adenosine, Amiodarone, Atenolol, Baclofen
and Caffeine and have side effects such as agitation, high
blood pressure and bronchospasm. Also, Cladribine, Clotri-
mazole, Gabapentin, Lovastatin and Mefloquine interacted
with adenosine Al receptors. While Miconazole, Nifedip-
ine, Raloxifene, Sildenafil and Tamoxifen interacted with
adenosine A2a receptor as shown in TABLE 13, TABLE 14
and TABLE 15.

V1. RESULTS DISCUSSION

The experiments showed that RF and DT got the high-
est accuracy in classifying drugs interacting with adenosine
receptor A2a 75.09% and 74.36% respectively. The incorrect
classification affected the three classifiers across the three
adenosine receptors since the interacting drug instances with
these receptors are too small compared to the non-interacting
ones. So we used the SMOTE technique in our experiments
to create synthetic data to solve the imbalanced dataset prob-
lem. RF had the highest accuracy among the three classifiers
across the three target receptors with an average accuracy
of 71.69%, highest sensitivity with an average sensitivity
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Adenosine A3 receptor using SMOTE on the whole data
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FIGURE 5. Adenosine A3 receptor using SMOTE on the whole data.

Adenosine Al receptor using SMOTE on the whole data
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FIGURE 6. Adenosine A1 receptor using SMOTE on the whole data.

Adenosine A2a receptor using SMOTE on the whole data

79.49 77.51
74.3675.09  75.8277.29 07 73.0173.06  72.5 7588

80
o 69.78 63 74 - 67.65

60

50

0

30

20

10

0

Accuracy Sensitivity Specificity

mSVM mDT mRF

FIGURE 7. Adenosine A2a receptor using SMOTE on the whole data.

of 72.01% and highest PPV with an average PPV of 71.37%.
While the lowest specificity was scored by SVM with an
average specificity of 65.11% and the lowest NPV with an
average NPV of 68.90% as shown in Figure 5, Figure 6
and Figure 7.

VIl. CONCLUSION

Cancer is considered one of the most dangerous diseases
affecting humans. High-cost lab experiments and researches
are applied to find a cure for cancer. Enhancing the drug dis-
covery process highly depends on analyzing and processing
drug features to develop new drugs that will interact with
targets in the human body to cure the diseases. We proposed
a machine learning model to help in predicting drugs inter-
acting with targets based on drug fingerprints. In this study,
we focused on a special kind of targets called adenosine
receptors. We suffered a problem of the unbalanced dataset
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which was a misleading factor in the classification perfor-
mance and accuracy. We used SMOTE to solve the problem
of the unbalanced dataset using three different classifiers
across three different adenosine targets. RF achieved the
best classification performance with an accuracy of 75.09%.
Finally, we ranked the output drugs interacting with adeno-
sine receptors based on the drug side effect. Adenosine was
the least interacting drug with adenosine A3 receptor with
87 side effects while lovastatin was the least interacting drug
with adenosine Al receptor with 34 side effects and finally
tamoxifen as the least interacting drug with adenosine A2a
receptor with 7 side effects. In the future, we will apply
another classification technique to enhance the accuracy of
the prediction also, increase the drug and target instances.
We will also, consider weighting drug side effects based on
medical experiences to determine the degree of severity of the
predicted drug.
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