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Abstract. Online and cloud storage has become an increasingly popular loca-
tion to store personal data that led to raising the concerns about storage and
retrieval. Similarity-preserving hashing techniques were used for fast storing and
retrieval of data. In this paper, a new technique is proposed that uses both
randomizing and hashing techniques in a joint structure. The proposed structure
uses a Siamese-Twin architecture neural network that applies random projection
on data before being used. Furthermore, Particle Swarm Optimization and
Genetic Algorithms are used to fine-tune the Siamese-Twin neural network. The
proposed technique produces a compact binary code with better retrieval per-
formance than other hashing randomizing technique that varies from2 % to 5 %.

Keywords: Neural network - Genetic algorithms - Similarity preserving
hashing - Random projection

1 Introduction

In the past few years, the use of online and cloud storage has increased exponentially
since it facilitates the storing of personal information such as face images and fin-
gerprint. Consequently, two main concerns are raised; namely the ability to store and
retrieve data efficiently.

One of the approaches that are used to efficiently store and retrieve data is the
similarity preserving hashing function, in which each image feature vector is converted
to a binary code where similar data has similar binary codes [1-3]. The binary code is
very efficient in terms of storing the data since the space usage is very low and therefore
the retrieval becomes fast. It is divided into different families like random hashing
methods [4-6] and machine learning techniques [7-9]. The problem with randomizing
hashing, it needs long codes to produce higher accuracy. A new direction was taken to
produce shorter codes with higher accuracy using learning-based hashing methods.
One of the most famous techniques of this direction is Binary Reconstructive
Embedding (BRE) [2], Minimal Loss Hashing (MLH) [3] and Spectral Hashing
(SP) [10].
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In [1] locality sensitive hashing (LLSH) is one of the randomized hashing techniques
family. It uses a hash function that map the similarity from original space to the same
hashing buckets with high probability. It depends on a random hyperplane with a
Gaussian independent distribution. The hyperplane is used to produce similar code for
similar inputs. There are different similarity criteria used like cosine similarity and
Jaccard similarity [11].

In [2] binary reconstructive embedding is introduced where the Euclidean distance
between inputs in the input space is calculated, and then the hamming distance between
binary codes in the hamming space is calculated, the loss function used as a hash
function learning is based on minimizing the error between the difference of the two
spaces.

In [3] minimal loss hashing is introduced where a structural SVMs was proposed
that apply an online algorithm with latent variables. It uses a loss function that takes
into consideration hamming distance and binary quantization.

In [10] spectral hashing is introduced. It was noticed that the problem of finding
good binary codes clearly resembles the graph portioning problem. It aims to keep
neighbors in input space as neighbors in the hamming space.

This paper proposes a binary hashing technique that creates discriminative binary
codes that are compact. It is applied on a Context Based Image Retrieval system
(CBIR) where the search is done according to the image content similarity.

Siamese-Twin Random Projection Neural Network (STRPNN) architecture is
proposed which is composed of two identical random projections with nonlinear
hard-threshold neurons with adjustable bias. The Random Projection Neural Network
(RPNN) executes extensive random projection on the input feature space, and the hard
threshold produces the binary code. Both Genetic algorithm and particle swarm opti-
mization are used to both select an optimal sparse number of neurons to ensure a short
binary code, as well as to adjust the thresholds and the weights of the selected neurons.

The paper organization is as follows: Sect. 2 is a detailed explanation of the
STRPNN. Section 3 is a detailed explanation of the GA-PSO tuning of the STRPNN.
Section 4 explains the supervised and unsupervised versions of the STRPNN followed
by a comparison between normal STRPNN and GA-PSO tuned STRPNN as well as a
comparison between GA-PSOSTRPNN and hashing techniques. Section 5 is a con-
clusion about the proposed technique.

2 Siamese Twin Random Projection Neural Network
(STRPNN)

The original idea of a Siamese structure was introduced in [12]. The basic idea is to find
optimal weight that produce small distance between the output if the inputs are from the
same category and large distance if the inputs are not.

The proposed structure for the Siamese twin Random Projection Neural Network
(STRPNN) is shown in Fig. 1. It is composed of two identical RPNN structures with
hard-threshold neurons. The STRPNN can work in both supervised and unsupervised
image retrieval systems, where the training consists of selecting the best neurons, and
tuning the thresholds and weights of the neurons. It converts feature data into secure
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Fig. 1. Siamese Twin Random Projection Neural Network

binary codes where the objective is to produce similar codes for similar images and
vice versa.

STRPNN goes through two main stages: the training stage and the binary code
selection stage. In the first stage, the Euclidean distance is calculated between each
feature vector (query) and the remaining training items, to select the closest (positive)
and farthest (negative) match. In case of the supervised RPNN the positive class item
has to be from the same class of the query while the negative class item has to be from
different class than the query.

The query could have one or more positive and negative matches. The Target
vector T is the vector that holds the values of the query compared to negative and
positive matches. Target vector is composed of the Tiji = 1 : N values where T; = 1 if
the 2 images are similar enough, and T; = —1 if the 2 images are significantly different.
RPNN consists of J neurons; the input for RPNN is the feature vector from the training
data multiplied by random projection. The neurons outputs can be thought of as a
vector Y which is given by for the twin neural networks:

Y, = (@« X)) (1)

Where X; and X, are the input feature vectors to the twin neural networks and f is
the hard-thresholding neuron. Each neuron also has an adjustable threshold which is
considered as an extra input feature with a value of 1. For the j; neuron, the output is:

Yij = f(d)j * Xk) (3)



398 M.M. Emara et al.

Where ¢; is the part of the random matrix @ that is connected to the j; neuron.
Twin Random Projection Neural Network consists of two RPNN during the training
phase; the first one is for the query image feature and the second RPNN is for checking
the similarity with the query. To check for similarity the output of the first and second
RPNN’s are XORed: if they are similar the output (Z) is 1 and if they are not the output
Z)is —1:

fyyj=yyZi=1, and if y\j+ yr Zj = —1 (4)

The next stage is the binary code selection. The outputs of the neurons over the
whole training data are used to determine which of the neurons are more correlated to
the target. The top M neurons (M the size of binary code produced) that have the
highest correlation with the targets over the whole training data are kept: For each
neuron calculate the following:

N
Si=> . vi*Ti 5)

Thus, if y; (the output of the jth neuron for the ith training example) has the same
sign as the target (T) then this adds to the score of this neuron, while if the neuron
output is different than the target then this will discount from its score. Finally, the
scores of all the neurons are sorted and the top M kept.

Even though this FAST technique is very quick and does not need solving of
optimization problems, it suffers from an obvious drawback: Some of the remaining
neurons may be identical or highly correlated which will result in redundancy and
sub-optimal sparsity. This can be resolved by applying some enhancement to the
algorithm by checking the remaining neurons correlation and removing the redundant
ones. The GA solves this problem as explained in the next section.

3 GA and PSO Tuning of the STRPN

The Genetic Algorithm (GA) was introduced by John Holland [13]. It applies Dar-
winian evaluation theory in searching for optimal solution for a given problem. Particle
Swarm Optimization (PSO) was introduced by Kennedy and Eberhart [14]. It was
inspired by the behavior and movement of animals in nature like birds flock. It was
simplified and applied also in searching for optimal solution for a given problem.

Particle Swarm Optimization and Genetic Algorithms are used with the training of
the STRPNN to improve the distinction of the produced binary codes and therefore
improve the performance. The PSO works on improving the hard-limiter neuron
thresholds. As for the GA, it works on selecting the best neurons to create the best
sparse binary code. The number of neurons selected is according to the binary code
length required.

PSO depend on velocity and position of each particle, velocity and position are
update at each iteration to find optimal solution, Eq. (6) is for updating velocity and



A Neural Network Approach for Binary Hashing in Image Retrieval 399

Eq. (7) is used to update position found in [14] where c;, ¢; and @ are parameters set
by the user and r; and r, are random number generated in the range [0 — 1].

Vithrl = WVltd “+c1.1 (Pid _Xltd) “+ .1 (Pfgb - Xltd) (6)

X ' =X+ V! (7)

id

3.1 PSO Tuning of Thresholds

The PSO is used in tuning the hard-limiter neurons’ thresholds. The function of
hard-limiter neurons in RPNN is to converts input data to binary code. It depends on
threshold: if the weighted sum is less than the threshold the output is —1 otherwise it is
equal to 1. The PSO is used to find the best threshold for each neuron. The PSO
consists of N particles; each particle consists of a random vector. Each random value in
the vector represents a threshold for each neuron. The optimization is done on the
random vector to find the best possible threshold suited for each neuron.

if v > Pjthenf(Y)=1lelsef(Y)=—1 (8)

The fitness function starts by using the initialized particles as weights for hard
limited binary neurons (Eq. (8)). The vector P is the particle of N values. The vector has
the same size as number of neurons in the RPNN, if the value of yj is less than P; value
the output is —1 otherwise it is 1. The P vectors value are improved after each iteration
using PSO. The next step is XORing the output of twin RPNN (explained in Sect. 2)
using Eq. (4). To select the top M neurons to produce the binary code Eq. (5) is used
(explained in Sect. 2). The next step is to convert the validation data using trained
RPNN with each particle as hard-limiter to binary code. The output of the top M neurons
is used in producing the validation binary code. The next step is to compare the dis-
tinctive of validation data in the original space with the binary codes produced in binary
space. For this task a class matrix that contains the class of validation data compared
with training data is produced in the original space and another is produced for binary
codes in the Hamming space and then they are matched together as shown in Eq. (9):

MA = ||V —1D|| (9)

Where MA have rows equal to number of training data and columns equal to the
number of validation data. The intersection between the columns represents the
Euclidian distance between training item and validation item. V is the validation data
and TD is the training data

L = binarized (MA) according to TH (10)

Where TH is calculated by sorting the Euclidian distance between the training data
followed by selecting top C values and averaging it. L is the binary matrix where the
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element is 1 when the training data and validation data are from the same class, and is O
it is not from the same class.

Equations (9) and (10) are used one more time to produce a class matrix for the
Hamming space using the same value of C. The next step is to match the two matrices
together using XNOR, as shown in Eq. (11).

f(P;) = sum(MA & MB) (11)

Where f(P;) represent the fitness function for each Particle P; and is the sum of the
matching pairs. MA is the class matrix for original data and MB is the class matrix for
binary codes.

G= Z;n:l max (f(P1), f(P2),....f(Pu)) 12

In Eq. (12) m is the maximum number of iteration done by PSO, f(P,) is the sum
of matching pairs produced by each particle calculated in Eq. (11). The basic idea for
matching the two matrices used with PSO or GA, this to ensure that the binary code
produced has its equivalent pair in the feature data.

3.2 Genetic Algorithm Sparse Neurons Selection

The GA is used to select the best neurons to create binary code. The problem with the
FAST technique is some of the unselected neurons maybe more significant than the
selected neurons. This is due to the fact that selecting the most correlated neurons
doesn’t ensure that best performance, least correlated neurons when combined with
other neurons can produce a better distinct code therefore increasing the performance.
The FAST technique selects the top M neurons that have the highest correlation with
the targets over the whole training data. The GA overcomes this problem by exploring
the different combination of neurons to find the most significant neurons. Each chro-
mosome in the GA has same size as number of neurons, the 1s in the chromosome
represent the index of the selected neurons to produce binary code otherwise the Os
represent the unselected neurons.

The GA RPNN population is initialized by four chromosomes. Each chromosome
is a binary vector where 1’s represent the selected neurons and 0’s represent the
unselected neurons. The first chromosome is initialized by the output of the FAST
technique in case it acquires the best performance, the other three are initialized ran-
domly according to the required binary code (if the required code is M the number of
1’s should be exactly equal to M).

The Genetic algorithm is used with RPNN to replace the FAST technique and it
uses a similar fitness function like the one used with PSO, instead of using the top
M ranked neurons a randomly selected M neurons are selected to produce the binary
validation data then calculate class matrix for both features and binary training and
validation data.

The sum of matching pairs is also calculated using Eq. (11). The difference here is
that the matching pairs reflects the quality of each chromosome in the Population. The



A Neural Network Approach for Binary Hashing in Image Retrieval 401

reason for using GA is to find the best set of neurons of size M that produce the best
distinct binary code. In Eq. (12) m is the max number of iteration done by GA, f(P,) is
the sum of matching pairs for each chromosome.

For the selection phase the roulette wheel is used. In the crossover, the order 1
crossover is used to prevent any increase or decrease in the required code size as shown
in Fig. 2., it is done by creating random permuted vectors as shown in Fig. 2(a), the
value in the permuted vector are converted into 1’s and 0’s in the equivalent binary
chromosomes. So if the binary code required like in Fig. 2 are 4 bits, the numbers from
one to four is converted to 1’s otherwise the numbers are converted to 0’s. This is to
make sure that value in the two parents (permutated vector) are the same in the
equivalent binary chromosome for example the value 1, 2, 3 and 4 in Fig. 2(a) in both
parents have the same value in the equivalent binary chromosomes in Fig. 2(b) equal to
1, therefore the number of 1’s for sure will not increase or decrease. The order one
crossover [15] is then applied on those two vectors to produce the new two children. If a
value is moved from the random permuted vector (the parent) to the new child. The
index of this value is taken and the same move is applied for the equivalent binary
chromosome shown in Fig. 2(b). In the mutation phase, a swap takes place between two
randomly selected bits from the newly created children. The last step is the elimination
of the least two fit chromosomes and replacing them with the new produced children.

Order 1 crossover
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Fig. 2. The use of order 1 to maintain the size of binary code (4 bits binary code)

The technique used in pervious section is a smaller version of the GA-PSO RPNN,
it doesn’t take a lot of time in training and is suitable to use in application that has tight
time constrain compared to GA-PSO RPNN. The two techniques only takes time in the
training processes but takes average time in executing on testing data. The GA-PSO
RPNN produce more secure and accurate binary codes since it has to extra layers of
fine tuning and randomization using PSO and GA.
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4 Experiments

4.1 Dataset Description

In following experiments, the COREL 1 k dataset is used. It has 10 categories and each
category has 100 images. The COREL dataset is used in the first part of the experi-
ments using STRPNN without GA-PSO. In the second part, the small datasets reported
in [2] are used, namely the Labelme and MNIST. Each dataset consists of 5000 image
feature vectors.

4.2 Feature Extraction

The features used on COREL database is a concatenation of indexed color histogram,
Discrete Cosine Transform, Color Histogram, GIST and SURF-VLAD with vector
lengths of 64, 64, 192, 512 and 1000 respectively. The formed concatenation feature is
than reduced using PCA to a 25 dimension vector. Each image in the Labelme dataset
is represented by a 512 GIST vector and each image in the MNIST dataset is repre-
sented by a 784 GIST vector [2].

4.3 Supervised versus Unsupervised RPNN

This experiment is a comparison between the supervised and unsupervised. This
experiment is a comparison between the supervised and unsupervised STRPNN to find
out which is has a better accuracy. The experiment is executed with the same random
projection, number of neurons and number of neighbors and the accuracy performance
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is shown in Fig. 3. The accuracy of unsupervised RPNN is better than supervised up to
code length of 128 but the supervised overcomes unsupervised for longer codes. This
experiment proves that the STRPNN can work on both supervised and unsupervised
data with almost the same accuracy.

4.4 Comparing Hashing Techniques and GA-PSOSTRPNN

This subsection discusses a comparison between PSO and GA tuned STRPNN and
other hashing techniques for compact binary codes using 2 dataset, namely MNIST and
Labelme [5]. Each dataset is divided into 3000 images as training, 1000 for validation
(used in the PSO and GA fitness function) and 1000 images as testing data randomly.
The Euclidean distance is calculated for training data and itself, the 50 nearest data
items are selected and averaged. The neighbors are the items that are less than average
(ground truth neighbors), the PCA is applied on mean centered data and the top 40
PCA features are kept.

In this experiment, the RPNN used has 200 neurons with one hidden layer. PSO uses
velocity update Eq. (5) that has ® (Inertia weight) equal to 0.9, ¢, equal to 1 and ¢, equal
to 2 [14]. The GA algorithm has a mutation rate of 0.05 and crossover rate of 0.6 [13].

mnist 30 labelme 30

0.9 W\
\\
‘1

Precision
o
&
Precision

o

=
o
S

o
@

o
0

°

o

H i H
01 02 03 04 05 06 07 08 09 1

Recall Recall
ecal

mnist 45

i

o
©

o
@

)
S

o
2

Precision
°
&
Precision
°
&

o o o
RS
o o o
RIS

o

o1p

o

H H i i i H H i H H
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Recall Recall

o

Fig. 4. Hashing techniques compared to RPNN [3]



404 M.M. Emara et al.

The precision and recall curve found in [6] is used to compare between STRPNN
and other state of the art hashing techniques. The precision recall curve is produced
after varying the radius R from zero to “q”, which is the radius value where the recall is
equal to one. The experiments are executed 10 times and results shown represent the
average with standard deviation as error bars, as shown in Fig. 4.

The results show that the RPNN is clearly better in precision than SH and LSH in
almost the four precision and recall curves, but still need improvement to overcome the
BRE and MLH.

4.5 Comparison Between Normal RPNN and GA-PSO RPNN

To conduct this experiment a precision and recall curve for 50 bits using COREL
dataset concatenated features. The COREL dataset is divided into 500 images for
training and validation and 500 images for testing. The same settings for normal RPNN
and GA-PSO RPNN are used with the same random projection. The RPNN uses 200
neurons with one hidden layer and the settings for PSO and GA are the same as the
previous subsection. In Fig. 5, the result shows that at recall 0.5 the precision of normal
RPNN is improved by 15 % using PSOGA RPNN. The PSO and GA improved the
average precision of normal RPNN by about 17.5 %.

Precision and Recall curve for 50 bits binary code
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5 Conclusion

In this paper, a Siamese-Twin Random Projection Neural Network (STRPNN) is
proposed for the fast retrieval and efficient storing of data, in which a combination of
neurons are selected to produce the required binary code. A fine-tune PSO and GA are
applied in the selecting process. STRPNN can also be used in both supervised and
unsupervised data modes based on the availability of labeled data. When it is compared
to other hashing techniques it overcomes SH with a precision that varies from 2 % to
20 % in average and LSH with a precision that varies from 2 % to 10 % in average, but
it needs more improvement to overcome MLH and BRE [16] which will require the
training of the random matrix weights for the selected neurons, and this is a future
direction for research.
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