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A B S T R A C T

High-resolution daily precipitation estimation is very important in climatological and meteorological studies in
the arid regions of the world, as precipitation events in these areas can be sporadic, localized and of very high
intensity. In this study, the daily performance of five, ARC2, CHIRPS v2.0, GSMaP (v. 6), TAMSAT (v. 3) and
PERSIANN-CCS high resolution satellite-based gauge-corrected precipitation products were compared, and the
individual performances validated against rain gauge station records in the arid region of Egypt. Seven statistical
metrics (three continuous and four categorical), and selected intensity categories, were employed in the mod-
elling of rainfall totals for the 2003 to 2018 period. In general, the results indicated poor outcomes for all the
satellite-based products. CHIRPS was best at estimating rainfall of< 1 mm/day; this represented 30% of wet
days during the study period. ARC and GSMaP performed better in estimating rainfall events with an intensity
category of ≥1 mm/day, however both produced a high number of false detections. Despite continuous im-
provement of TAMSAT, it recorded the worst performance among the products evaluated. The study concluded
that GSMaP appeared to be the “best” to use for supporting research activities over the arid Egyptian domain
given its performance relative to the other satellite-based precipitation products.

1. Introduction

Accurate measurement of the spatial and temporal distribution of
rainfall is essential for a variety of socio-economic activities.
Precipitation data from gauge records is still the most useful and reli-
able method for characterizing rainfall amount and intensity (Dewan
et al., 2019; Huffman et al., 2001; Petersen et al., 2005), but these
measuring stations are usually sparse and unevenly distributed, and
therefore cannot provide sufficient detail about the distribution of
rainfall (Nashwan et al., 2019e; Salman et al., 2019). Due to this issue,
several satellite-based rainfall products have recently emerged as al-
ternative sources. These are regarded as an important data source due
to the high satellite coverage across the globe. They have been widely
used in various hydro-climatological, and meteorological studies in
various parts of the world where continuous gauge records are scarce,
and/or not available at all (Abdel-Fattah et al., 2017; Mashaly and
Ghoneim, 2018). In general, satellite-based rainfall estimates are

obtained through the use of Thermal Infrared Radiation (TIR), or pas-
sive microwave channels (Levizzani and Cattani, 2019). Algorithms are
used for the indirect estimation of rainfall from the cloud top brightness
temperature extracted from the TIR images. Due to this indirect mea-
surement method and the attendant high likelihood of misclassification
of rain-producing clouds, some uncertainty exists regarding the accu-
racy of the final results (Trejo et al., 2016). Even though passive mi-
crowave sensors, which are mounted on low earth-orbiting satellites,
directly measure the atmospheric liquid water content, and appear to
provide relatively more accurate estimates of precipitation, their tem-
poral measurement is low. To overcome issues associated with the
common indirect and microwave methods currently used in estimating
rainfall, the use of TIR, microwave radiometer data coupled with nu-
merical models and/or ground observation is currently believed to have
very good potential for spatiotemporal estimate of rainfall (Ushio et al.,
2009).

Egypt, which is located within an arid climatic zone, is highly
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dependent on the Nile River for its water supply (Stanley and Warne,
1993). This water is vital for the country's economy. The recent con-
struction and commissioning of the Ethiopian Grand Renaissance Dam
is likely to adversely affect the amount of water Egypt can obtain from
the Nile, and serious concerns have been raised regarding possible
ongoing future water shortages (Hamed, 2019; Nashwan and Shahid,
2019a). As a result of these concerns regarding water security, the
utilization of rainfall as a secondary source of water has gained in-
creasing attention in recent years (Abdel-Shafy et al., 2010; Gado and
El-Agha, 2019). Rainfall has always been the prime source of freshwater
for many agricultural communities and the nomadic Bedouin, espe-
cially in the coastal north and east of Egypt (Cole and Altorki, 1998).
Unfortunately, the cost of setting up a dense network of gauging sta-
tions or radar systems to provide adequate operational data to use for
implementing possible rainfall-based water conservation strategies has
been a serious obstacle in Egypt, as it has for many emerging economies
(Nikolopoulos et al., 2013). Given this issue, the use of satellite data to
provide fine resolution measurements of rainfall has shown great pro-
mise for use in the management and conservation of water resources.

Egypt has been impacted by several catastrophic flash flood events
in recent years which have led to hundreds of casualties and significant
economic loss (Abuzied et al., 2016; Cools et al., 2012; El-Magd et al.,
2010; El Bastawesy et al., 2009; FloodList, 2015; FloodList, 2018; Gado
et al., 2019; Krichak et al., 2000; Youssef et al., 2011). Egypt is ranked
3rd in regards the total number of flash flood casualties among the
Mediterranean countries between the years 1990 and 2006 (Llasat
et al., 2010). Studies have revealed that intense rainfall events trigger
most of the flash floods in these arid areas (Costa, 1987; Nashwan et al.,
2019a). The flash floods resulting from high intensity and magnitude
rainfall event over New Cairo City, on 24 April 2018 (FloodList, 2018),
show that these events can be extremely localized. A nearby recording
station, only 5 km from the city, received only 2 mm of total rainfall on
that day (OGIMET, 2018). High spatial resolution rainfall data is,
therefore, a viable alternative which can capture localized extreme
rainfall events which have the capacity to produce flash floods at the
local level (Smith and Rodriguez, 2017). The ability to acquire bias-free
estimates of rainfall is expected to significantly improve the observa-
tional capabilities of flood warning systems, particularly for these flash
flood events. Reliable, high-resolution rainfall estimation techniques
are required to allow Egyptian authorities to design and implement
mitigation measures to counter future water-stress scenarios and hydro-
meteorological disasters (Abutaleb et al., 2018; Nashwan et al., 2018a;
Nashwan et al., 2019c).

Significant efforts have recently been made to produce high spatial
resolution (i.e. 0.1° or higher) satellite-based global, or regional, rain-
fall products (Gella, 2019). In 2004, the Center for Hydrometeorology
and Remote Sensing at the University of California, Irvine, developed a
Precipitation Estimation from Remotely Sensed Information using Ar-
tificial Neural Networks-Cloud Classification System (PERSIANN-CCS)
technique. This has a spatial resolution of 0.04° × 0.04°, and provides
half-hourly temporal coverage (Hong et al., 2004). The US Climate
Prediction Center (CPC) released their second version of the African
Rainfall Climatology (ARC) in 2012 that provides daily estimates of
rainfall over Africa at a 0.1° × 0.1° spatial grid (Novella and Thiaw,
2013). In 2014, the Japan Science and Technology Agency (JST) and
the Japanese Aerospace Exploration Agency (JAXA), developed the
0.1°/hourly Global Satellite Mapping of Precipitation (GSMaP) dataset
for global precipitation (Ushio et al., 2009). The Climate Hazard Group
released the 0.05° resolution InfraRed Precipitation with Stations
(CHIRPS) in 2015 for supporting quasi-daily global estimate of rainfall
(Funk et al., 2015). Recently, University of Reading released their latest
version of the Tropical Applications of Meteorology using SATellite
data and ground-based observations (TAMSAT v. 3), which provides
0.0375°/daily rainfall over Africa (Maidment et al., 2017). Owing to
uncertainties commonly associated with satellite-based estimation, a
rigorous evaluation of the products is necessary to increase the level of

confidence in their use in different areas of application.
The performances of the ARC2, CHIRPS v.2.0, GSMaP (v. 6), PER-

SIANN-CCS and TAMSAT (v. 3) products have been evaluated by de-
termining their ability to estimate precipitation in the different regions
or countries in Africa (Bayissa et al., 2017; Cattani et al., 2018; Dembélé
and Zwart, 2016; Fenta et al., 2018; Gella, 2019; Trejo et al., 2016).
Recently, Nashwan et al. (2019d) investigated the performance of
GSMaP (v. 7), CHIRPS v2.0 and the IMERG over Egypt for the period of
2014–2018, and observed that CHIRPS is better at estimating the total
amount of rainfall. However, CHIRPS did tend to overestimate rainfall
occurrences. Furthermore, Nashwan and Shahid (2019b) compared the
performance of CHIRPS with six widely used, gauge-based, gridded
rainfall datasets for the period 1979–2014. They found that CHIRPS
recorded the highest amount of erroneous estimates at the monthly
scale among the gauge-based, gridded, precipitation datasets. El
Kenawy et al. (2019) reported that the PERSIANN-Climate Data Record
(CDR) failed in reproducing extreme wet days in the Middle East. Little
is known about the accuracy of either ARC2, GSMaP (v. 6), PERSI-
ANN-CCS or TAMSAT (v. 3) over Egypt. A number of studies, however,
have been conducted to assess the performance of the different, sa-
tellite-based precipitation products in nearby countries with a similar
climate. Dinku et al. (2010) found that GSMaP (v. 5) and ARC (v. 1)
overestimated rainfall occurrence over North Africa. CHIRPS is found to
overestimate rainfall over Cyprus (Katsanos et al., 2016). GSMaP (v. 6)
showed good correlation but underestimated rainfall over Antalya,
Turkey (Saber and Yilmaz, 2018). Dembélé and Zwart (2016), reported
poor performance of CHIRPS and ARC over semi-arid regions of Bur-
kina Faso. Furthermore, Babaousmail et al. (2019), noted that CHIRPS
performed poorly at the daily scale over arid Algeria. Basheer and
Elagib (2019), evaluated performance of ARC2, CHIRPS v2.0, TAMSAT
(v. 2) over semi-arid and sub-humid South Sudan, and reported a good
performance of CHIRPS at monthly and annual scales. There is a lack of
detailed knowledge regarding the reliability of the ARC2, CHIRPS v2.0,
GSMaP (v. 6), PERSIANN-CCS and TAMSAT (v. 3) products, especially
over arid regions of Egypt.

This study evaluates the performance of five freely available, high
spatial resolution, satellite-based precipitation products over the hot
desert climate of Egypt. Another product currently available, the
Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset, was not
included in this study due to its relatively short temporal pass over
Egypt (Nashwan et al., 2019d).

2. Study area, data and review of literature

2.1. Study area

Located in the northeast of the African continent, Egypt covers an
area of nearly one million square kilometers. Most of the topography is
relatively flat, with elevations ranging from 0 to 300 m above mean sea
level (Fig. 1). The Nile River enters Egypt from the south and flows in a
northerly direction, dividing the country into Western and Eastern de-
serts. Due to the fertility of the river soils, much of the country's po-
pulation is located along the banks, and within the deltaic plain, of the
Nile River (Abdallah, 2017; CAPMAS, 2019; Nashwan et al., 2019b).

The climate of Egypt is classified as hot desert arid type. Rainfall
occurs mainly in winter (NDJF), with the wettest month being January
(with an average rainfall of 120 mm) (Nashwan and Shahid, 2019b).
Fig. 1 shows the spatial distribution of rainfall in Egypt, with the wet-
test coastal regions located to the north and east. The inland south and
west are the driest parts of the country.

2.2. Data

The current study has evaluated the performance of five satellite-
based precipitation datasets and has used daily ground observations of
rainfall as a reference. A brief description of the different datasets is
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given below.

2.2.1. Ground observations
The daily rainfall data from 30 gauging stations was obtained from

the US National Climate Data Center Global Summary of Days (GSOD)
database, for the period January 2003 to December 2018. The gauges
are located across Egypt, as shown in Fig. 1. The count of wet days, the
maximum recorded rainfall amount (mm/day), and the percentage of
missing data within the study period for each station, is presented in
Table 1. The individual locations were verified using the WMO In-
tegrated Global Observing System (WIGOS) dataset.

2.2.2. Satellite-based daily precipitation datasets
The ARC2 has been developed by NOAA CPC by integrating 3-

hourly IR data recorded by the meteorological satellites of the European
organization and the daily records of nearly 1200 ground stations from
the GTS gauge network in Africa (Novella and Thiaw, 2013). It provides
daily rainfall estimate at a 0.1° spatial resolution since 1983 but is
confined only to Africa. Three main steps are used to develop this
product. First, a fixed rainfall amount of 3 mm/h is assumed in areas
where the cloud-top temperature is< 235 Kelvin. This assumption is
then weighted, using a maximum likelihood approach, toward the
nearest ground observation. Finally, the weighted rainfall estimates are
integrated with ground observations, where any spatial variability is
taken primarily from the satellite retrievals and the amounts of rainfall
determined from the ground observations. The ARC data is available at
ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2

CHIRPS v2.0 is produced by the US Geological Survey and the
Climate Hazards Group (CHG) at the University of California, Santa
Barbara. This product collates data from five sources and uses a four-
step development process: (1) a 5-day (pentad) precipitation estimate is
generated from the 3-hourly quasi-global geostationary TIR data of CPC
and the National Climatic Data Center; (2) a TRMM multi-satellite
precipitation analysis (TMPA)-3B42 rainfall product is used to calibrate
the IR pentad estimate; (3) the calibrated IR pentad product is then
multiplied with the Climate Hazards Precipitation Climatology and
subsequently divided by the long-term mean to produce the CHG IR
Precipitation (CHIRP) data; and finally, (4) model precipitation data
from NOAA Climate Forecast System are used to provide CHIRP with
daily variability, and ground-based observations are used to correct for

Fig. 1. Elevation of Egypt. Rain gauge locations have been overlain on the
elevation data. Average annual rainfall at each location is symbolized with the
relevant colour code.

Table 1
The number of wet days, maximum daily rainfall (mm/day) and percentage of missing record during 2003–2019 period for each station.

WMO ID Wet days Max daily rainfall (mm) % of missing record WMO ID Wet days Max daily rainfall (mm) % of missing record

623050 214 70.10 15% 624140 12 14.99 2%
623060 478 99.06 1% 624170 32 11.94 2%
623090 471 99.06 4% 624190 4 26.16 36%
623180 566 252.22 1% 624200 12 102.11 1%
623250 463 71.88 17% 624230 10 24.89 4%
623320 243 90.93 35% 624320 3 72.14 17%
623330 261 90.93 2% 624350 4 2.03 1%
623370 300 80.01 5% 624400 125 101.09 22%
623570 95 99.06 29% 624520 93 102.11 4%
623660 170 106.17 1% 624550 92 86.11 2%
623870 23 76.20 1% 624580 73 19.05 2%
623930 12 9.91 1% 624590 43 99.06 3%
623980 1 7.87 22%* 624630 24 102.11 1%
624030 16 7.11 20% 624650 8 6.10 5%
624050 28 50.04 1% 624760 11 35.05 27%

WMO ID: World Meteorological Organization Identification number; *: Percentage of missing records for the station 623980 was calculated from its starting day (16
May 2013).

Table 2
Contingency table presents agreement between observed records (Po) and sa-
tellite-based retrievals (Ps) of rainfall for different rainfall intensity ranges.

Po ≥ Threshold Po < Threshold

Ps ≥ Threshold Hits False Alarms
Ps < Threshold Misses Correct Negatives

Table 3
Rainfall intensity categories.

Daily rainfall intensity category Definition

No/tiny rainfall P < 1 mm
Light rainfall 1 mm ≤ P < 5 mm
Moderate rainfall 5 mm ≤ P < 10 mm
Heavy rainfall P ≥ 10 mm
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Fig. 2. Bar graphs, showing the number of rainy days within the light (L), moderate (M) and heavy (H) rainfall intensity categories for each station.

Fig. 3. The box and whisker plots of: (a) KGE, (b) RMSE, and (c) PDF SS estimated for different satellite-based rainfall products. Each box plot represents an
evaluation of 30 gauge stations. The horizontal red lines are the optimal value of each metrics.
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monthly climatology of the final product. This product provides near-
global daily rainfall data since 1981 at a 0.05° spatial grid.

GSMaP has been developed by JST and JAXA. It combines several

Passive Microwave (PMW) and IR sensor data to produce 0.1° resolu-
tion satellite-based precipitation product. The GSMaP algorithm uses
several steps when processing data. They are: (1) the PMW radiometer
retrievals, based on different satellite platforms, provide an in-
stantaneous precipitation rate (Aonashi et al., 2009); (2) the PMW re-
trievals are propagated using the cloud vectors obtained from the geo-
IR maps to fill the gaps between the PMW retrievals; (3) the Kalman
filter and forward and backwards morphing approach are applied to
reduce retrieval errors (Ushio et al., 2009); and finally, (4) the NOAA
CPC gauge-based precipitation product is used to calibrate the final
product (Mega et al., 2014). Although the latest version (v. 7) has been
released and is available for this study, the earlier version (v. 6) was
used due to the longer period of use and recorded data as compared to
the latest version. This was downloaded from https://sharaku.eorc.
jaxa.jp/GSMaP/.

TAMSAT (v. 3) has been developed by University of Reading by
integrating TIR images with ground-based observations (Maidment
et al., 2017). The TAMSAT algorithm is based on two assumptions: (1)
rainfall is produced from convective clouds that lead to cold cloud-tops;
and, (2) rainfall and the cold cloud duration (CCD, the number of hours

Fig. 4. Spatial distribution of the results denoting the best performing satellite-based rainfall product at each gauge station according to: (a) KGE, (b) RMSE and (c)
PDF SS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Performance diagram summarizing the results of POD, SR, Hit BIAS, and
CSI of the five products.
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when the brightness temperatures of TIR pixel is below a wet/dry
threshold) are linearly correlated. The TAMSAT uses a spatiotemporally
varying temperature threshold to calculate the CCD, which is calibrated
using ground-based records. The product is an estimate of daily rainfall
at a 0.0375° spatial grid and has records for Africa since 1983. This
product can be accessed via http://dx.doi.org/10.17864/1947.112

PERSIANN-CCS extracts rainfall features from cloud coverage using
different temperature thresholds. The algorithm consists of four steps:
(1) incremental temperature thresholds are used to segment the in-
frared cloud images; (2) segmented images are then used to extract
cloud features, including temperature, geometry and texture features
into distinctive cloud patches; (3) the self-organizing feature map al-
gorithm is used to cluster the cloud patches into the main categories;
and (4) the relationship between brightness, temperature and rainfall
rates are calibrated by histogram matching and nonlinear exponential
function fitting using gauge-corrected, hourly, radar-derived rainfall
data (Hong et al., 2004; Mahrooghy et al., 2012). It offers hourly and
daily rainfall data with a spatial resolution of 0.04°.

3. Methodology

Daily ground-based rainfall observations were used to evaluate the
performance of the five products, namely ARC2, CHIRPS v2.0, GSMaP
(v. 6), TAMSAT (v. 3) and PERSIANN-CCS. The gauge observations at
each location were compared with the nearest grid point of each sa-
tellite-based product. This approach is commonly used when assessing
satellite-based precipitation products to ensure usage of their original
estimates (Hobouchian et al., 2017; Rozante et al., 2018). Three con-
tinuous and four categorical, statistical metrics were used to quantify
the performance of each product. The continuous metrics are the
Kling–Gupta efficiency (KGE), Root Mean Square Error (RMSE) and
Probability Distribution Function (PDF) and Skill Score (SS). The KGE,
eq. (1), is a robust, objective metric that describes and measures overall
fitness of time-series by integrating correlation, bias, and variability
(Gupta et al., 2009). It ranges from - ∞ with an optimal value of 1. The
RMSE (eq. 2), measures standard deviation of the residuals, having an
optimal value of zero. On the other hand, the PDF SS (eq. 3), measures
how well the satellite-based products can capture the PDF of observed

rainfall (Perkins et al., 2007). It ranges from 0 to 1, in which 1 re-
presents a perfect overlap between the gauge and satellite-based PDFs.
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where, r is the Pearson's correlation; μ and σ represent the mean and
standard deviation of the satellite-based (Ps) and observed (Po) rainfall,
respectively; n is the sample size; and fo and fs are the frequency of a
specific rainfall amount between observed and satellite-based data.

Categorical statistical metrics such as the Probability of Detection
(POD), Success Ratio (SR), Critical Success Index (CSI) and the Hit BIAS
(Eqs. (4)–(7)) were calculated based on a contingency table (Table 2).
POD determines how well satellite-based products can capture the oc-
currence of ground rainfall events. The SR is the opposite of the False
Alarm Ratio (FAR), which evaluates how many times a satellite-based
product falsely detects rainfall events not detected by gauge records.
The CSI measures the ratio of true rainy days count (estimated by both
satellite-based product and ground station), to the total number of rainy
days estimated by the satellite-based product. The Hit BIAS measures
the number of rainy days detected by satellite-based product divided by
the number of rainy days detected by the rain gauges. The POD, SR, CSI,
and Hit BIAS have an optimal value of 1.

=
+

POD Hits
Hits Misses (4)

= −
+

Success Ratio False Alarms
Hits False Alarms

1
(5)

=
+ +

CSI Hits
Hits Misses False Alarms (6)

Fig. 6. The box and whisker plots of KGE estimated for the five precipitation datasets in replicating rainfall totals for: (a) no/tiny, (b) light, (c) moderate, and (d)
heavy rainfall. The horizontal red lines represent the optimal KGE value.

M.S. Nashwan, et al. Atmospheric Research 236 (2020) 104809

6

http://dx.doi.org/10.17864/1947.112


= +
+

Hit BIAS Hits Flase Alarms
Hits Misses (7)

To explore the performance of, and any errors in, the satellite-based
precipitation products, daily rainfall intensity was used to categorize
rainfall events based on predefined threshold values (Table 3). The
thresholding definition is based on the WMO standard (WMO, 2012),
with some modification to suit the arid conditions of the study area. The
modification includes merging of the rainfall intensity categories>
10 mm/day. The evaluation of the satellite-based products was con-
ducted on the complete series of rainfall and under four intensity ca-
tegories (Table 3). The analysis of an intense precipitation event, which
occurred on 5 February 2004, was used as a case study. Most of the
gauges in Egypt recorded rainfall on that day, making it ideal for
comparing gauge records using each of the five satellite-based products.

4. Results

Fig. 2 shows the number of rainy days observed at different stations
under light, moderate and heavy conditions. The number of days within
a no/tiny rainfall category did not appear in the graphs to prevent high
spikes, as this class has very high number of occurrences in Egypt,
compared to other categories. In total, the ground stations recorded
153,011 days as a no/tiny rainfall class, of which 1145 were wet days
with rainfall < 1 mm, 1789 were light rainfall intensity days, 627 were
moderate rainfall intensity days, and 319 were heavy rainfall intensity
days.

4.1. Evaluation of satellite-based precipitation products for complete daily
rainfall series

Fig. 3(a–c) shows the results of continuous metrics for a complete
rainfall series. Fig. 4 presents maps of the best performing products at

Fig. 7. Spatial distribution of the best performing satellite-based KGE precipitation products: (a) no/tiny, (b) light, (c) moderate, and (d) heavy rainfall categories.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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each station according to the four continuous metrics. Fig. 3(a) shows
that ARC has a median KGE (−0.21) nearest to the optimal KGE fol-
lowed by GSMaP and CHIRPS (−0.28 and − 0.37, respectively). Al-
though CHIRPS indicates the lowest range of KGE (suggesting a low
spatial variability), ARC is a better performing product for many sta-
tions than CHIRPS. PERSIANN is the worst product according to the
KGE. According to the RMSE value, all the products show good per-
formance (Fig. 3(a)). CHIRPS shows the lowest RMSE with a median of
1.49 and appears to be the best product as shown by results from the
majority of the stations. Although the median RMSE of ARC is lower
than that of GSMaP, ARC records the best results at 10 stations, while
GSMaP is best at only four stations (Fig. 4(b)). PERSIANN has the
highest RMSE, with a median of 2.47. The PDF SS results show that
PERSIANN and GSMaP have the highest median in regards PDF SS,
followed by the ARC results. However, ARC has the lowest range, and
the highest maximum and minimum, of PDF SS. Although the CHIRPS
records good performance in terms of KGE and RMSE, it does not agree
with the PDF of the observational data. This is shown by the low
median PDF SS of CHIRPS (0.52).

Fig. 5 is a performance diagram of the five high-resolution satellite-
based products. Developed by Roebber (2009), this diagram is an effi-
cient and compact way of presenting the results of the four categorical
metrics simultaneously. The x and y- axes of the diagram represent the
POD and SR, respectively. The dashed lines represent the Hit BIAS
(values are placed on the top and on the right axes), and the curved
lines represent the CSI (values are placed on the curved lines). The
optimal results are, therefore, located in the top right corner of the
diagram, and the worst in the bottom left corner. It shows that the ARC
and GSMaP results are significantly better than the other datasets, and
TAMSAT is the worst performer. In terms of the POD, GSMaP shows the
best performance (0.72) followed by ARC (0.56). Note, however, that
the ARC (0.42) was slightly better than GSMaP (0.39) in terms of the
SR. Both ARC and GSMaP show a similar CSI (around 0.32). Although
performance of the CHIRPS product was not satisfactory, the Hit BIAS
metric gives a value close to one.

4.2. Evaluation of rainfall intensity categories

Fig. 6 shows the KGE of the five satellite-based rainfall products by

intensity class, on a daily scale. Fig. 7 indicates the distribution of the
best performing product at each gauge locations, based on the KGE.
CHIRPS records the highest median KGE under no/tiny rainfall class
followed by ARC and GSMaP (Fig. 6(a)). As a result, CHIRPS appears to
be the best product at the majority of the stations in Egypt, except for a
few stations to the north where ARC and GSMaP have the best outcome.
GSMaP, along with PERSIANN and TAMSAT, indicate very poor KGE
for this category (i.e. no/tiny intensity). For the light intensity category,
ARC, CHIRPS, GSMaP and TAMSAT have a KGE median in close
proximity to each other (around 0.59); however, CHIRPS has the lowest
variability in KGE. Due to this similarity in performance, no product
could be selected as superior based on the KGE values alone (Fig. 7(b)).
However, the PERSIANN is poor at replicating light intensity rainfall
events. TAMSAT appears best in reproducing rainfall in the moderate-
intensity class, as it has the highest median KGE (−0.49) (Fig. 6(c)).
This product appears as the best performer at more than half of the
gauging stations (Fig. 7(c)). For the heavy rainfall intensity class, all
five products have a very similar median KGE, but ARC exhibits a
median value close to optimum (− 0.50). It should be noted that a
specific pattern in the distribution of best-performing products is
missing for the heavy intensity category (Fig. 7(d)).

Fig. 8 shows RMSE plots of the five satellite-based products used in
reproducing daily rainfall figures in the different intensity classes. Fig. 9
shows the distribution of the best performing product at each gauge
location based on the RMSE metric. For the no/tiny rainfall class,
CHIRPS records the lowest RMSE (0.17 mm/day), while GSMaP and
PERSIANN produce the highest median value (1.22 and 1.87 mm/day
respectively). Based on these results, CHIRPS appears to be the most
useful product at the majority of the gauge locations, apart from six
stations located along the Mediterranean Sea where ARC appears to
provide superior results (Fig. 9(a)). For the light rainfall class, all pro-
ducts appear to give consistent results. GSMaP has the lowest median
RMSE of 2.18 mm/day and provides the best rainfall product over the
sixteen gauge locations. ARC and TAMSAT appear best for five of the
locations. The GSMaP product exhibits the lowest median RMSE
(5.23 mm/day) when estimating moderate rainfall amounts (Fig. 8(c)),
and therefore, performs best at most of the gauge locations, particularly
along the Mediterranean shores (Fig. 9(c)). In the case of the heavy
intensity category, all of the five products produce a similar

Fig. 8. The box and whisker plots of RMSE for the five precipitation datasets in replicating rainfall totals for: (a) no/tiny, (b) light, (c) moderate, and (d) heavy
rainfall. The horizontal red lines represent the optimal RMSE value.
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performance. However, GSMaP is best at most of the stations (11 lo-
cations), followed by the ARC product (9 locations). Overall, CHIRPS
provides the best product for estimating the no/tiny rainfall class, while
GSMaP exhibits the best for the light, moderate and heavy rainfall in-
tensity categories.

The box and whisker plots of the PDF SS, replicating the rainfall
total of the different rainfall intensity classes, are shown in Fig. 10. The
distribution of the best performing product at each station, along with
the PDF SS values, are presented in Fig. 11. In terms of the PDF SS, all
the products perform poorly for all four classes. For the no/tiny class,
the ARC and CHIRPS values show the highest median PDF SS (0.31 and
0.32 respectively), suggesting very good performance at most of the
stations (Fig. 11(a)). For the light rainfall class, GSMaP produces the
highest PDF SS median (0.56), followed by ARC (0.51). Both appear to
provide the best performing products (13 for GSMaP and 7 for ARC).
For the moderate and heavy rainfall categories, all the products were
unable to replicate the observed PDFs. The ARC has highest median
PDF SS for the moderate and high rainfall intensity classes, as shown in

Fig. 10(c-d), and therefore, performs best at most stations (Fig. 11(c-d)).
Based on the PDF SS, ARC appears to provide the best result for all the
rainfall intensity classes.

Fig. 12 shows the performance diagram of each rainfall product in
reproducing rainy days for different daily rainfall intensity categories.
Overall, the performance of the five products was better in reproducing
drier days, as compared to the wetter days. All the products have a
near-perfect score for detecting no/tiny rainfall days. GSMaP is best for
detecting the occurrence of light rainfall events; followed by ARC.
GSMaP and ARC return a similar result when reproducing moderate-
intensity rainy days. GSMaP, however, produces a better score for the
Hit BIAS metric. ARC is best in detecting heavy rainfall days with a POD
and SR of 0.21, and a CSI slightly over 0.1. TAMSAT is the worst among
the five for capturing all wet events. Overall the analyses indicate that
the performance of the ARC and GSMaP methods are acceptable when
reproducing rainfall days< 5 mm. However, all products seem to
perform poorly in regards capturing rainfall events in other intensity
categories.

Fig. 9. Spatial distribution of the best-performing satellite precipitation products based on the RMSE for the intensity categories of: (a) no/tiny, (b) light, (c)
moderate, and (d) heavy rainfall. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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A case study has been conducted to determine whether high re-
solution satellite-based gauge-corrected precipitation products could be
used to reliably estimate rainfall. Most of the gauging stations in the
study region had recorded rainfall on the 5th of February 2004, so the
study compared the recorded rainfall amount and intensity with five
satellite-based precipitation products, in order to provide further in-
sight into the capability of these products to assist in rainfall modelling.
The analysis reveals that GSMaP appears best at reliably modelling the
rainfall distribution that occurred on February 5th, while CHIRPS fails
to detect the heavy rainfall rate (Fig. S1). All precipitation products
seem to have underestimated or overestimated the rainfall occurring on
that day, as indicated in Fig. S2.

5. Discussion

Although all five satellite-based precipitation products performed
relatively poorly when attempting to replicate the observed rainfall
over the Egyptian study area, overall ARC2, CHIRPS v2.0 and GSMaP
(v. 6) performed better than PERSIANN-CCS and TAMSAT (v. 3).
CHIRPS showed a better KGE and RMSE, but a high FAR and low POD,
and CSI in replicating the entire rainfall time- series. On the other hand,
the ARC and GSMaP showed good performance in terms of the KGE,
RMSE and PDF SS compared to CHIRPS. CHIRPS was very good at re-
producing values for the rainfall category of< 1 mm/day, while
GSMaP and ARC proved superior in estimating rainfall for light, mod-
erate and heavy intensity events. Contingency table results indicated
that ARC, CHIRPS, and GSMaP proved incapable of detecting the cor-
rect intensity category. These products also over or under-estimated the
amount of rainfall for the different intensity categories. ARC and
GSMaP appeared best at discriminating rainfall events of different in-
tensities. GSMaP was the only product which provided the distribution
of a relatively heavy rainfall day.

The findings of this study align with the conclusion of Nashwan
et al. (2019d), that CHIRPS has the ability to estimate rainfall in-
tensity< 1 mm. As this study was the first attempt to evaluate the re-
maining products (e.g. ARC v. 2, GSMaP v. 6, PERSIANN-CCS, and
TAMSAT v. 3) in Egypt, it was therefore not possible to compare the
performances with any previous studies. Similar research carried out in
other countries with similar climatic features was selected and used for

product comparison. The work identified that both ARC and GSMaP (v.
6) overestimated recorded rainfall totals. This supports the findings of
Dinku et al. (2010) over North Africa. Saber and Yilmaz (2018) found
that GSMaP (v. 6) recorded a high POD (0.74) for the whole rainfall
time-series in Turkey (north of Egypt) which aligns with this study
finding (0.72). Dembélé and Zwart (2016) and Toté et al. (2015) also
reported poor performance of ARC, CHIRPS and TAMSAT in replicating
daily rainfall over Burkina Faso and Mozambique. Their observations
align with the results of this study, suggesting CHIRPS is better than
TAMSAT in detecting wet days. The results also align with the findings
of Fenta et al. (2018), over the Lake Tana regions (Eastern Africa),
where ARC performed better than CHIRPS in analyzing rainfall. How-
ever, the current results contradict with their findings in regards to the
superior detection abilities of the TAMSAT product. Satellite-based
precipitation products appear to perform differently in different cli-
mates and/or altitudes (Chen et al., 2018; Nashwan et al., 2018b; Saber
and Yilmaz, 2018; Wu et al., 2019). Therefore, an apparent contra-
diction may stem from differences in climate type (or differences in the
elevation of the land and the more localized climate), between Lake
Tana (humid, 1800 m above sea level) and Egypt (hot desert arid,
321 m above sea level). It is worth noting that in other research, alti-
tude has had a significant influence on the performance of satellite-
based precipitation products. (Hobouchian et al., 2017).

The ARC and TAMSAT use TIR data, Meteosat First Generation
Satellites 2–7 (MFG 2–7) and the Meteosat Second Generation (MSG
8–10), as their primary data source in estimating rainfall. Unlike ARC,
which uses a singular threshold to compute CCDs, the TAMSAT algo-
rithms use a spatially and temporally varying threshold to compute the
CCDs. Furthermore, TAMSAT employs higher temporal resolution
(15 min) TIR images, aimed at improving detection capabilities in re-
gards short-lived rainfall events. Also, TAMSAT estimates rainfall totals
using a higher resolution spatial grid (0.0375° × 0.0375°), which
provides better spatial matching between gauge records and the
TAMSAT data. Taking these factors into account, the performance of
TAMSAT should be better than ARC, but surprisingly its performance
was poorer over Egypt. Indeed, ARC homogenized the input data of the
MFG 2–7 and the MSG 8–10 which has noticeable discrepancies
(Novella and Thiaw, 2013). The effect of the homogenization process,
however, is not noticeable in this study as homogenization was done for

Fig. 10. The box and whisker plots of the PDF SS, estimated for five precipitation datasets for rainfall totals of: (a) no/tiny, (b) light, (c) moderate, and (d) heavy
rainfall. The horizontal red lines represents the optimal PDF SS value.
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the estimates from 1983 to 2005.
The poor performance of both TAMSAT and PERSIANN-CCS was

noted, despite both being provided with highest resolution rainfall data.
One reason for this poor performance may be due to improperly com-
paring gauging station records with nearest grid-based retrievals. The
coarser resolution of the ARC and GSMaP data may have affected the
performance of the products, in spite of the fact that fine resolution
datasets such as TAMSAT and PERSIANN-CCS were expected to show
superior results. This issue may be linked with the mismatch between
the gauge locations and the gridded data. In addition, gauge records
may not be directly correlated with the nearest satellite grid point,
especially when rain propagates from the direction of another grid
point. As a further line of inquiry,a comparison was made between the
complete time-series of gauge data, not only to the nearest grid point of
the satellite-based products, but to the other three nearest (sur-
rounding) grid points individually, and also the mean of the nearest
four (thus reducing their spatial resolution to approximately equal that

of ARC or GSMaP), using continuous statistical metrics (Sup 1). The
results which indicated that neither the location of the stations nor the
comparison methodology, were the issue; rather it is the actual per-
formance of the PERSIANN-CCS and TAMSAT products over Egypt.
Even though higher spatial resolution data should provide better per-
formance when compared to coarse resolution data, the results of the
current study suggest that the fine resolution data might not have acted
in the way expected, at least for this arid region of Egypt. Further study
is, therefore, warranted to identify the causal factors in regards this
poor performance.

A major drawback in the results provided by the five satellite-based
precipitation products was the overestimation of rainfall occurrence
(low SR values, Fig. 5). This overestimation may be the result of three
factors. The first may be the sub-cloud evaporation mechanism. The air
in the lower atmosphere is very dry and hot compared to the upper air
over Egypt, so despite being detected by the satellites as rainfall, any
moisture may have evaporated while passing through a thick, dry and

Fig. 11. Spatial distribution of the best performing precipitation product, according to the PDF SS, for the rainfall intensity categories of: (a) no/tiny, (b) light, (c)
moderate, and (d) heavy rainfall. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Performance diagram showing the results of the categorical metrics estimated for: (a) ARC2, (b) CHIRPS v2.0, (c) GSMaP (v. 6), (d) PERSIANN-CCS, and (e)
TAMSAT (v. 3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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hot air layer before reaching the ground stations, and so nothing was
recorded (McCollum et al., 2000). The second issue could be due to the
effect of the desert dust inhibiting the precipitation. Rosenfeld et al.
(2001) studied the effect of desert dust of the Sahara Desert on pre-
cipitation and reported that clouds within desert dust could contain a
large number of small water droplets but produce little precipitation by
drop coalescence. These small droplets may not have enough velocity to
overcome updrafts, and so eventually diminish rainfall. Therefore, the
sand dust suppresses rainfall before it reaches the ground surface al-
though detected as rainfall by satellite resulting in low SR. The third
issue may be a result of misclassification of the surface cover by the
passive microwave satellite sensors. These sensors may misidentify hot
background surface and rainfall signatures, as reported in Seto et al.
(2009) and Wang et al. (2009) in their works over the Sahara Desert.
These three issues may combine and result in the overestimation of
rainfall occurrence

6. Conclusion

Rainfall estimation and detection skills of five high-resolution sa-
tellite-based precipitation products were assessed using data from 30
rain gauging stations located in the hot desert region of Egypt. Seven
statistical metrics and different rainfall intensity classes were used in
the evaluation for the entire time-series (2003–2018). In general, the
five products performed poorly. CHIRPS was best in estimating rain-
fall < 1 mm/day threshold. Both ARC and GSMaP were better in esti-
mating rainfall events with a rate of> 1 mm/day and both were good
in detecting rainfall. ARC was better in detecting moderate and heavy
rainfall occurrences while GSMaP was better in detecting the lighter
category events. Although GSMaP and ARC were regarded as good in
actual rates of detection, they both suffered from a high false detection
ratio. This study concluded that GSMaP may be the “best” high-re-
solution satellite-based precipitation product over the hot desert
Egyptian domain.

As there is no dense gauging station network over Egypt, nor a high-
resolution, gridded gauge-based precipitation dataset available to use
for reference purposes, it was not possible to evaluate the spatial
variability of rainfall retrievals by different satellite-based products.

Normally the use of several metrics is recommended for the eva-
luation of gridded precipitation data (Salman et al., 2018) however
they often show contradictory results. This was the case in this study.
Future work is warranted, including the use of information aggregation
techniques (such as compromise programming (Muhammad et al.,
2019; Zeleny, 1973) to integrate different metrics results into one, in
order to provide more a streamlined decision-making process.

The results of this study show that despite continuous improvement
in the robustness of the satellite-based precipitations products, there is
room for algorithm improvement, especially over hot arid climates. The
findings from this study suggest a number of further research lines of
inquiry. Firstly it is unclear why the TAMSAT (v. 3) product provided a
biased estimate over Egypt, despite continuous improvements in the
algorithm. Secondly, more investigation is needed to identify the major
reasons behind the poor performance of the PERSIANN-CCS product.
Thirdly, developing a regional bias correction for GSMaP, or developing
an ensemble between GSMaP and CHIRPS while preserving the ex-
tremes, would be very beneficial, especially in studies in data-scarce,
gauging station-sparse countries such as Egypt. This work has provided
valuable insights into the performance of different satellite-based
rainfall products which may prove useful for water resource planning
and management in arid regions of the world.
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