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A B S T R A C T

Slug flow is one of the main flow regimes encountered in multiphase flow systems especially in oil and gas
production systems. In the present study, the rise of single Taylor bubble through vertical stagnant Newtonian
liquid is investigated by performing complete dimensionless treatment followed by an order of magnitude
analysis of the terms of equations of motion. Based on this analysis, it is concluded that Froude, E€otv€os and
Reynolds numbers are the sole physical parameters influencing the dimensionless slug flow equations. Using the
guidelines of the order of magnitude analysis, computational fluid dynamics simulation is carried out to inves-
tigate the dynamics of Taylor bubbles in vertical pipe using the volume-of-fluid (VOF) method. Good agreement
with previous experimental data and models available in the literature is established confirming that the density
ratio, viscosity ratio and the initial ratio of bubble size to pipe diameter ðLTB=DÞ have minimal effect on the main
hydrodynamic features of slug flow. Based on the developed results, correlations for the terminal velocity of the
Taylor bubble and the dimensionless wall shear stress are proposed showing the significance of these main
dimensionless parameters and support other important theoretical and experimental work available in the
literature.
1. Introduction

Multiphase flows occur in a wide range of applications including
natural processes, chemical processes, nuclear systems and petroleum
industries. The petroleum industry is considered one of the most
important applications of multiphase flow, as it could be encountered in
different processes/stages such as: oil processing, oil and gas transport in
pipelines, and sloshing in offshore separator devices.

For two-phase gas-liquid flow in pipes, different flow patterns can
occur known as “flow pattern/flow regime”. These patterns depend on
the flow rates, the geometry of the system, and inclination of the pipe
(Morgado et al., 2016). Multiphase flow is classified according to the
distribution of different phases building up the flow field, known as “flow
regime/pattern”. Multiphase flow can be encountered in various flow
patterns such as bubbly, slug, plug, annular and dispersed flow. Fluid
flow investigation includes an important aspect which is the identifica-
tion of the encountered flow pattern. For gas-liquid flow in pipes, one of
the common and complex patterns encountered is known as “slug flow”.
Slug flow is an intermitted flow between stratified and annular flow.
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Flow intermittence is the main remarkable hydrodynamic charac-
teristic causing the complex structure of slug flow which is composed of
Taylor elongated bubble that occupies almost the whole cross-section of
the pipe, and annular falling liquid film that might entrain many small
bubbles, known as a “liquid slug”. Flooding of downstream processing
facilities, severe pipe corrosion, structural instability of pipeline, and
further induction of the reservoir flow oscillations, and a poor reservoir
management are examples of the problems encountered as result of
slugging in offshore oil and gas systems.

The prediction of the appropriate flow pattern regimes, the governing
correlations, and the hydrodynamic characteristics of slug flow are
essential for successful operation, simulation and optimization of any
industrial applications encountering slug flow (Santos, 2007). According
to the following authors, Computational fluid dynamics (CFD) has been
proven to be a powerful, practical tool for the analysis and simulation of
the hydrodynamic characteristics of slug flow in pipes. The main complex
feature of gas-liquid slug flow is the deformable interface (Zheng and
Che, 2007). The volume-of-fluid (VOF) method originally developed by
Hirt and Nichols (1981) is often used to simulate complex multiphase
gineering, University of Strathclyde, Glasgow, G4 0LZ, Scotland, UK.
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Nomenclature

D Pipe diameter (m)
g Acceleration due to gravity (m s�2)
gr Acceleration due to gravity in radial direction (m s�2)
g*r Dimensionless acceleration due to gravity in radial

direction (�)
gz Acceleration due to gravity in axial direction (m s�2)
g*z Dimensionless acceleration due to gravity in axial direction

(�)
L Pipe length (m)
LTB Length of the Taylor bubble (m)
LW Length of the wake (m)
p Pressure (Pa)
p* Dimensionless pressure (�)
r Radial direction (m)
r* Dimensionless radial direction (�)
r1 and r2 Local principal radii of curvature at the bubble surface as

indicated by Mao and Dukler (1990) (m)
R Pipe radius (m)
RTB Taylor bubble radius (m)
t Time (s)
t* Dimensionless time (�)
u Velocity (m s�1)
U∞ Velocity of a Taylor bubble rising through stagnant liquid

(m s�1)
UL Mean liquid velocity (m s�1)
ULF Velocity in the annular liquid film (m s�1)
UTB Taylor bubble velocity (m s�1)
vr Velocity component in radial direction (m s�1)
v*r Dimensionless velocity component in radial direction (�)
vz Velocity component in axial direction (m s�1)
v*z Dimensionless velocity component in axial direction (�)
vθ Velocity component in tangential direction (m s�1)
VL Relative liquid velocity to the bubble in moving reference

frame (MRF) (m s�1)
VW Volume of the wake (m3)
x or z Axial coordinate in 2D coordinate system (m)
y or r Radial coordinate in 2D coordinate system (m)

z* Dimensionless axial coordinate (�)

Greek letters
μ Dynamic viscosity (Pa s)
ρ Density (kg m�3)
σ Surface tension (N m�1)
σr Surface tension in radial direction (N m�1)
σ*r Dimensionless surface tension in radial direction (�)
σz Surface tension in axial direction (N m�1)
σ*z Dimensionless surface tension in axial direction (�)
σθ Surface tension in tangential direction (N m�1)
σ*θ Dimensionless surface tension in tangential direction (�)
δLF Liquid film thickness (m)
τ Shear stress (Pa)
τW Wall shear stress (Pa)
ν Kinematic viscosity (m2 s�1)
Γρ Density ratio, Γρ ¼ ρL

ρG

Γμ Viscosity ratio, Γμ ¼ μL
μG

Dimensionless groups
Ar Archimedes number, Ar ¼ ρ2LgD

3=μ2L
Eo E€otv€os number, Eo ¼ gρLD2

σ

FrUTB Froude number, FrUTB ¼ UTBffiffiffiffi
gD

p

M Morton number, M ¼ Δρgμ4L
ρ2Lσ

3

Nf Inverse viscosity number, Nf ¼ ρLðgD3Þ0:5=μL
ReUTB or ReU∞ Reynolds number based on the velocity of the Taylor

bubble, ReUTB ¼ ρLUTBD
μL

ReULF Reynolds number based on the velocity of the annular
liquid film, ReULF ¼ ρLULF δLF=μL

ReVL Reynolds number based on the mean velocity of the liquid,
ReVL ¼ ρLVLD=μL

List of acronyms
CFD Computational fluid dynamics
FRF Fixed frame of reference
MRF Moving frame of reference
VOF Volume-of-fluid
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flows including slug flow, and is powerful in tracking the interface be-
tween fluids (Fabre and Lin�e, 1992; Razavi and Namin, 2011; Rahimi
et al., 2013; Desamala et al., 2013; Desamala et al., 2014; Fabre and Lin�e
(1992); Razavi and Namin, 2011; Rahimi et al., 2013; Desamala et al.,
2013; Desamala et al., 2014).

The hydrodynamic characteristics of gas-liquid vertical slug flow
include the final shape of the Taylor bubble, Taylor bubble rises velocity,
liquid film thickness, liquid film velocity, wall shear stress distribution
and wake shape. Despite the conduction of extensive work in the
modelling process of gas-liquid slug flow, a need for correlations based
on experimental data is still required. These correlations include slug
characteristics such as: Taylor bubble velocity, slug frequency, slug
length, slug liquid hold up, and slug unit velocity.

In literature, since the 1940s, a significant amount of research has
been done to understand the complex principles of slug flow. Starting
with Dumitrescu (1943) who investigates the rise of single Taylor bubble
in the stagnant liquid by applying potential flow theory and concludes
that the Taylor bubble rise velocity could be given by:

UTB ¼ 0:351
ffiffiffiffiffiffi
gD

p
(1)

Other analytical and/or experimental approaches are made later to
modify the above correlation as discussed by Kang et al. (2010). A good
118
review on the most commonly used correlations to estimate the Taylor
bubble velocity is given by Morgado et al. (2016).

One of the main complex hydrodynamic features of slug flow is the
wake flow pattern. Campos and De Carvalho (1988) performs an
important photographic study to investigate the wake structure of Taylor
bubbles rising in stagnant liquid using different pipe diameters and liquid
viscosities. They conclude that the inverse viscosity number mainly in-
fluences the wake structure and they categorise the wake flow pattern
into three main groups as follows:

� Type 1: Closed axisymmetric laminar wake for: Nf < 500.
� Type 2: Closed asymmetric transitional wake for: 500 < Nf < 1500.
� Type 3: Opened turbulent wake with the recirculatory flow:
Nf > 1500.

Araújo et al. (2012) discuss the importance of other experimental
studies that investigate the main complex hydrodynamic nature of slug
flow. They reach number of remarkable conclusions that helped in
further understanding of the problem (Polonsky et al., 1999; Van hout
et al., 2002; Clanet et al., 2004; Liberzon et al., 2006; Sousa et al., 2006;
Direito et al., 2017; Polonsky et al., 1999; Van hout et al., 2002; Clanet
et al., 2004; Liberzon et al., 2006; Sousa et al., 2006; Direito et al., 2017).
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Despite the significant effort done in most of the experimental ap-
proaches, the need for computation is essential in understanding the
complex nature of slug flow problem that eliminates the experimental
limitation and the difficulties while providing robust analysis and accu-
rate results. According to the viewed literature, Computational fluid
dynamics (CFD) has been proven to be a powerful, practical tool for the
analysis and simulation of the hydrodynamic characteristics of slug flow
in pipes.

Early attempts to numerical study of slug flow problem are made by
Kawaji et al. (1997) that use the volume-of-fluid (VOF) method to
numerically investigate the hydrodynamic characteristics of a Taylor
bubble rising through the stagnant liquid in a vertical pipe and conclude
that the bubble length does not affect the bubble terminal velocity. Based
on an iterative scheme that solved the velocity and shape of Taylor
bubble in a vertical tube, a different methodology is developed by Clarke
and Issa (1997). They introduce a model that assume homogenous flow
in the liquid slug region and thus account for the dispersed bubble in that
region (Araújo et al., 2012). Against their assumption, the model shows
inadequate results that they suggest that future models should use the
two-fluid model for proper simulation of the dispersed gas bubbles in the
liquid slug region (Ndinisa et al., 2005). Later, Bugg et al. (1998) perform
a detailed study on the motion of Taylor bubbles in vertical pipes and
prove that the VOF method is capable of determining the main hydro-
dynamic features of slug flow including the bubble shape, bubble rising
velocity, liquid film thickness and average velocity in the liquid film. The
results are then compared with experimental data in the literature and
show good agreement. Another different approach, based on developing
a new algorithm for solving the gas-liquid interface equation, is devel-
oped by Issa and Ubbink (1999).

Other significant numerical studies using the VOF method are worth
to mention as those done by Ndinisa et al. (2005); Taha and Cui (2006)
and Zheng and Che (2007). Lately, Lu and Prosperetti (2008) who
numerically study Taylor bubble rising in the stagnant liquid by
neglecting the flow in the gas using front tracking method that deals with
two-phase liquids and evades the uncertain gas-liquid interface recon-
struction in VOF method. They apply a procedure based on B-splines to
build smooth functions best-fitting the field variables (velocities in the
gas phase) over a strip straddling the gas-liquid interface along with its
whole perimeter. This method show powerful tracking of the exact po-
sition and curvature of the interface that help in calculating the surface
tension.

Recently, Kang et al. (2010) use a front tracking methodology to
simulate the dynamics of gas slugs rising through stagnant liquids, where
the finite difference method is used to discretize the governing equations.
The study conclude that the density and viscosity ratios have minimal
effect on the dynamics of Taylor bubbles rising in stagnant liquids, while
both E€otv€os number and Archimedes number have an important impact.
They develop correlations for the dimensionless liquid film thickness and
the dimensionless wall shear stress as a function of only Archimedes
number. They also conclude that wake length and volume dependmainly
on Archimedes number. Later, Araújo et al. (2013b) perform a detailed
study of the dynamics of Taylor bubble rising in stagnant liquid and
include a wide range of E€otv€os andMorton number. They show that Kang
et al. (2010) correlations are inadequate by proving that both dimen-
sionless liquid film thickness and the dimensionless wall shear stress are
function of E€otv€os and Morton numbers. They also show that the wake
structure is greatly influenced by both E€otv€os, and Morton numbers, and
not only Archimedes number as concluded by Kang et al. (2010). They
are also capable of developing correlations for the wake length and
volume that show good agreement with well-known experiment corre-
lations of Campos and De Carvalho (1988).

More recently, Yan and Che (2011) investigate the hydrodynamic
characteristics of single Taylor bubble rising in stagnant liquid with
further consideration of the small dispersed bubbles in the liquid slug
region. Their study account for the effect of small dispersed gas bubbles
in liquid slug region on the flow hydrodynamics features and CO2
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corrosion rate. It is concluded that the small dispersed gas bubbles result
in higher fluctuations in the liquid slug region, which subsequently in-
crease the mass transfer and wall shear stress. Lastly, Araújo et al.
(2013a) investigate the rising of two consecutive Taylor bubbles through
vertical stagnant Newtonian liquids under laminar regime using the
volume-of-fluid (VOF) method. The results account for bubble-bubble
interaction and show the dependency of the wake on the separation
distance between the bubbles. A good review on slug flow is presented by
Morgado et al. (2016) that summarises all of the important correlations
used in defining the problem and show the missing data that need to be
further investigated.

Despite the significant numerical and theoretical data published on
the rise of Taylor bubble through vertical stagnant liquid, to the authors'
knowledge there is not yet a study investigating the problem using order
of magnitude analysis of equations of motions. Hence, the scope of this
study can be divided into two main folds:

1. Performing complete dimensionless analysis of the problem using
both the Buckingham-Pi theorem and a dimensionless treatment
followed by an order of magnitude analysis to the governing equa-
tions of motion in order to show the sole dimensionless parameters:
ReUTB , FrUTB , and Eo numbers and their relative merits or order of
magnitudes. Based on this analysis, the main hydrodynamic features
of rising of individual Taylor bubbles through stagnant Newtonian
liquids are investigated by applying computational fluid dynamics
(CFD) simulation using the volume-of-fluid (VOF) methodology
implemented in the commercial software ANSYS Fluent.

2. Developing a correlation between ReUTB , FrUTB , and Eo numbers based
on the developed numerical results and on the guide lines of the order
of magnitude analysis to predict Taylor bubble rise velocity ðUTBÞ.
This correlation enabled the present study to support other important
theoretical and experimental work available in the literature.

2. Dimensionless equations of motion

The hydrodynamic characteristics of gas-liquid slug flow are gov-
erned by viscous, inertial, gravitational, and interfacial forces. In litera-
ture, the problem is mostly analysed into the dimensionless form using
Buckingham-Pi theorem.

Morgado et al. (2016) neglect the effect of the expansion of gas during
its rise and show that the dimensionless analysis of the problem results in
the following form:

UTB
2ρL

gDΔρ
¼ f

�
Eo ¼ gρLD

2

σ
; M ¼ Δρgμ4L

ρ2Lσ3
; Γμ ¼ μL

μG
; Γρ ¼ ρL

ρG
;

LTB

D

�
(2)

where the LHS of relation (2) represents the ratio between the inertia and
gravitational forces and known by Froude number ðFrUTB Þ. Relation (2)
can be modified by introducing Reynolds number based on bubble ve-
locity ðReUTB Þ which is the ratio between the inertial forces and viscous
forces. E€otv€os number ðEoÞ is the ratio between gravitational forces, and
surface tension forces, and Morton number ðMÞ is known by property
group as it only contains the properties of the fluid (Araújo et al., 2012).

It can be shown in this respect that Morton number ðMÞ does not
represent any peculiar physical quantity as it can be written as:

M ¼
�
FrUTB

ReUTB

�4

Eo3 ¼ Eo3

Nf 4
(3)

where the inverse viscosity number ðNf Þ is defined as:

Nf ¼ ReUTB

FrUTB

¼ ρLðgD3Þ0:5
μL

(4)

In fact, the inverse viscosity number ðNf Þ can be interpreted physi-
cally as the ratio between gravity force and the viscous force. It is worth
noting in this respect that Nf and M cannot generally replace ReUTB to
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judge whether the flow is in its laminar or turbulent regime.
It can be easily shown here that using the Buckingham-Pi theorem can

lead to the same form of the dimensionless groups with Morton number
replaced by Reynolds number that is given by:

FrUTB ¼
UTBffiffiffiffiffiffi
gD

p ¼ f
�
Eo¼gρLD

2

σ
; ReUTB ¼

ρLUTBD
μL

; Γμ¼ μL
μG

; Γρ¼ ρL
ρG

;
LTB

D

�
(5)

The main governing equations of the problem are the continuity and
momentum equations. Dimensionless analysis of these equations fol-
lowed by the order of magnitude analysis in all directions and on the
boundaries is given in details in Appendix 1. The main results are: the

radial velocity component ðv*r Þ should be of order
�

D
LTB

�
in order to keep

the continuity equation intact without any approximation; the pressure

gradient in the radial direction should be of order
�

D
LTB

�2

; for all terms in

the momentum equations and on the boundaries to remain of the same
order of magnitude, FrUTB should be of order (1), ReUTB and Eo both should

be of order
�

LTB
D

�
. Added to this, referring to Appendix 1, it has been

shown that the inverse viscosity number is in fact a modified Reynolds
number provided that the characteristic velocity for stagnant fluid given

by: Vs¼ðgDÞ1=2.
In conclusion, the dimensionless analysis show that any analysis of

the problem should include the dimensionless groups: FrUTB , Eo, and ReUTB

or Nf . In addition, it is worth to mention that there is no need to using a
dimensionless number like Morton number which does not seem to have
a direct physical meaning.

Thus, the problem in the present study is analysed in terms of six main
dimensionless groups, namely: E€otv€os number ðEoÞ, Froude number
ðFrUTB Þ, Reynolds number based on bubble velocity ðReUTB Þ, density ratio
Fig. 1. Schematic representation of the computational domain and the main hydrody
the different flow regions based on the definition of Reynolds number (Mayor et al.
frame system (a) to a moving reference frame system (b).
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ðΓρÞ, viscosity ratio ðΓμÞ and the initial ratio of bubble size to pipe
diameter ðLTB=DÞ. The present study examines the effects of density ratio
(Γρ), viscosity ratio (Γμ) and the initial ratio of bubble size to pipe
diameter ðLTB=DÞ for the sake of supporting other previous experimental
and numerical works in the literature. This is to allow dealing carefully
with the main influencing parameters: E€otv€os number (Eo) and Reynolds
number (ReUTB ).

3. CFD model development

The flow domain is constructed and solved using the volume-of-fluid
(VOF) methodology implemented in the computational fluid dynamics
software package, ANSYS Fluent (Release 15.0). In all simulated cases, a
uniform grid of quadrilateral control elements is applied. Different grids
depending on domain dimensions have been tested to check solution
convergence. The present simulation has been performed for unsteady
flow with constant fluid properties. The two phases are assumed as
incompressible, viscous, immiscible, and not penetrating each other. The
flow regime could be laminar whichmeans the transition or the turbulent
is depending on the value of Reynolds number in different flow regions of
the slug flow domain.

Fig. 1 shows that the flow regions in vertical slug flow that can be
divided into three main regions according to the definition of Reynolds
number, into flow in main liquid region (liquid slug), ReU∞ or ReUTB , flow
in liquid film (annular film), ReULF , and flow near bubble wake, ReVL . The
definition of Reynolds number according to each region is given by:

ReUTB ¼ ρLUTBD=μL (6)

ReULF ¼ ρLULF δLF=μL (7)
namic features of a single Taylor bubble rising through stagnant liquid showing
, 2007), the initial and boundary conditions, the change from a fixed reference
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ReVL ¼ ρLVLD=μL (8)
where: UTB is the velocity of Taylor bubble rising through stagnant
liquid according to the definition of (Nicklin et al., 1962), ULF is the
absolute velocity of the liquid in the stabilized liquid film of thickness δLF ,
and VL is the relative liquid velocity to the bubble in moving reference
frame (MRF).

For the case of Taylor bubble rising in stagnant liquid only two pa-
rameters, namely: ReU∞ , and ReULF , are used to characterize flow type
into: laminar, transient, or turbulent flow regime. Various experimental
work is done to investigate the characteristic Reynolds number for the
onset of transition in the flow regime in each region discussed above. For
instance, to ensure laminar flow regime in the main liquid region,
ReUTB should be less than 2100 as reported by (Fulford, 1964; Fr�echou,
1986; Mayor et al., 2007).

Also, the range of Reynolds numbers for the transitional region in the
liquid film region is ½250 : 400� < ReULF < 800 as indicated by Fulford
(1964). It should be pointed out that the transition criterion from laminar
into turbulent flow is not clear enough and need to be further
Table 1
Simulation cases and their corresponding results.

Input Parameters Predicted Values

Case Number Eo Γρ ¼ ρL
ρG

Γμ ¼ μL
μG

�
LTB
D

�
i

FrUTB ReU

Effect of density ratio (Γρ)
1 66 6Eþ01 6.67Eþ03 3 0.290 24
2 66 9.98Eþ02 6.67Eþ03 3 0.290 24
3 66 2Eþ02 6.67Eþ03 3 0.287 24
Effect of density ratio (Γμ)
4 66 9.98Eþ02 6.67Eþ01 3 0.288 24
5 66 9.98Eþ02 6.67Eþ02 3 0.289 24
6 66 9.98Eþ02 6.67Eþ03 3 0.290 24
Effect of LTB/D
7 66 9.98Eþ02 6.67Eþ03 2 0.2898 24
8 66 9.98Eþ02 6.67Eþ03 3 0.2898 24
9 66 9.98Eþ02 6.67Eþ03 4 0.2898 24
10 66 9.98Eþ02 6.67Eþ03 10 0.2847 23
Effect of Reynolds number (ReUTB )
11 66 9.98Eþ02 6.67Eþ03 3 0.246 12
12 66 9.98Eþ02 6.67Eþ03 3 0.292 29
13 66 9.98Eþ02 6.67Eþ03 3 0.307 46
14 66 9.98Eþ02 6.67Eþ03 3 0.315 63
15 66 9.98Eþ02 6.67Eþ03 3 0.320 80
16 66 9.98Eþ02 6.67Eþ03 3 0.324 97
17 66 9.98Eþ02 6.67Eþ03 3 0.325 11
18 66 9.98Eþ02 6.67Eþ03 3 0.328 13
19 66 9.98Eþ02 6.67Eþ03 3 0.329 14
20 66 9.98Eþ02 6.67Eþ03 3 0.330 16
Effect of E€otv€os number (Eo)
21 6 9.98Eþ02 6.67Eþ03 3 0.031 2.6
22 10 9.98Eþ02 6.67Eþ03 3 0.118 9.9
23 20 9.98Eþ02 6.67Eþ03 3 0.216 18
24 40 9.98Eþ02 6.67Eþ03 3 0.272 22
25 66 9.98Eþ02 6.67Eþ03 3 0.290 24
26 70 9.98Eþ02 6.67Eþ03 3 0.290 24
27 80 9.98Eþ02 6.67Eþ03 3 0.292 24
28 100 9.98Eþ02 6.67Eþ03 3 0.295 24
29 120 9.98Eþ02 6.67Eþ03 3 0.296 24
30 140 9.98Eþ02 6.67Eþ03 3 0.297 25
31 150 9.98Eþ02 6.67Eþ03 3 0.298 25
32 160 9.98Eþ02 6.67Eþ03 3 0.298 25
33 170 9.98Eþ02 6.67Eþ03 3 0.298 25
34 180 9.98Eþ02 6.67Eþ03 3 0.298 25
35 200 9.98Eþ02 6.67Eþ03 3 0.299 25
36 250 9.98Eþ02 6.67Eþ03 3 0.301 25
37 300 9.98Eþ02 6.67Eþ03 3 0.301 25
38 350 9.98Eþ02 6.67Eþ03 3 0.299 25
39 400 9.98Eþ02 6.67Eþ03 3 0.299 25
40 500 9.98Eþ02 6.67Eþ03 3 0.301 25
41 600 9.98Eþ02 6.67Eþ03 3 0.297 24
42 700 9.98Eþ02 6.67Eþ03 3 0.297 24
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investigated. For instance, the wake pattern is identified into laminar or
turbulent flow according to the value of inverse viscosity number ðNf Þ.
Nevertheless, according to the problem definition it should be mainly, in
terms of Reynolds number. However according to data in literature, to
ensure laminar flow regime in the main liquid region for the present
study, ReUTB ought to be less than 200. Regarding the flow in the liquid
film, ReULF never exceeded 30 which ensures that the developed liquid
films are entirely under laminar regime.

In the present model, the fluids share a well-defined interface, and
hence the volume-of-fluid (VOF) method for two-phase flow has been
selected in CFD software ANSYS Fluent (Release 15.0). The VOF model
developed by Hirt and Nichols (1981) is a surface-tracking technique
applied to a fixed Eulerian mesh. This model is designed for two or more
immiscible fluids to track the interface between them. This model solves
a single set of momentum equation that is shared by the two fluids, and
the volume fraction of each of the fluids in each computational cell is
followed throughout the domain. The finite volume method is used to
discretize the governing equations. Details of the governing equations
TB

�
LTB
D

�
p

Flow in liquid film region Flow in wake region

δLF
D

ULFmax
�

τW
ρLgD

�
max

Lw=D Vw=D3

.3 3.1 0.1250 0.1870 0.1074 0 0

.3 3.1 0.1243 0.1086 0.109 0 0

.1 3.1 0.1246 0.1873 0.1084 0 0

.2 3.12 0.1251 0.1848 0.1071 0 0

.3 3.1 0.1244 0.1863 0.1085 0 0

.3 3.1 0.1243 0.1086 0.109 0 0

.3 2.14 0.1246 0.1083 0.1083 0 0

.3 3.1 0.1243 0.1086 0.109 0 0

.3 4.1 0.1244 0.1087 0.1087 0 0

.9 9.9 0.1232 0.1084 0.1084 0 0

3.04 0.138 0.1437 0.1188 0 0
3.09 0.1183 0.1993 0.2350 0 0
3.08 0.1063 0.1041 0.0948 0.3775 0.06779
3.11 0.0982 0.2596 0.0882 0.5717 0.1305
3.1 0.0922 0.2815 0.0831 0.6542 0.1786
3.12 0.0875 0.2995 0.0791 0.7341 0.2212

4 3.14 0.0822 0.3185 0.0788 0.8087 0.2571
1 3.23 0.0799 0.3281 0.0728 0.8824 0.2870
8 3.21 0.0779 0.3413 0.0708 0.9023 0.3048
5 3.27 0.0746 0.3914 0.0689 0.9331 0.32780

3.06 0.0440 0.0540 0.1290 0 0
3.14 0.0765 0.1179 0.1510 0 0

.2 3.1 0.1033 0.1631 0.1360 0 0

.9 3.06 0.1221 0.1797 0.1069 0 0

.3 3.1 0.1243 0.1864 0.1086 0 0

.4 3.1 0.1245 0.1873 0.1087 0 0

.5 3.1 0.1247 0.1884 0.1089 0 0

.8 3.12 0.1251 0.1907 0.1092 0.5511 0.00561

.9 3.12 0.1253 0.1916 0.1093 0.1796 0.01633

.0 3.14 0.1253 0.1921 0.1094 0.2323 0.01947

.0 3.14 0.1254 0.1924 0.1095 0.2227 0.02507

.1 3.14 0.1254 0.1931 0.1097 0.2290 0.02702

.1 3.14 0.1255 0.1930 0.1096 0.2552 0.0246

.1 3.14 0.1251 0.1940 0.1102 0.2556 0.0318

.1 3.16 0.1251 0.1941 0.1101 0.2730 0.03241

.3 2.98 0.1249 0.1951 0.1109 0.3734 0.10823

.3 3 0.1250 0.1955 0.1110 0.4246 0.08719

.1 2.9 0.1247 0.1944 0.1107 0.4875 0.17962

.2 2.89 0.1248 0.1926 0.1096 0.5867 0.13278

.3 3.04 0.1253 0.1918 0.1094 0.5921 0.11758

.9 2.86 0.1248 0.1953 0.1109 0.3346 0.07387

.9 2.88 0.1247 0.1945 0.1107 0.4989 0.09641
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and the treatment of the interface can be obtained from Fluent (2015).
The continuum surface force (CSF) of Brackbill et al. (1992) is used to
account for the surface tension effects.
3.1. Model geometry and boundary conditions

The solution domain is a vertical pipe with diameter ðDÞ and length
ðLÞ with symmetry along the centreline of the pipe. In order to minimise
computational time and effort, all the simulations were performed in
axisymmetric flow situation, assuming symmetry about the centerline of
the pipe. This assumption is adequate and based on the laminar state of
flow. In all simulation cases, the length of domain is eleven times larger
than pipe diameter to avoid disturbance of the continuous phase (liquid
phase) at the entrance and the exit regions, and to ensure that a uniform
velocity profile is restored. Fig. 1 shows a schematic representation of the
computational domain for the present problem. The initial bubble shape
is a cylinder connected to a hemisphere with the same radius giving an
overall bullet shape of Taylor bubble. The length and radius of the Taylor
bubble are given by: LTB, and RTB respectively. The initial ratio of Taylor
bubble length to pipe diameter ðLTB=DÞi is an input parameter prior to
simulation and it is fixed to value of 3 in most of the investigated cases
except cases 7, 9, and 10 in Table 1. This initial shape is simulated until a
steady bubble shape is reached. Different bubble shapes are tested and
final steady shape of bubble is found to be similar but this only affects the
solution convergence.

The simulation is performed by attaching a reference frame to the
rising Taylor bubble. Enabling moving reference frame (MRF) in the
simulation, causes the rising Taylor bubble to be stationary and the pipe
wall moves downwards with a velocity equal to that of the bubble (Mao
and Dukler, 1990). The transformation of the boundary conditions using
MRF is given in Fig. 1. The initial guess of Taylor bubble velocity ðUTBÞ is
estimated according to the general correlation of Wallis (1969), which is
given by:

Fr ¼ UTBffiffiffiffiffiffi
gD

p ¼ 0:345
�
1� e

�0:01Nf
0:345

��
1� e

3:37�Eo
m

�
where:

m ¼
8<:

25; Nf < 18
69N�0:35

f ; 18 < Nf < 250
10 Nf > 250

(9)

Once the Taylor bubble ceases moving up or down in the axial di-
rection, and hence the pseudo-steady solution is reached, the velocity is
then adjusted and set to be the terminal velocity. The initial guess of the
liquid film thickness ðδLF) is estimated using Brown (1965) equation,
which is given by:

δLF ¼
�

3ν
2gðR� δLFÞUTBðR� δLFÞ 2

�1=3
(10)

Referring to Fig. 1, using MRF the inlet flow boundary condition is
applied with liquid entering at average uniform velocity equal to velocity
of Taylor bubble, Uin ¼ UTB, Vin ¼ 0. At the bottom of the domain, the
outflow boundary condition is applied as the liquid phase is the only
phase available. The symmetry boundary condition is applied at the pipe
centreline: ∂U=∂y ¼ 0, Vout ¼ 0. At the wall, the no-slip condition is
applied with wall moving downwards with the following velocities:
Uwall ¼ UTB, Vwall ¼ 0. The gas phase usually has lower density and vis-
cosity than the liquid phase, thus, full slip can be assumed at the gas-
liquid interface. The internal circulatory flow within Taylor bubbles
has almost negligible effect on the outer surrounding liquid leading to
zero interfacial shear stress at the interface. Thus, the pressure variation
within Taylor bubble is small and constant pressure is assumed at the
interior of the Taylor bubble (Akagawa and Sakaguchi, 1966; Morgado
et al., 2016; Akagawa and Sakaguchi, 1966; Mao and Dukler, 1990;
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Zheng et al., 2007; Morgado et al., 2016). Thus, the kinematic condition,
u:n ¼ 0, assuming full slip at the gas-liquid interface is applied. The dy-
namic boundary condition can be divided into two separate boundary
conditions: the tangential stress balance assuming zero interfacial shear
stress along the interface: ðτ:bnÞ:bs ¼ 0, and the normal stress balance: ρiL þ
σK ¼ constant: According to Mao and Dukler (1990), the curvature of the
interface ðKÞ is expressed in terms of radii of the curvature of the bubble
surface, as follows:

K ¼
�
1
r1
þ 1
r2

�
(11)

where: r1 and r2 are the local principal radii of curvature at the bubble
surface as indicated by Mao and Dukler (1990).

3.2. Solution strategy and convergence criterion

A time-dependent simulation is carried out in the present case to
investigate the unsteady behaviour of two-phase slug flow. The simula-
tion is carried out using the explicit VOF model. The PISO pressure-
velocity is selected. The spatial discretization scheme used is as fol-
lows: Green-Gauss Node Based for the gradient, PRESTO for pressure,
Geo-reconstruct for volume fraction, a Quick scheme for momentum, and
first-order implicit for unsteady formulation. The scaled absolute values
of the residual of the calculated values of mass, velocity in x, and y di-
rections are monitored, and convergence criterion of 10�4 is set for each
time step, with a maximum number of iterations of 1000. The variable
time step is applied to the governing equations with global Courant
number fixed to 0.25.

4. Results and discussions

In this section, a mesh dependence study is firstly introduced, which
is then followed by validation study of single Taylor bubble rising
through aqueous glycerol solution and finally the main results. The
present study aims at investigating the main hydrodynamic features of
the rise of single Taylor bubble through stagnant Newtonian fluid
including Taylor bubble shape, Taylor bubble rise velocity ðUTBÞ, liquid
film thickness ðδLFÞ, maximum liquid film velocity ðULFÞ, wall shear stress
ðτW Þ, and wake length ðLwÞ, and wake volume ðVwÞ (as shown in Fig. 1)
with particular focus on the governing dimensionless numbers: E€otv€os
number and Reynolds number. The results are then divided into four
sections: Taylor bubble shape, Taylor bubble rise velocity, flow in the
liquid film region, and flow in the wake region. In addition, correlations
for the terminal velocity of the Taylor bubble, and for the dimensionless
wall shear stress are proposed showing the significance of these main
dimensionless parameters.

Table 1 lists the simulation cases and their corresponding results. The
ranges of Eo, ReUTB , FrUTB , Γρ, Γμ, ðLTB=DÞi are 6–700, 2.6–165,
0.031–0.330, 60–200, 66.7–6674, and 2–10, respectively. The input
parameters prior simulation are: Eo, Γρ, Γμ, ðLTB=DÞi, while the predicted
values from the simulation are: ReUTB , FrUTB , ðLTB=DÞi, ðδLF=DÞ, ULFmax ,�

τW
ρLgD

�
max

, LW=D, and VW=D3. The initial ratio of bubble size to pipe

diameter is given by ðLTB=DÞp.

4.1. Mesh dependence study

A uniform grid of quadrilateral control elements is used in the present
CFD simulation. A mesh dependence test is done to ensure grid inde-
pendence results. Three different grid densities are used to simulate a
selective experimental case of Campos and De Carvalho (1988) with air
and aqueous glycerol solution as working fluids in 19mm inner diameter
vertical pipe. The relevant dimensionless numbers of the selected case
are: Eo¼ 64, ReUTB ¼ 60, FrUTB ¼ 0.3409.

Table 2 shows the mesh characteristics, the relevant selected



Fig. 2. Numerical results of the Streamlines (left) and Velocity fields (right) of a
rising Taylor bubble through stagnant liquid vertical pipe, Eo¼ 186,
ReUTB ¼ 37.083, FrUTB ¼ 0.3355 using moving reference frame (MRF).
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hydrodynamic characteristics to be examined and the corresponding
deviations (Eo ¼ 64, ReUTB ¼ 60, FrUTB ¼ 0.3409). The reference mesh for
the deviation calculation is the denser mesh (104�1120 elements). It can
be assumed that the results are completely independent particularly
when usingmesh 2 andmesh 3. Subsequently, based on the results shown
in Table 1, the current simulations are conducted using either mesh 2 or
mesh 3 depending on pipe geometry.

4.2. Validation of the computational code

In this section, a primary validation of the current numerical code
based on the experimental work of Nogueira et al. (2006a,b) on a single
Taylor bubble rising through stagnant viscous liquid under laminar flow
regime is presented. The experimental condition corresponds to
Eo¼ 186, ReUTB ¼ 37.083, FrUTB ¼ 0.3355. Fig. 2 shows the numerical
results for the flow field including the streamlines and velocity vectors for
the selected experimental case using moving reference frame (MRF).
From this figure, the flow can be divided into three regions: a, b and c
namely: Taylor bubble nose region, falling liquid film region and Taylor
bubble wake region (liquid slug zone). In the Taylor bubble nose region,
the Taylor bubble moves up with velocity ðUTBÞ due to buoyancy,
pushing the liquid sideways where liquid film zone starts to develop. In
the falling liquid film region, the liquid moves downwards with velocity
ðULFÞ, and decreasing liquid film thickness ðδLFÞ. Once a balance between
the gravitational and the friction forces is reached, a constant terminal
liquid film velocity and thickness is developed. In the Taylor bubble wake
region, the falling liquid film starts to plugs into the liquid slug ending
with highly mixing zone in the wake structure of the bubble.

Moreover, Fig. 3 gives further validation to the numerical code by
showing a comparison between the numerical and experimental of
Taylor bubble shape in the nose region, which is an essential feature as
discussed by Araújo et al. (2013b). It can be seen that the simulation
predicts well the experimental data.

In addition, Fig. 4 shows a direct comparison for the resulting nu-
merical velocity field in three different regions: Taylor bubble nose re-
gion, liquid film region, and wake region with the experimental work of
Nogueira et al. (2006a,b) in fixed reference frame (FRF). The axial ve-
locity is plotted in dimensionless form ðu=UTBÞ and ðx=DÞ refers to point
placed in different axial iso-surfaces according to the region examined.
The simulation results showed accepted matching with the experimental
results in the different regions examined. Adding to this, the numerical
axial velocity profile in the liquid film region shows good matching with
both the experimental results and the theoretical velocity profile given by
Brown (1965) (equation (12)).

uz ¼ g
ν

"
R2 � r2

4
� ðR� rÞ2

2
ln

R
r

#
(12)

Furthermore, Table 3 shows the numerical, experimental, and theo-
retical values for some of the main hydrodynamic characteristics of the
experimental validation case and their respective deviations. The value
of FrUTB shows deviation of 7.80% compared to experimental value
measured by Nogueira et al. (2006a). It also shows good agreement when
compared with experimental and theoretical correlations of Wallis
(1969) (equation (9)), and Viana et al. (2003) whose theoretical corre-
lation is given by:
Table 2
Mesh dependence test results, Eo¼ 64, ReUTB ¼ 60, FrUTB ¼ 0.3409.

Mesh UTB (m/s) Error UTB (%) δLF (m) Error δLF (%) τW (Pa)

26*280 0.1431 5.03 0.001972 1.72 20.74
52*560 0.1373 1.02 0.001947 0.46 20.58
104*1120 0.1359 – 0.001938 – 20.52

123
0:34
.�

1þ 3805
Eo30:6

�0:58
Fr ¼ 0BBBB@1þ
��

RG
31:08

��
1þ 778:76

Eo1:96

��0:49��1:45

�
1þ7:22*1013

Eo9:93

�0:094
1CCCCA

0:74

�
1þ7:22*1013

Eo9:93

��0:094

(13)

where RG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3gðρL � ρGÞρL

p
=μL.

For the flow in liquid film region, three important parameters are
discussed: liquid film thickness ðδLFÞ, wall shear stress ðτW Þ, and
maximum liquid film velocity ðULFÞ. Firstly, the values of δLF , and τW
shows good matching with both the experimental data of Nogueira et al.
(2006a) and the theoretical predictions of Brown (1965). Brown (1965)
equation for δLF prediction is given by equation (10), while the prediction
Error τW (%) Lw=D Error Lw=D (%) Vw=D3 Error Vw=D3 (%)

1.06 0.5080 8.35 0.781 �5.38
0.29 0.480 3.04 0.805 �2.24
– 0.4654 – 0.823 –



Fig. 3. The experimental and numerical shape of Taylor bubble in nose region - x is the axial distance from bubble nose.
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for τW is given by:

τW ¼ ρLg

"
R
2
� ðR� δLFÞ2

2R

#
(14)

Secondly, the value of the third parameter ðULFÞ is as well close to
experimental value. Furthermore, for the flow in the wake region, two
main parameters namely: Lw=D, and Vw=D3 are used to characterize the
wake structure. The deviation with experimental values is quite large
between 42% and 48% which is clarified by Araújo et al. (2013b) by the
fact that the experimental technique did not account for the wake in the
concave bottom at the rear of Taylor bubble. However, smaller deviations
are established when comparing with the experimental correlations
developed by Campos and De Carvalho (1988), which is given by:

Lw

D
¼ 0:30þ 1:22� 10�3Nf for 100 < Nf < 500

Vw

D3 ¼ 7:5� 10�4Nf for 100 < Nf < 500
(15)

The present study investigates the effects of density ratio (Γρ), vis-
cosity ratio (Γμ), and the bubble size to the pipe diameter (LTB=D) on the
hydrodynamic characteristics of the rise of single Taylor bubble in
stagnant liquid t support previous numerical work and experimental
work in literature. Cases 1 to 3 in Table 1 clearly emphasises that the
density ratio has almost no effect on the dynamics of Taylor bubbles. The
density ratio has minimal effect on liquid film thickness, maximum the
velocity of liquid film, maximumwall shear stress, wake length and wake
volume. The simulation results as well agree with the numerical result of
Kang et al. (2010). For the viscosity ratio effect, three cases denoted by
cases 3, 4, and 5 are simulated with viscosity ratios of 66.7, 667, and
6674, respectively. Referring to Table 1, it is also concluded that the
viscosity ratio ðΓμÞ has minimal effect on the dynamics of Taylor bubbles
including as well the liquid film thickness, maximum velocity of liquid
film, maximum wall shear stress, wake length and wake volume. In
conclusion, the simulated cases 1 to 6 have almost the same values of
ReUTB , and Eo, which is 24.34, and 66, respectively. Thus, the simulation
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results further assist the conclusion made by Lu and Prosperetti (2008)
and Kang et al. (2010) that the both density ratio ðΓρÞ, and viscosity ratio
ðΓμÞ have a negligible effect on the dynamics of Taylor bubbles. Lastly, to
explore the effect of LTB=D, four cases are simulated denoted by cases 7 to
10 in Table 1 corresponding to LTB=D of 2, 3, 4, and 10, respectively. It
can be also concluded that LTB=D as well has minimal effect on the dy-
namics of Taylor bubbles. Table 1 shows that these four cases has almost
the same value of FrUTB which agrees well with the conclusion of Kawaji
et al. (1997) that the bubble length has no effect on the bubble terminal
speed and subsequently no effect on Froude number ðFrUTB Þ.

Further conclusion indicates that the validation results, in addition to
the validation given by Massoud et al. (2016), where four cases based on
the experimental work of Campos and De Carvalho (1988) are simulated
and show good agreement when compared with both experimental and
numerical data, illustrate that the numerical code is capable of simulation
of Taylor bubble rising through stagnant liquid with high satisfaction
degree of results. The problem can now be treated in terms of three main
dimensionless groups, given by:

FrUTB ¼ UTBffiffiffiffiffiffi
gD

p ¼ f
�
Eo ¼ gρLD

2

σ
; ReUTB ¼ ρLUTBD

μL

�
(16)

In the following section, the effect of these core dimensionless groups
that govern the present problem with the guidelines of the order of
magnitude analysis are examined on the developed Taylor bubble shape,
Taylor bubble rises velocity, flow in the liquid film and flow into the
wake region.

4.3. Taylor bubble shape

In this section, the effect of the main dimensionless groups that
govern the present problem given by relation (16) is discussed. This in-
cludes representing the final shape of the developed Taylor bubble, the
flow field around it (streamlines), and the Taylor bubble shape profile for
each of the dimensionless groups examined.



Fig. 4. Numerical, experimental, and theoretical dimensionless axial velocity profile for three different regions: Taylor bubble nose region, liquid film region, and
wake region in a fixed reference frame. Eo¼ 186, ReUTB ¼ 37.083, FrUTB ¼ 0.3355.
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Table 3
Numerical, experimental, and theoretical values for some of the main hydrodynamic characteristics of experimental case based on work of Nogueira et al. (2006a,b)
with Eo¼ 186, ReUTB ¼ 37.083, FrUTB ¼ 0.3355, and their respective deviations.

Simulation Experimental Theoretical

1. Taylor bubble rise velocity-Froude number
FrUTB ð�Þ 0.3094 0.3355a 0.3055b 0.3309c

Error (%) 7.80 �1.26 6.50
2. Flow in the liquid film region
δLF ðmÞ 0.0037 0.00384a 0.00382a

Error (%) 2.73 2.37
τW ðPaÞ 39.83 39.6a 40.75d

Error (%) �0.59 2.22
ULF ðm=sÞ 0.279 0.253a –

Error (%) �10.02 –

3. Flow in the wake region
Lw=D ð�Þ 0.371 0.19a 0.4347e –

Error (%) 48.78 �17.19 –

Vw=D3 ð�Þ 0.069 0.04a 0.0828e –

Error (%) 42.67 �18.49 –

a Nogueira et al. (2006a,b).
b Viana et al. (2003).
c Wallis (1969).
d Brown (1965).
e Campos and De Carvalho (1988).
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4.3.1. Effect of Reynolds number
In literature, most of the studies done on dynamics of Taylor bubble

rising through stagnant liquid highlight the major effect of inverse vis-
cosity number or Archimedes number without considering the significant
effect of Reynolds number. In this section ten cases namely: cases 11 to
20 in Table 1 are simulated to investigate the significant effect of ReUTB on
the dynamics of Taylor bubble. Fig. 5 demonstrates the effect of ReUTB

number on the final shape of the developed Taylor bubble and the flow
field for cases 11, 13, 15, and 18 with ReUTB values corresponding to 12,
46, 80, and 131, respectively. It can be shown that ReUTB has prodigious
Fig. 5. Effect of ReUTB on the terminal shape of Taylor bubble, and streamlines
representing the flow field. (a) Case (11) ReUTB ¼ 12, (b) Case (13) ReUTB ¼ 46,
(c) Case (15) ReUTB ¼ 80, and (d) Case (18) ReUTB ¼ 131.
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effect on the final shape of bubble, as indicated in Fig. 5. Particularly, for
low values of ReUTB , the viscous forces of liquid phase surrounding the
bubbles are high enough to encumber the rise of the Taylor bubble, and
hence the terminal bubble velocity will be at its lowest values (lowest
FrUTB ), as indicated in Table 1. The increase in ReUTB increases the velocity
of Taylor bubble. It can be concluded from Table 1 that for ReUTB values
approximately above 80, FrUTB is almost the same which is in agreement
with the experimental conclusions of Wallis (1969). It can also be
concluded from Fig. 5, that the high viscous forces enhance the elonga-
tion of the terminal developed Taylor bubble. The gradual increase in
ReUTB increases the concavity of the rear of Taylor bubble which is in good
agreement with the experimental observation of Goldsmith and Mason
(1962) that the rear of Taylor bubbles is characterized by being flat or
concave when the flow is not viscosity dominated, and oblate spheroid
when it is viscosity dominated. The shape of the rear of Taylor bubble
and its transition critical criteria is discussed in details in section 4.6.

It is also concluded from Fig. 5, that ReUTB has significant effect on
wake development. For low values of ReUTB , the liquid from the liquid
film region expands directly and smoothly over the Taylor bubble bottom
which is noticed by parallel streamlines in the wake region. Increasing
the values of ReUTB , the Taylor bubble becomes wider in size squeezing
the liquid film region that subsequently increases the velocity of the
trailing liquid plugging in to the Taylor bubble bottom. This leads to the
development of circulatory rear of vortices as liquid plugs into the Taylor
bubble bottom. The scale and intensity of the vortex increases with
higher values of ReUTB . In addition, Fig. 6 shows the effect of ReUTB on the
bubble shape profile where it is clearly seen that the increase in ReUTB

causes the bubble nose to becomes less slender, and reduces the thickness
of the developed liquid film.

4.3.2. Effect of E€otv€os number
E€otv€os number ðEoÞ represents the effect of buoyancy and surface

tension forces which are two of the significant forces acting on Taylor
bubbles. In order to investigate the effect of Eo number on the dynamics
of Taylors bubble rising through stagnant liquids, 21 cases namely case
21 to case 42 in Table 1 are simulated. This covers wide range of Eo
varying from 6 to 700.

Fig. 7 shows the effect of Eo on the final shape of the developed Taylor
bubble and the flow field for cases 22, 25, 28 and 32 with Eo values
corresponding to 10, 66, 100 and 160, respectively. At low values of Eo,
the surface tension forces are high enough to maintain any distortion at
the gas-liquid interface. The bubble is noticed to have prolate spheroidal



Fig. 6. Effect of ReUTBon bubble shape profile - x is the axial distance from bubble nose.

Fig. 7. Effect of Eo on the terminal shape of Taylor bubble, and streamlines
representing the flow field. (a) Case (22) Eo¼ 10, (b) Case (25) Eo¼ 66, (c) Case
(28) Eo¼ 100, and (d) Case (32) Eo¼ 160.
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nose and oblate spheroid bottom. The increment in the surface tension
increases the curvature of the bubble nose, and subsequently increases
the liquid film thickness. Hence, the velocity of fully developed falling
liquid film decreases.

Regarding the rear of the bubble, the increase in Eo leads to increase
in inertial forces which is seen as values of FrUTB increases. The increase in
Eo also significantly affects the rear of bubble by gradually turning the
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bottom shape from convex or flat into concave structure, as indicated in
Fig. 7. This causes wakes to be developed at the rear of the bubble, and
hence wake length and volume increases with the increase in Eo values,
as indicated in Table 1. This has similar trend as that shown in Fig. 5
exploring the effect of ReUTB . At certain critical value of Eo, the further
increase in Eo with its corresponding deficiency of surface tension results
in deformation at gas-liquid interface. The shape of the bubble's rear
turns from concave into wave and subsequently into breaking up. The
breaking up concept is characterized by very unstable phenomena that
occurs at the rear of the bubble and is noticed by the small bubbles
shedding off from Taylor bubble into the wake region. Higher values of
Eo, cause the gas-liquid interface to lose its structure and strong breaking
up concept is noticed (Morgado et al., 2016). A phase diagram map is
discussed later in section 4.6 that describes the interesting phenomena
that occur at the rear of Taylor bubbles which is strongly affected by
surface tension, and inertia forces.

Furthermore, Fig. 8 shows the effect of Eo on the bubble shape profile
for different selected cases from Table 1. The increase in Eo increases the
bluntness of the nose of the bubble, decreases the flatness of the bubble
tail, and increment the liquid film thickness. This conclusion refutes that
of Kang et al. (2010) that Eo has no effect on the dynamics at bubble nose,
and liquid film thickness, but agrees with the conclusion of Taha and Cui
(2006) and Zheng et al. (2007) which entails that Eo increases the degree
of prolateness of the Taylor bubble nose.

In conclusion, Eo, and ReUTB significantly control the developed shape
of Taylor bubble. The results shows that the surface tension forces are
significant with low values of Eo, while the large contribution of ReUTB on
dynamics of Taylor bubble is noticed with higher values of ReUTB . These
conclusions agree well with the results of order of magnitude analysis
discussed earlier in section 2. In the following section, the role of these
dimensionless groups on the Taylor bubble rise velocity is introduced.
4.4. Taylor bubble rise velocity

The Taylor bubble rise velocity ðUTBÞ is one of the main hydrody-
namic features used for the description of two phase slug flow. In this
section, a detailed discussion on Taylor bubble terminal velocity is



Fig. 8. Effect of Eo on bubble shape profile - x is the axial distance from bubble nose.
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introduced. Based on the discussion given in section 2, it can be
concluded that the terminal bubble velocity ðUTBÞ is mainly governed by
viscosity, surface tension, buoyancy and inertia forces. In literature,
various studies either theoretical and/or experimental are done to ac-
count for the terminal bubble velocity. A good review for the main cor-
relations for FrUTB , to account for bubble terminal velocity, starting from
the theoretical investigation of Dumitrescu (1943) and ending with the
resent study of Kurimoto et al. (2013) and is given by Morgado et al.
(2016).

Based on relation (16), and on the cases simulated in Table 1, a
proposed correlation to estimate FrUTB that depends mainly on Eo and
ReUTB is developed, given by:
Fig. 9. Numerical results of UTB expressed in terms of FrUTB for a several Eo with corre
different correlations from literature for comparison. ReUTB varies from 2.6 to 25.3.
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Fr ¼ UTBffiffiffiffiffiffi
gD

p

¼ 0:0359� 0:3596Eo� 0:7067ReUTB þ 0:5801Eo2 � 1:014EoReUTB

þ 0:3447Eo3 þ 1:594Eo2ReUTB � 0:1931Eo4 þ 0:9647Eo3ReUTB

� 0:001814Eo5 � 0:5481Eo4ReUTB (17)

Additionally, Fig. 9 shows that the values obtained from the proposed
correlation fit quite well with the behaviour of other well-known corre-
lations from literature for different domains. Values predicted from Viana
et al. (2003) correlations, and values from the recent correlation of
Kurimoto et al. (2013) are added to Fig. 9 for comparison purposes. It can
be seen that the proposed correlation agrees well with a wide range of
correlations with a maximum deviation of �10%. In general, there is a
proper matching between the data, especially in surface tension domi-
nant domain. However, in inertia dominant domains with high values of
sponding values obtained from proposed correlation given in equation (17), and
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Eo, the proposed correlation predicts the correlation of Viana et al.
(2003). The only explanation is most probable to be a numerical problem
for situations of high inertial forces as pointed out by Araújo et al. (2012).
In brief, the proposed correlation shows an accepted behaviour with
other correlations with maximum deviation �10%.
4.5. Flow in liquid film

The flow in the liquid film is investigated by characteristics associated
with three key features: the dimensionless developed liquid film thick-
ness ðδLF=DÞ, the dimensionless velocity of the liquid film ðULF=UTBÞ and
the dimensionless wall shear stress

�
τW
ρLgD

�
max

. This section will discuss

the effect of the main dimensionless parameters, given in section 2, on
these three key features characterizing the flow in the liquid film.

4.5.1. Liquid film velocity and thickness
Fig. 10 represents the effect of ReUTB on the dimensionless normalized

thicknesses and velocity of falling liquid film along the Taylor bubble
length. At low values of ReUTB , the liquid film thickness ðδLF=DÞ decreases
with the increase in the dimensionless distance measure from bubble
nose ðx=DÞ until it reaches a constant thickness at around x=D¼ 1. At that
point, a balance between the gravitational and friction forces is reached,
and hence a constant liquid film thickness and velocity is established.
However, the dimensionless velocity of the liquid film ðULF=UTBÞ changes
contrarily. The increase in ReUTB diminishes the long slender shape of
Taylor bubble and turns it into shorter and flatter bubbles which in turns
reduces ðδLF=DÞ (Kang et al., 2010). In addition, the higher viscosity of
the surrounding liquid at low values of ReUTB increment the shear stress in
the liquid, thus, the momentum diffusion opposes the liquid flowing from
the liquid film into the bubble wake region (Zheng et al., 2007). There-
fore, the increase in ReUTB increases the dimensionless velocity of the
liquid film ðULF=UTBÞ:

Finally, the effect of Eo on the dimensionless normalized thicknesses
and velocity of falling liquid film along the Taylor bubble length is given
in Fig. 11. As discussed earlier, the increase Eo affects the curvature of the
bubble nose, thus increases ðδLF=DÞ, increases stabilization length (dis-
tance needed for formation of fully developed falling liquid film), and
finally increases ULF . However, the dimensionless velocity of the liquid
Fig. 10. The effect of ReUTB on the dimensionless normalized thicknesses ðδLF=DÞ and
length - x is axial distance from bubble nose.
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film ðULF=UTBÞ decreases with the increment in Eo due to the fact that the
inertia forces are increased leading to increment in UTB values. It is
concluded from Fig. 11 that ðδLF=DÞ and ðULF=UTBÞ are affected with the
increase in Eo till Eo � 66, where further increase in Eo shows almost no
effect on the flow in the liquid film.

In conclusion, it should be pointed out that both of ðδLF=DÞ, and
ðULF=UTBÞ are strongly dependent on Eo, and ReUTB . This conclusion
contradicts those made by: Kang et al. (2010): the liquid film thickness is

only dependent on Archimedes number
�
Ar ¼ N2

f

�
), and that of Araújo

et al. (2012): the liquid film thickness is function of Nf , and M.

4.5.2. Wall shear stress distribution
If the two-phase slug flow problem is involved in heat or mass

transfer, then the wall shear stress becomes a primary significant hy-
drodynamic parameter. This process is often referred to as slug flow-
induced corrosion (Zheng and Che, 2006; Zheng and Che, 2007; Zheng
et al., 2007; Araújo et al., 2012). The main problems result from slug flow
corrosion are: pipeline damage, decrease pipe lifetime and may lead to
the shutdown of the pipeline.

Fig. 12 shows the wall shear stress distribution along the Taylor
bubble length for different ReUTB . For low values of ReUTB , the wall shear
stress distribution starts with an increase in the wall shear stress near the
bubble nose then it reaches a maximum positive value with the formation
of a constant liquid film characteristics (thickness and velocity). The wall
shear stress then starts to decrease till it reaches zero value in the bubble
tail or wake region.

The increase in ReUTB , results in less the viscous liquid surrounding the
Taylor bubble, that subscribes to decrement in wall shear stress. This
conclusion agrees well with that made by Taha and Cui (2006). On the
one hand, the dimensionless wall shear stress in the nose region is not
affected by the increase in ReUTB , on the other hand, the plateau behav-
iour at the developed liquid film is shortened with the increase in ReUTB .
This occurs as a result of the shape in Taylor bubble shape which is
characterized by being a long slender that turns into shorter and flatter
bubbles with the increase in ReUTB . Additionally, it should be pointed out
that the effect of increase in ReUTB on the bubble wake region is seen as
jump in dimensionless wall shear values that increases with higher values
of ReUTB ; this further assists the conclusion made by Kang et al. (2010). A
further validation for the flow in liquid film region is given in Fig. 13,
dimensionless velocity of falling liquid film ðULF=UTBÞ along the Taylor bubble



Fig. 11. The effect of Eo on the dimensionless normalized thicknesses ðδLF=DÞ and dimensionless velocity of falling liquid film ðULF=UTBÞ along the Taylor bubble
length - x is axial distance from bubble nose.

Fig. 12. Effect of ReUTB on the wall shear stress distribution
�
τW =ρLgD

�
max

along Taylor bubble length - x is axial distance from bubble nose.
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where a comparison takes place between the numerical results for
dimensionless wall shear stress, and δLF=D, and the theoretical values by
Brown (1965). It is clear that the numerical results strongly correspond
with the theoretical data.

Finally, the effect of Eo on the distribution of the dimensionless wall
shear stress along the Taylor bubble is given in Fig. 14. Generally, for
most values of Eo, the distribution is almost the same, which starts with
increase in wall shear stress near the bubble nose, then a constant value is
reached at the developed liquid film, followed by reduction in dimen-
sionless wall shear stress near the bubble tail. As indicated in Fig. 14,
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lower values of Eo possess different distribution with noticeable peak
value in dimensionless shear stress right before the Taylor bubble rear.
This is due to the sharp flat and convex shape of the bubble attained at
lower values of Eo as discussed in section 4.3.2 which coincides with
Araújo et al. (2012).

In conclusion, the numerical results show that the dimensionless wall
shear stress is dependent on both Eo, and ReUTB which again contradicts
the conclusion made by Kang et al. (2010) that the wall shear stress is
only function of Ar, and supports Araújo et al. (2012) conclusion in
different scenario. Subsequently, a correlation based on the numerical



Fig. 13. Variation of the dimensionless normalized thickness ðδLF=DÞ and dimensionless maximum wall shear stress
�
τW =ρLgD

�
max

distribution along Taylor bubble
length with ReUTB plotted with the theoretical prediction of Brown (1965) (equation (10), and equation (14)).

Fig. 14. Effect of Eo on the wall shear stress distribution along Taylor bubble length - x is axial distance from bubble nose, ReUTB varies from 2.6 to 25.
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results for all simulated cases in Table 1 for dimensionless maximumwall
shear stress is suggested, given by:�

τW
ρLgD

�
max

¼ 0:242þ 0:238Eoþ 0:5544ReUTB � 0:1196Eo2 þ 1:037EoReUTB

þ 0:5294Re2UTB
� 2:818e�05Eo3 � 0:3202Eo2ReUTB

þ 1:083EoRe2UTB
� 0:0008579Re3UTB

(18)
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Fig. 15 illustrates the present numerical results, and values obtained
from proposed correlation given in equation (18) for the maximum
dimensionless wall shear stress along the Taylor bubble length for
different values of Eo (cases 21 to 42 in Table 1). It is obvious that the
correlation matches the simulation data to a considerable extent. For
comparison issues, the theoretical prediction given by Brown (1965)
(equation (14)), and predictions using Kang et al. (2010) correlation
(equation (19)) are added to Fig. 15.



Fig. 15. Numerical results of
�
τW =ρLgD

�
max

for a several Eo with corresponding values obtained from proposed correlation given in equation (18), theoretical

prediction given by Brown (1965) (equation (14)), and predictions using Kang et al. (2010) correlation (equation (19)), for cases 21 to 42 in Table 1.
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τW
ρ gD

¼ �0:02log10Ar þ 0:2 (19)

�

L

�
max

It can be seen from Fig. 15, that the suggested correlation matches
well with the theoretical predictions calculated by Brown (1965) with
very small deviations. However, there is an exception for that proper
matching for small values of Eo. Generally, these cases with low values of
Eo (especially around 6) possess low values of UTB with almost
non-moving bubbles. These cases are more sensitive to numerical errors
as clarified by (Zheng et al., 2007; Araújo et al., 2012).

It should be pointed out that ReUTB is not constant for these selected
cases, and its values are indicated in Table 1. Similarly, as discussed
before for the liquid film thickness, the dimensionless wall shear stress is
function of bothEo, and ReUTB , and not only function of Ar as concluded
by Kang et al. (2010). This conclusion completely agrees with Araújo
et al. (2012) that dimensionless wall shear stress depends on Eo, and M,
but with different scenario as discussed in section 2.

In conclusion, the flow in the liquid film is considerably affected by
Eo, and ReUTB . It should be pointed out that both Eo, and ReUTB signifi-
cantly control the wall shear stress distribution which in turns control the
corrosion process related to two-phase flow which is known as slug flow
induced corrosion. In the next section, the contribution of these dimen-
sionless groups on the flow in the wake region is discussed.
4.6. Flow in wake region

The wake structure is one of the vital hydrodynamic characteristics of
slug flow systems, especially in describing the interaction and co-
alescences between successive Taylor bubbles and in modelling process
(Araújo et al., 2012). Understanding the mechanism by which the wake
region is developed is essential prior to introducing the simulation results
for flow in wake region. The annular falling film from the liquid film
region plugs into the rear of the Taylor bubble and creates mixing and
recirculation zone which is known by bubble wake. The intensity and size
of the recirculation vortices in the wake region depend on the properties
of the surrounding liquid, especially its viscosity as indicated by the
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experimental work of Campos and De Carvalho (1988). As discussed
previously in section 1, Campos and De Carvalho (1988) conclude three
flow patterns for the wake depending on the inverse viscosity number,
Nf . In the present study, most of the cases bump into closed axisymmetric
laminar wake.

Stimulated by the work of Morgado et al. (2016), and based on the
simulated cases given in Table 1, phase diagram of the presence and nature
of wake, and of the shape of the rear Taylor bubble are presented in
Fig. 16, and Fig. 17, respectively. The diagrams are given in terms of Eo,
and ReUTB , based on the problem formulation given in section 2.
Throughout the present study, only two kinds of wake are observed: either
closed axisymmetric wake or no wake. For the shape of rear of Taylor
bubble, as discussed earlier in section 4.3.2, when the surface tension is
significantly reduced, the gas-liquid interface is easily deformed and the
shape of Taylor bubble rear becomes unstable. Stable bubble shape is
classified in to concave, convex, or flat bubbles. However, unstable bubble
wakes are either wavy or breaking up bubbles. Fig. 17 showed the type of
bubble rear shape for all data simulated which strongly corresponds with
Kang et al. (2010) and Morgado et al. (2016) which conclude that the
sudden elongation in the bubble tail, based on investigating the effect of Eo
on the dynamics of Taylor bubbles, is around unity which corresponds to
Eo > 250 . Referring to cases 21 to 42 in Table 1, it is observed that the
gas-liquid interface starts to become unstable approximately at Eo > 200.
Numerical solutions with either wavy or breaking up bubble wakes and
cases with small bubble detachment required extremely refined meshes to
be accurate. Fig. 18 illustrates an example for this unstable nature of
gas-liquid interface for case 36 in Table 1.

The wake region is investigated by two main parameters, namely
dimensionless wake length ðLW=DÞ, and dimensionless wake volume
ðVw=D3Þ. One of the main correlations used to predict these parameter is
that of Campos and De Carvalho (1988) which is given by equation (15).
Recently, Araújo et al. (2012) suggested equation for the dimensionless
wake length, LW=D, and dimensionless wake volume ðVw=D3Þ function in
Eo, and M, given by:



Fig. 16. Phase diagram of the presence and kind of wake of Taylor bubbles rising through vertical columns of stagnant liquid.

Fig. 17. Phase diagram of the rear of Taylor bubble shape, expressed in terms of Eo, and ReUTB , of a Taylor bubbles rising through vertical columns of stagnant liquid.
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(20)

Following the same procedure of Araújo et al. (2012) for measuring
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LW=D, and VW=D3, Table 1 gives the simulation results for these two
parameters for all cases under investigation.

As discussed earlier, the effect of ReUTB on the flow in the wake region
is noticed by the change in the shape of rear of the Taylor bubble from flat
into convex. In addition, the increase in ReUTB decreases the liquid film
thickness thus squeezing liquid in narrower region. As a result, the in-
tensity and size of the wake increases, which is noticed by the increment



Fig. 18. Development of wake flow pattern of Taylor bubble rising vertical
columns of stagnant liquid for case (36) with a time interval of 0.5s: Eo ¼ 250,
ReUTB ¼ 25:26, and FrUTB ¼ 0:3.

Table 4
Numerical and experimental values of LW=D, and VW=D3, and their respective
deviations.

1. Experimental dataa

Lw
D (-) Error (%) Vw

D3 (-) Error (%)

Case 1 0.5145 – 0.1319 –
Case 2 0.544 – 0.147 –
2. Current simulation

Lw
D (-) Error (%) Vw

D3 (-) Error (%)

Case 1 0.487 5.34 0.1094 17.06
Case 2 0.5567 -2.33 0.1394 5.17
3. Experimental correlationa

Lw
D (-) Error (%) Vw

D3 (-) Error (%)

Case 1 0.5145 – 0.0973 26.23
Case 2 0.5498 -1.07 0.1227 16.53
4. Numerical correlationb

Lw
D (-) Error (%) Vw

D3 (-) Error (%)

Case 1 0.40616 21.06 0.0817 38.06
Case 2 0.4754 12.61 0.1051 28.50

a Campos and De Carvalho (1988).
b Araújo et al. (2012).
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of LW=D and VW=D3 as indicated in Fig. 19. Furthermore, A similar sce-
nario is noticed for the increase in Eo, for cases 21 to 42 in Table 1, that
results in increase in LW=D, and VW=D3 values. It should be pointed out
that for cases 36 to 42 in Table 1, LW=D and VW=D3 are calculated as
average values once the solution is converged and most of the hydro-
dynamics characteristics investigated are developed. This is because the
Fig. 19. Numerical results of dimensionless wake length ðLW=DÞ, and d
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developed bubble shape is unstable which is either wavy or breaking up.
A good matching between simulation results for LW=D, and VW=D3, and
the experimental correlation given by Campos and De Carvalho (1988) is
shown in Fig. 19.

Also, Table 4 gives a comparison of the simulation results, experi-
mental data, and correlations from literature for LW=D, and VW=D3 for
validation of the present code regarding flow in wake region. Two
simulation cases based on the experimental work of Campos and De
Carvalho (1988) with Eo in range of 64, and ReUTB in range of 56–107, are
simulated. It can be concluded from Table 4, that numerical results show
good matching with other correlations in literature, experimental cor-
relation of Campos and De Carvalho (1988) and numerical correlation of
Araújo et al. (2012).

In conclusion, the flow in the wake region is significantly affected by
both Eo, and ReUTB which can be clarified by the change in corresponding
imensionless wake volume
�
VW=D3

�
for cases 13 to 19 in Table 1.
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dimensionless wake length and volume. Additionally, the results
revealed that both LW=D and VW=D3 are mainly dependent on Eo, and
ReUTB , which again agrees with the predictions of Kang et al. (2010), and
contradicts Araújo et al. (2012) conclusion with different point of view
based on the significance of Reynolds number ðReUTB Þ rather than Morton
number ðMÞ.

5. Conclusions

In this paper, a complete dimensionless analysis of single Taylor
bubble rising through a vertical stagnant Newtonian liquid problem is
performed followed by the order of magnitude analysis of the equations
of motion. The main conclusion is that Froude number ðFrUTB Þ, is function
of E€otv€os number ðEoÞ, Reynolds number ðReUTB Þ, density ratio ðΓρÞ,
viscosity ratio ðΓμÞ and LTB=D. The effect of density ratio (Γρ), viscosity
ratio (Γμ) and the bubble size to the pipe diameter (LTB=D) are examined
for the sake of supporting other previous experimental and numerical
works in the literature.

Based on the dimensionless analysis, the hydrodynamic characteris-
tics of single Taylor bubble rising through vertical stagnant Newtonian
liquid is investigated using the volume-of-fluid (VOF) methodology
implemented in the computational fluid dynamics software package,
ANSYS Fluent (Release 15.0), with particular focus on the sole dimen-
sionless parameters: Froude number ðFrUTB Þ, Reynolds number ðReUTB Þ
and E€otv€os number ðEoÞ. The results are divided into four sections: Taylor
bubble shape, Taylor bubble rise velocity, flow in the liquid film region
and flow in the wake region. The numerical results predicted the problem
effectively as they were validated by testing some of the selective cases
against both theoretical and experimental data in the literature.

Based on the numerical results and using guidelines from order of
magnitude analysis, correlation to estimate Taylor bubble rise velocity
ðUTBÞ as a function in only Eo, and ReUTB is proposed and shows good
prediction when compared with other well-known correlations in liter-
ature, especially with Viana et al. (2003) correlation.

Detailed hydrodynamics

Eo showed significant effect on all hydrodynamic features of Taylor
bubbles. The increment in surface tension increases the curvature of the
bubble nose, increases the liquid film thickness, decreases the dimen-
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sionless velocity of fully developed falling liquid film, and finally in-
creases wake intensity and size. For the flow in the liquid film, the
numerical results are compared with the theoretical predictions given by
Brown (1965) and establishing a strong correspondence.

ReUTB shows contribution similar to Eo number. The developed Taylor
bubble shape changes from long slender shape into shorter and flatter
bubbles with the increase in ReUTB ; this results in reduction in liquid film
thickness.

Additionally, the wall shear stress was examined under the effect of
both Eo and ReUTB . The increase in ReUTB results in less viscous effect in the
liquid surrounding the Taylor bubble that subscribes to decrement in wall
shear stress. The wall shear stress increases with Eo, however it should be
pointed out that lower values of Eo possesses different distribution for the
wall shear stress with noticeable peak value right before the Taylor
bubble rear due to the sharp flat and convex shape of the bubble attained
at lower values of Eo. Based on the numerical results for wall shear stress,
a proposed correlation for maximum wall shear stress is developed and
predicts results favourably matching with the theoretical predictions of
Brown (1965).

Furthermore, for the wake region, a phase diagram showing the
presence and nature of wake, and of the shape of the rear Taylor bubble is
illustrated. Unstable bubbles are developed at Eo above 200 which are
characterized by presence of small bubbles shedding off from main
Taylor bubble into wake region.

Finally, it can be concluded that the developed numerical results
agree well with the order of magnitude analysis. For instance, the order
of magnitude analysis has shown that, in order for Reynolds number for

the major viscous terms to remain intact, it should be of order
�

LTB
D

�
,

which means relatively large values. The numerical result agrees well
with that showing the significance of the larger values of Reynolds
number on the dynamics of Taylor bubble including bubble shape, ter-
minal velocity, flow in the liquid film and flow in the wake region.
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Appendix 1. Order of magnitude analysis for the equation of motion

The Navier-stokes equations in polar coordinates assuming axisymmetric flow are:

ρL

�
∂vr
∂ t þ vr

∂vr
∂r þ vz

∂vr
∂z

�
¼ ρLgr �

∂p
∂r þ μ

�
∂2vr
∂ r2 þ

1
r
∂vr
∂r þ ∂2vr

∂ z2 �
vr
r2

�
(1-1)

ρL

�
∂vz
∂t þ vr

∂vz
∂r þ vz

∂vz
∂z

�
¼ ρLgz �

∂p
∂z þ μ

�
4
∂2vz
∂r2 þ 1

r
∂vz
∂r þ ∂2vz

∂z2

�
(1–2)

0 ¼ �1
r
∂p
∂θ ðvθ ¼ 0Þ (1–3)

And the continuity equation is:

∂vr
∂ r þ

vr
r
þ ∂vz

∂ z ¼ 0 (1–4)

Introducing the following dimensionless variables:
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v*r ¼
vr
UTB

; v*z ¼
vz
UTB

; t* ¼ t
UTB

LTB
; r* ¼ r

ðD=2Þ; z* ¼ z
LTB

; p* ¼ p
1 2

;

� �
2
ρLUTB

g*r ¼
gr
g

; g*z ¼
gz
g
; σ*

r ¼
σr

σ
; σ*z ¼

σz
σ
; σ*θ ¼

σθ
σ
; k* ¼ k

ð1=D2Þ

(1–5)

The Navier-stokes equations and continuity equations in dimensionless form can be summarized as follows:
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where FrUTB ¼ UTBffiffiffiffiffi
gD

p ; ReUTB ¼ ρLUTBD
μL

.

On the gas-liquid interface, the following conditions are applied:�
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where Eo ¼ gρLD2

σ .
Performing similar analysis with respect to gas and liquid sides would show the additional dimensionless groups: density ratio ðΓρÞ, viscosity ratio

ðΓμÞ.
In order to perform order of magnitude analysis to the continuity equation, the following orders are introduced to equations (1–9):

r* ¼ 0ð1Þ; z* ¼ 0ð1Þ; v*z ¼ 0ð1Þ; k* ¼ 0ð1Þ; σ*z ¼ 0ð1Þ; g*z ¼ 0
�
D
LTB

�

g*r ¼ 0
�
D
LTB

�2
and t* ¼ 0ð1Þ

(1–13)

It can be concluded from equations (1-9) and (1-13), inorder to keep the continuity equation intact v*r should be of order D
LTB
, that is v*r ¼ o

�
D
LTB

�
.

Applying the same analysis to momentum equation in the z* direction (equations (1–7)), will give the following:

FrUTB ¼ oð1Þ ; ReUTB ¼ o
�
LTB

D

�
(1–14)

Applying the same analysis to the momentum equation in r* direction (equations (1–6)) and using the conclusion given in equations (1–14), will give
the following:

∂p*

∂r* ¼ o
�

D
LTB

�2

; p* ¼
�

D
LTB

�2

; ∴
∂p*

∂z* ¼ o
�

D
LTB

�2

� which is very small (1–15)

Finally, applying the same analysis to the gas-liquid interface (equations (1–11)), gives the following:

Eo ¼ o
�
LTB

D

�
(1–16)

It is worth noting that, if the characteristic velocity UTB is placed by a new characteristic velocity Vs ¼ ðgDÞ1=2, the dimensionless variables given in
136
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equations (1–5) will be modified as follows;

bvr ¼ vr
Vs

; bvz ¼ vz
Vs

; bt ¼ t
�
Vs

LTB

�
; bp ¼ p

1
2ρLV

2
s

(1–17)

Thus for instance, the dimensionless momentum equation in the radial direction (equations (1–6)) will be as follows:

�
D
LTB

�
∂bvr
∂ bt þ 2 bvr ∂bvr∂ r* þ

�
D
LTB

�bvz ∂bvr∂ z* ¼ g*r �
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4
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∂r* þ

�
D
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∂z*2 �
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#
(1–18)

where Remodified is the modified Reynolds number which is defined as follows:

Remodified ¼ VsD
ν

¼ ðgDÞ1=2D
ν

¼ ðgD3Þ1=2
ν

¼ Nf (1–19)

It can be concluded from equations (1–18) that Froude number disappeared from the dimensionless governing equation as being of order unity as
shown in equations (1–14). Hence, in this frame with the new definition of the characteristic velocity ðVsÞ, the inverse viscosity number ðNf Þ can
represent the ratio of inertia force to viscous force and Froude number is no longer a dimensionless parameter.
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