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Abstract: The increasing rates of neurodevelopmental disorders (NDs) are threatening pregnant 
women, parents, and clinicians caring for healthy infants and children. NDs can initially start 
through embryonic development due to several reasons. Up to three in 1000 pregnant women have 
embryos with brain defects; hence, the primitive detection of embryonic neurodevelopmental 
disorders (ENDs) is necessary. Related work done for embryonic ND classification is very limited 
and is based on conventional machine learning (ML) methods for feature extraction and 
classification processes. Feature extraction of these methods is handcrafted and has several 
drawbacks. Deep learning methods have the ability to deduce an optimum demonstration from the 
raw images without image enhancement, segmentation, and feature extraction processes, leading 
to an effective classification process. This article proposes a new framework based on deep learning 
methods for the detection of END. To the best of our knowledge, this is the first study that uses deep 
learning techniques for detecting END. The framework consists of four stages which are transfer 
learning, deep feature extraction, feature reduction, and classification. The framework depends on 
feature fusion. The results showed that the proposed framework was capable of identifying END 
from embryonic MRI images of various gestational ages. To verify the efficiency of the proposed 
framework, the results were compared with related work that used embryonic images. The 
performance of the proposed framework was competitive. This means that the proposed framework 
can be successively used for detecting END. 

Keywords: deep learning; convolution neural networks (CNNs), machine learning; embryonic 
neurodevelopment disorders; MRI imaging 

 

1. Introduction 

Neurodevelopmental disorders (NDs) are major concerns threatening pregnant women, 
parents, and clinicians caring for healthy infants and children [1]. NDs are an assembly of deficiencies 
that affect the natural development of the central nervous system. They embrace defects that disturb 
the developmental function of the brain, which could lead to apparent neuropsychiatric 
complications, learning difficulties, language or non-verbal communication problems, or motor 
function disability [2]. The healthy growth of the central nervous system relies on complicated 
dynamic processes with several locative and temporal elements throughout pregnancy. NDs can 
initially start through embryonic development due to genetic or other reasons that affect embryonic 
parental life within or outside the uterus [3]. Up to three in 1000 pregnant women have embryos with 
brain defects (Griffiths et al., 2017) [4]. Therefore, the early detection of embryonic 
neurodevelopmental disorders (ENDs) is essential. It will allow clinicians to accurately diagnose the 
brain defect before the infant is born and decide the suitable treatment and observation plan. Parents 
will be well prepared with the type of disorder and how to deal with it. This will improve the quality 
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of diagnosis and health management. It will also reduce chances of the progression of the 
neurological disorder after the birth of the embryo. 

Magnetic resonance imaging (MRI) is a widely used medical instrument to non-invasively 
evaluate and observe the developmental condition of the embryonic brain in utero (Levine et al., 
2003) [5]. Embryos MR images enable doctors to identify brain anomalies in a primary phase of 
development. Detecting brain defects from these images is very difficult and challenging. This is 
because embryonic movements and the tiny sizes of embryonic brains present a major problem 
during the imaging process. Moreover, for adults’ brain imaging, a particular radiofrequency (RF) 
skull coil is attached closely to the individual’s head. However, for embryonic MRI scanning, the coils 
are allowed to be inserted on the parental body and not near to the structure of attention (which is 
the embryonic brain), which render the image quality. Furthermore, the dissimilarities in tissue 
contrast seen in utero for older gestational age (GA) presents one more challenge [6]. Nevertheless, 
of these challenges existing in embryonic MRI imaging and detection of embryonic 
neurodevelopmental disorders (ENDs), there is significantly huge potential for ongoing research 
growth on the use of machine and deep learning approaches in this field to facilitate the detection 
and classification of ENDs. 

Machine learning (ML) approaches are used extensively in medical applications due to their 
interesting capability for extracting valuable information from medical datasets [7]. Previous work 
done in embryonic neurodevelopmental disorder classification (ENDC) is very limited [8–11]. These 
articles applied standard machine learning methods to MRI images for feature extraction and 
classification of embryonic neurodevelopmental disorders. Feature description and extraction of 
these methods are handcrafted and depend on delineation of brain structures, which is arduous and 
prone to inter- and intra-rater inconsistency, or compound pre-processing of MRI images. It is also 
time-consuming and needs high computational cost [12,13]. Deep learning approaches, which are 
another family of machine learning methods, attracted many researchers working in the medical field 
in recent years [14]. They are preferred to standard machine learning approaches as they need small 
or no image processing procedure. Deep learning methods have the ability to deduce an optimum 
demonstration from the raw images without image enhancement, segmentation, and feature 
extraction processes, leading to a better classification process and lower complexity [15]. For these 
reasons, deep learning algorithms are more suitable for detecting and classifying ENDs. 

In this paper, a new framework based on deep learning algorithms is proposed for detecting 
ENDs. This problem is very complex and not easily solved due to several reasons, starting from 
imaging of the embryo brain and processing of such types of images, and ending with segmenting 
the brain, detecting the abnormality, and classifying it. Segmenting embryonic brain from MRI 
images is significantly more difficult than segmenting adult MRI brain images. This is due to the high 
variation in size and anatomical shape during the embryo growth in the utero, the motion artefacts, 
and variation in the fetal orientation, while the cerebrospinal fluid (CSF) and the white matter (WM) 
generate a partial volume (PV) problem [16,17]. All of these challenges harden the detection and 
classification process of embryonic neurodevelopmental disorders. On the other hand, classifying 
neurodevelopmental disorders of the brain of the embryo was not extensively investigated, and very 
limited work was done to solve this problem. Such related work is limited to References [8–11] only. 
To our own knowledge, this is the first study that uses deep learning techniques to detect ENDs. 
Previous work that used deep learning methods focused on segmenting embryonic normal brains 
only but not detecting the embryonic brain disorders. The framework depends on transfer learning 
and deep feature fusion. This framework uses raw embryo brain images without the need for imaging 
processing techniques such as image enhancement, segmentation, and handcrafted feature extraction 
methods which were used in the previous related work with several limitations, leading to a better 
classification process and lower complexity [15]. The proposed framework firstly uses the raw images 
to construct three deep convolution neural networks (DCNNs) of different architectures to detect 
ENDs. Afterward, it extracts deep features from the three DCNNs to build three support vector 
machine classifiers individually trained with each deep feature of the three networks. Next, due to 
the high feature dimensional space of the deep features extracted from the three networks, principle 
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component analysis (PCA) is employed to reduce their dimension individually. Finally, it 
investigates the effect of fusing multiple deep features to construct a detection model for ENDs and 
selects the best combination of deep features which influence the results. In order to test the 
performance of the proposed framework, the results are compared with related work made for ENDs 
using machine learning techniques. 

2. Materials and Methods 

2.1. Dataset 

The embryonic brain dataset employed in this article is called the embryonic brain atlas [18]. It 
included 227 images of embryonic MRI images (113 were healthy and 114 had neurodevelopmental 
disorders) with GA ranging between 16 and 39 weeks. Masses of T2 weighted MRI images in coronal, 
axial, and sagittal planes were acquired with a single-shot, half-Fourier, Rapid Acquisition with 
Relaxation Enhancement (RARE) sequence technique. Because of the continuous movements 
throughout the observation, the acquisition process for every single image acted as a guide for the 
subsequent scanning procedure. An ordinary scanning process utilizes an echo time TE of 60 ms, an 
echo spacing of 4.2 ms, and an echo train of length equal to 72. A 130-degree refocusing pulse was 
used to minimize the quantity of radio frequency (RF) power deposition. The acquisition time per 
image was just 430 ms per slice. 

The dataset contained several types of neurodevelopmental disorders such as cerebellar 
hypoplasia, Dandy–Walker variant/malformation, colpocephaly, agenesis of the corpus callosum, 
mega-cisterna magna, agenesis of the septi pellucidi, and polymicrogyria. Figure 1 shows samples of 
the MRI images including healthy embryonic brains and brains with neurodevelopmental disorders. 

 

Figure 1. Images of different embryonic neurodevelopmental disorders: (A) normal embryonic brain, 
(B) agenesis of the corpus callosum, (C) colpocephaly, (D) mega-cisterna manga, (E) Dandy–Walker 
malformation, (F) agenesis of the septi pellucidi, (G) cerebellar hypoplasia, and (H) polymicrogyria. 

2.2. Deep Learning Techniques 

The building blocks of artificial neural networks are known as “artificial neurons”. These 
artificial neurons simulate the behavior of human brain. Conventional neural networks contain fully 
connected (FC) layers consisting of a number of neurons. These neurons learn from a sequence of 
input data. They then propagate the learned information from the input to output layers through the 
hidden layer/layers by multiplying the weights between neurons of the FC layers. Afterward, the 
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neurons of the output layer calculate the errors and use these errors to adjust weights of the previous 
layers [19]. Although this construction demonstrates a powerful design across various domains, it 
does not consider the privilege of the intrinsic spatial information contained in images. This network 
only studies configurations of activation as they are seen in a fixed order of the training data. As a 
solution to this limitation, other networks architectures were proposed known as deep learning (DL) 
[19–21]. DL architectures include recurrent neural networks (RNN) which are used for sequential 
data, restricted Boltzmann machines (RBM) and deep belief networks (DBN) which are commonly 
used in speech and image recognition, deep auto-encoders (DA) for unsupervised learning, and 
finally deep convolution neural networks (DCNN) employed for image/video segmentation and 
classification. The selection of network architectures and their parameters is made based on the given 
type of data and the type of the application or problem to be solved [21]. 

Among all DL architectures, the DCNN [22] is the commonly used structure for problems related 
to health informatics [23] and for specifically performing medical image classification [24]. Therefore, 
the DCNN structure was used in this article. DCNNs consist of a large number of deep layers; 
therefore, they are referred to as deep networks. The key units of DCNNs include convolutional 
layers, pooling layers, non-linear activation layers, FC layers, and the objective function loss layer. 
As an alternative to providing the entire image to each neuron, the DCNN convolves a filter of 
compact size with the input image. This leads to a group of neurons which only receive the regions 
of the input images corresponding to the size of the filter, followed by saving the position of the 
feature in the original image space. This can detect the location variations and returnable features by 
taking one full set of neurons in a hidden layer (called a feature map), which have similar parameters. 
The main advantage of this construction is the huge decrease in the number of parameters needed to 
be computed at each layer. Moreover, the feature map is now a spatial demonstration of the variables 
existing in the dataset [13,22,25]. DCNNs have several architectures; in this article, three of the state-
of-the-art architectures are used, including AlexNet, GoogleNet, and ResNet 50. 

2.2.1. AlexNet DCNN Architecture 

The AlexNet architecture is a DCNN which comprises five convolution layers, two fully 
connected (FC) layers, and three pooling layers. It has 60 million parameters [26]. Figure 2 displays 
the structure of the AlexNet architecture. The convolution layers of AlexNet are connected with a 
number of neurons with a dot product procedure between their weights and the area, which is linked 
to the input structure of an image [26]. Next, the pooling layers perform a down sampling operation. 

The pooling layers are pool1, pool2, and pool5 as shown in Figure 2. These layers carry out a 
down sampling process throughout the spatial domain to decrease the amount of computational cost 
and to enhance the robustness [26,27]. These layers consist of pool1, pool2, and pool5 as displayed in 
Figure 1. They are succeeded by the fully connected layers FC6, FC7, and FC8, as presented in Figure 
2. The neurons of these layers are fully connected to all neurons of the former layer, as done in 
conventional feed forward neural networks [26,28]. Table 1 shows the dimensions of different layers 
of the AlexNet DCNN. 

 
Figure 2. The archeictecture of AlexNet. 
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Table 1. The dimensions of different layers of the AlexNet deep convolution neural network (DCNN). 

Layer Label Specifications Output Dimension 
Input layer 227 × 227 × 3 

Convolution layer 1 
Filter size 11 × 11 

55 × 55 × 96 Stride 4 
Padding 0 

Pooling layer 1 Pooling size 3 × 3 27 × 27 × 96 
Stride 2 

Convolution layer 2 
Filter size 5 × 5 

27 × 27 × 256 
Stride 1 

Pooling layer 2 
Pooling size 3 × 3 

13 × 13 × 256 
Stride 2 

Convolution layer 3 
Filter size 3 × 3 

13 × 13 × 384  
Stride 1 

Convolution 4 
Filter Size 3 × 3 

13 × 13 × 384 Stride 1 

Convolution layer5 
Filter size 3 × 3 

13 × 13 × 256 
Stride  1 

Pooling layer 5 
Pooling size 3 × 3 

6 × 6 × 256 
Stride 2 

FC6 layer 4096 × 2 
FC7 layer 4096 × 2 
FC8 layer 1000 × 2 

FC—fully connected. 

2.2.2. GoogleNet DCNN Architecture 

GoogleNet is an architecture of DCNN. It was first presented by Szegedy et al. [29], featuring a 
construction with an effectively lower computational cost than AlexNet. The GoogleNet structure 
depends on the inception building block, which considers dropping the number of parameters in a 
CNN; thus, it is called Inception v1. Every layer of this network has nine inception elements and an FC 
layer. These inception elements are weighted upon each other, with a maximum pooling layer. The 
GoogleNet construction consists of 22 layers; therefore, it is considered extremely deeper than the 
ALexNet network. Despite the depth in its structure, it contains a lower number of parameters (almost 
12 times lower) than AlexNet, which leads to a faster convergence. The GoogleNet architecture is shown 
in Figure 3. Table 2 shows the dimensions of different layers of the GoogleNet DCNN. 

 

Figure 3. The architecture of the GoogleNet deep convolution neural network (DCNN). 
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Table 2. Different layers dimension of a GoogleNet DCNN. 

Layer Label Filter Dimension Stride Output Dimension 
Input layers 224 × 224 × 3 

Convolution layer 1 7 × 7 2 112 × 112 × 64 
Pooling layer 1 3 × 3 2 56 × 56 × 64 

Convolution layer 2 3 × 3 1 56 × 56 × 192 
Pooling layer 2 3 × 3 2 28 × 28 × 192 

Inception layer (3a) - - 28 × 28 × 256 
Inception layer (3b) - - 28 × 28 × 480 

Pooling layer 3 3 × 3 2 14 × 14 × 480 
Inception layer (4a) - - 14 × 14 × 512 
Inception layer (4b) - - 14 × 14 × 512 
Inception layer (4c) - - 14 × 14 × 512  
Inception layer (4d) - - 14 × 14 × 528 
Inception layer (4e) - - 14 × 14 × 832 

Pooling layer 4 3 × 3 2 7 × 7 × 832 
Inception layer (5a) - - 7 × 7 × 832 
Inception layer (5b) - - 7 × 7 × 1024 

Average pooling layer 7 × 7 1 1 × 1 × 1024 
FC layer 1024 × 2 

2.2.3. ResNet 50 DCNN Architecture 

ResNet is a more recent DCNN architecture that earned first place in the ILSVRC and COCO 
2015 competition in terms of ImageNet Detection, ImageNet localization, Coco detection, and Coco 
segmentation [30]. It is a state-of-the-art DCNN that is commonly used network for many deep 
learning operations. It has efficient computational capabilities compared to other DCNNs such as 
AlextNet and Inception, which are more likely to fade and hardly converge with the increase in the 
number of layers [31]. The common method to resolve this issue is batch normalization; however, 
with the start of network convergence, the performance worsens rapidly and becomes flooded [32]. 
He et al. [30] offered a new solution for this problem, called the deep residual network (ResNet). This 
network relies on a deep residual learning structure which adds shortcuts (called residuals) within 
the layers of a conventional DCNN to pass over a few convolution layers at a time. These residuals 
enhance the performance of the network. They also speed up and facilitate the convergence process 
of the network even with a large number of deep convolution layers. Figure 4 shows the construction 
of the ResNet 50 architecture. Table 3 shows the dimensions of different layers of ResNet 50 DCNN. 

 

Figure 4. The architecture of the ResNet 50 DCNN. 

Table 3. Different layers dimensions of the ResNet 50 DCNN. 

Layer Label 
Input Layer 
Dimension 

Output Dimension 

Input Layer 227 × 227 × 3 

Conv1 112 × 112 × 64 
Filter size = 7 × 7 

Number of filters = 64 
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Stride = 2 
Padding = 3 

pool1 56 × 56 × 64 Pooling size = 3 × 3 
Stride = 2 

Conv2_x 56 × 56 × 64 1 × 1. 643 × 3. 641 × 1. 256൩ × 3 

Conv3_x 28 × 28 × 128 1 × 1. 1283 × 3. 1281 × 1. 512൩ × 4 

Conv4_x 14 × 14 × 256 1 × 1. 2563 × 3. 2561 × 1. 1024൩ × 6 

Conv5_x 7 × 7 × 512 1 × 1. 5123 × 3. 5121 × 1. 2048൩ × 3 

Average pooling 
Pool size = 7 × 7 

Stride = 7 
1 × 1 × 2048 

FC layer 2 (2048 × 2) 

2.3. Proposed Framework 

This article proposes a framework for automatic detection of embryonic neurodevelopmental 
disorders (ENDs) using deep learning techniques. The framework consists of four stages: transfer 
learning, deep feature extraction, feature reduction, and classification stages. Figure 5 shows a block 
diagram of the proposed framework. This framework corresponds to three experiments. In 
experiment I, each DCNN was used individually (end-to-end) to classify neurodevelopmental 
disorders. Deep features of each network were then separately extracted in experiment II, reduced 
using PCA, and fed to the support vector machine (SVM) for classification. In experiment III, every 
two to three deep features were combined together to form one feature vector for each image, again 
reduced by PCA and fed to SVM for classification. In the following subsections, the details of these 
stages are discussed in detail. 

 
Figure 5. A block diagram of the proposed framework. 

2.3.1. Transfer Learning Stage 

Training a DCNN is usually difficult due to overfitting and convergence problems, which need 
continuous modification of the network construction or parameters. This is done to make sure that 
all layers are learned with equivalent speed. The transfer learning technique provides a solution to 
these problems. Recently, it was widely adopted in analyzing images, specifically biomedical images. 
Transfer learning is the capability of achieving matches between different data or knowledge to ease 
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the learning process of a novel task that has some joint characteristics. In other words, the pre-trained 
network has the ability to extract knowledge and information from huge data, and then use this 
information in other fields having the same classification problem. Definitely, in the biomedical area, 
finding datasets that are as huge and broadly labeled like the ImageNet dataset remains a challenge 
[20,24]. In the case of relatively small data or adequate data not being available, such as the dataset 
employed in this article (dataset contains 228 images), transfer learning is essential to overcome 
convergence and overfitting that would occur rapidly during the first few epochs. However, if it is 
pre-trained with a sufficient number of images, the learned representations from the data can be used 
to classify different classes of the same classification problem [31]. In transfer learning, DCNN models 
are pre-trained from a large image dataset like ImageNet or from a large dataset of a different medical 
domain. These pre-trained DCNNs are then used for a new medical task similar to the one at hand 
[24,33]. Therefore, in this stage, transfer learning was employed using several pre-trained DCNNs 
such as AlexNet, GoogleNet, and ResNet 50 architectures to detect END. These DCNN architectures 
were chosen as they are commonly used architectures for deep learning tasks. They are also the state-
of-the-art DCNN models created in medical applications. As an alternative to constructing the DCNN 
from scratch, we began with formerly trained networks that were trained for similar classification 
problems. The DCNNs were pre-trained using the ImageNet dataset that consists of 1.2 million 
natural images classifying 1000 class labels. Afterward, the final fully connected (FC) layer was 
replaced by a novel layer suitable for classifying two class labels: normal and abnormal. Next, these 
models were used to detect ENDs and classify the brain as normal or abnormal. 

2.3.2. Deep Feature Extraction Stage 

A pre-trained DCNN may be learnt from images; then, the outputs are taken from the FC layers 
of the network. For this reason, instead of using the FC layers of the DCNNs as classifiers, deep 
features were extracted from the first and second FC layers of the fine-tuned GoogleNet and AlexNet 
and from the average pooling layer of the fine-tuned ResNet 50. The number of deep features 
generated from each DCNN was 4096, 1024, and 2048 for AlexNet, GoogleNet, and ResNet 50, 
respectively. 

2.3.3. Feature Reduction Stage 

Features extracted in the previous stage are of high dimensional space; therefore, a feature 
reduction process is needed to reduce the dimension of the feature space, reduce the complexity of 
the classification model, and lower the computational cost of the learning process. Principal 
component analysis (PCA) is a well-known feature reduction method that is widely used to shrink 
the data dimension by carrying out a covariance analysis between factors. PCA decreases the total 
observed features to a lower number of principal components. These principle components present 
the variance of the observed variables. PCA is usually applied to data when variables are highly 
correlated, and it is suitable for datasets in multiple dimensions [34]. 

2.3.4. Classification Stage 

In this stage, the classification process was carried out with three different scenarios. These 
scenarios were equivalent to the three experiments previously mentioned. The first scenario presents 
the use of the three DCNNs, namely AlexNet, GoogleNet, and ResNet, as classifiers (end-to-end deep 
learning process). Each pre-trained DCNN was constructed and trained separately and used as a 
classifier. As mentioned before, the pre-trained DCNN can be applied to images, and then the deep 
features are extracted from the FC layers of the network. These deep features can be used to train a 
distinct machine learning classifier which usually improves the performance of the classification task 
[33]. Therefore, in the second scenario, deep features extracted from each DCNN in the deep feature 
stage were used to separately train three SVM classifiers. Then, the three reduced feature sets 
produced from the PCA in the feature reduction stage were employed to individually construct three 
SVM classifiers. On the other hand, in the third scenario, different fused feature settings generated in 
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the deep feature stage were used to construct several SVM classifiers to examine the best combination 
that influenced the classification accuracy. In the third scenario (experiment III), every two deep 
features were concatenated to form one feature vector for each image. This feature vector for each 
image was then concatenated to form a feature matrix, where the number of columns corresponded 
the dimension of the two deep features fused together, and the number of rows corresponded to the 
total number of images of the dataset. The same procedure was implemented when combining the 
three deep features together; however, the only difference was that the number of columns of the 
final feature matrix corresponded to the dimension of the three deep features fused together. 

3. Experimental Set-Up 

3.1. Data Augmentation 

In order to construct an efficient detection model, a large dataset should be used. Training the 
model with a quite small dataset leads to overfitting during the learning process. This means that the 
model remembers the details of the training set and it does not generalize based on the validation or 
testing sets. Data augmentation is usually used to avoid the effect of overfitting [35]. It is a process 
which artificially creates new data from the existing training set using class-preserving perturbations 
of a dataset, which accordingly prevent overfitting which might happen when a fully connected layer 
inhabits most of the parameters. In this study, data augmentation was employed to generate new 
embryonic MRI images from the training data [12]. The augmentation techniques include flipping, 
translation, transformation, and rotating [31]. In this paper, each embryonic MRI image was 
translated in x- and y-directions with pixel range (−30, 30). Moreover, each original image was flipped 
to increase the size of the embryonic brain atlas dataset. 

3.2. Parameter Setting 

Some parameters were adjusted after fine-tuning the fully connected layer. The number of 
epochs and the initial learning rate for the three DCNNs were 20 and 10−3, respectively. The mini-
batch size and validation frequency were 10 and three. The weight decay and momentum were set 
to 5 × 10−4 and 0.9, respectively. Other networks parameters were left with their default values. These 
configurations were to confirm that the parameters were fine-tuned for the detection of ENDs. The 
optimization algorithm used was the stochastic gradient descent with momentum (SGDM). 

To assess the ability of the proposed framework to detect and classify ENDs, five-fold cross-
validation was employed. This means that the embryonic brain atlas dataset was split into 80%/20% 
for training and validation. The SVM classifiers were trained with four folds and tested by the 
remaining fold. Therefore, the models were trained five times, and the testing accuracy was 
determined each time, then averaged. Note that the kernel function used for the SVM classifier was 
linear for experiments I and II; however, in experiment III, linear and quadratic kernels were used as 
they achieved better performance. 

4. Evaluation Metrics 

There are several evaluation tools to evaluate a classifier, including the accuracy, the sensitivity 
or true positive rate (TPR), and the specificity or true negative rate (TNR), as defined in Equations 
(1)–(3). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑃𝑅) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑇𝑁𝑅) = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (3) 
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5. Results 

This paper proposes a framework for the automatic detection of embryonic neurodevelopmental 
disorders. The proposed approach consisted of three experiments. In experiment I, an end-to-end 
deep learning approach was implemented using three different structures of convolution neural 
networks (CNN), namely, GoogleNet, AlexNet, and ResNet 50. To reduce the complexity and 
computation time of the CNN models, deep features were extracted from each of the three CNNs in 
experiment II. These deep features were then used to train support vector machine classifiers to detect 
embryonic neurological disorders. Deep features extracted were of high dimensional space; therefore, 
principle component analysis (PCA) was employed to reduce their dimension. Experiment III 
combined these deep features extracted from the three CNNs in order to examine which combination 
of deep features influenced the accuracy of detection. The results of the proposed approach are 
illustrated in this section. To validate the efficiency of the proposed framework, the results were 
compared with related work done for ENDs that used the same dataset employed in the proposed 
work but used standard machine learning methods. This is because there was no related work that 
employed deep learning techniques for ENDs. The results were also evaluated against related work 
that investigated the use of deep learning techniques for the detection of neurodevelopmental 
disorders in an early age for premature infants and newborns. 

5.1. Experiment I Results 

This section presents the results of experiment I. In this experiment, three CNNs including 
GoogleNet, AlexNet, and ResNet architectures were constructed. Table 4 shows the results of these 
three networks. It is clear from the table that the GoogleNet accuracy was higher the other two 
network architectures. 

Table 4. Performance metrics of GoogleNet, AlexNet, and ResNet DCNNs. 

DCNN Accuracy (%) Sensitivity (%) Specificity (%) 
GoogleNet 77.9 79.4 76.5 

AlexNet 73.5 85.3 61.8 
ResNet 50 76.5 82.4 70.6 

5.2. Experiment II Results 

This experiment extracted deep features from the three CNNs constructed in experiment I. It 
used these features to individually train three SVM classifiers. Table 5 shows the accuracy of the SVM 
classifiers trained with deep features extracted from the GoogleNet, AlexNet, and ResNet DCNNs 
before and after PCA. It is obvious that PCA increased the accuracy of the SVM classifiers trained 
with the three DCNNs. The highest accuracy of 83.8% was achieved using the GoogleNet DCNN. 
This accuracy was improved to 84.6% using PCA. Figure 6 shows the confusion matrix of the SVM 
classifier trained with the deep features of the GoogleNet, AlexNet, and ResNet 50 DCNNs after PCA. 
It shows that the highest sensitivity and specificity rates were 85% and 84% using GoogleNet. 

Table 5. The accuracy of the support vector machine (SVM) classifiers trained with GoogleNet, 
AlexNet, and ResNet 50 DCNNs. PCA—principal component analysis. 

SVM Trained with Deep Features 
Accuracy (%) of Deep Features 

without PCA 
Accuracy (%) of Deep Features 

with PCA 
 Linear SVM  

GoogleNet 83.8 84.6 
AlexNet 81.1 82.0 

ResNet 50 75.0 75.0 
 Quadratic SVM  

GoogleNet 79.4 78.9 
AlexNet 84.6 85.5 

ResNet 50 79.8 79.8 
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Figure 6. Confusion matrix of support vector machine (SVM) classifier trained with deep features 
extracted from the (a) GoogleNet DCNN,(b) AlexNet DCNN, and (c) ResNet 50 DCNN after principal 
component analysis (PCA). 

The receiver operating characteristic (ROC) curves for the SVM classifier trained with deep 
features extracted from the Google Net, AlexNet, and ResNet 50 DCNNs after PCA are shown in 
Figure 7. The figure shows that the areas under the curve (AUCs) for the GoogleNet, AlexNet, and 
ResNet 50 DCNNs were 0.91, 0.87, and 0.81, respectively. 
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Figure 7. The receiver operating characteristic (ROC) curves for the linear SVM classifier trained with 
deep features extracted from the (a) GoogleNet DCNN, (b) AlexNet DCNN, and (c) ResNet 50 DCNN 
after PCA. 

5.3. Experiment III Results 

This experiment illustrated the results of combining different deep features extracted from the 
GoogleNet, AlexNet, and ResNet DCNNs. Figure 8 shows the accuracy of various combinations of 
these deep features used to train SVM classifiers. 
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Figure 8. A comparision between the accuracies of different combinations of deep features extracted 
from different DCNNs. 

Table 6 represents the classification accuracy of the linear SVM with and without PCA. As shown 
in Figure 8, fusing the deep features extracted from the DCNNs improved the classification accuracy 
of the SVM classifiers. The highest accuracy achieved was 88.6% using quadratic SVM classifiers 
trained with deep features extracted from AlexNet and ResNet 50 together. An accuracy of 87.7% 
was also achieved by the quadratic SVM trained with GoogleNet, AlexNet, and ResNet 50 deep 
features. In both cases, the performance of the SVM was higher than when using individual deep 
features to train the SVM, as shown in Table 2 (the accuracies achieved were 84.2%, 82%, and 75% for 
GoogleNet, AlexNet, and ResNet, respectively). 

Table 6. A comparison between the accuracies of the linear SVM classifier trained with several deep 
features extracted from different DCNNs. 

DCNN 
Accuracy (%) of Deep Features 

without PCA 
Accuracy (%) of Deep Features 

with PCA 
 Linear SVM  

Google + ResNet 50 80.7 86 
Google + AlexNet 83.3 82.0 

AlexNet + ResNet 50 86.3 87.2 
The three DCNNs 83.3 84.2 

 Quadratic SVM  
Google + ResNet 50 82.9 83.8 
Google + AlexNet 86 86.8 

AlexNet + ResNet 50 87.3 88.6 
The three DCNNs 87.3 87.7 

Figure 9 represents the confusion matrix for the AlexNet and ResNet 50 fused features, which 
achieved the highest classification accuracy using linear and quadratic SVM classifiers. Figure 10 
shows the ROC curves and AUCs for these feature combinations used to train the linear and 
quadratic SVM. 
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(b) 

Figure 9. The confusion matrix of AlexNet + ResNet 50 fused features using (a) the linear SVM, and 
(b) the quadratic SVM. 
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Figure 10. ROC curves and areas under the curve (AUCs) for AlexNet and ResNet 50 fused faetures 
used to train (a) the linear SVM classifier, and (b) the quadratic SVM classifier. 

5.4. Comparison with Related Work 

This section presents a comparative study between the results of the proposed framework and 
other recent related work for END detection using the same dataset employed in this study. Table 7 
represents this comparison. As can be seen from the table, recent related work used conventional 
machine learning methods; however, as stated before, they had several limitations. Deep learning 
methods can overcome these limitations and construct a powerful classification model without the 
need for image enhancement, segmentation, and feature extraction. Therefore, it was used in this 
paper. We used the raw data to construct a classification model capable of detecting ENDs. The 
results in the table show that the proposed framework is competitive with other methods based on 
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standard machine learning techniques. The highest accuracy achieved using the proposed framework 
was 88.6% which was greater than that achieved in Reference [10], but slightly lower than that 
achieved in Reference [11]. 

Table 7. A comparision between the accuracy of the proposed framework and recent related work. 

Article Feature Extraction Classifier 
Accuracy 

(ACC) 

[10] Discrete wavelet transform + statistical 
features 

Linear Discriminant Analysis (LDA) 79% 
SVM 79% 

K Nearest Neighbor (KNN) 73% 
Ensemble Subspace Discriminates 80% 

[11] Gabor filter + Gray Level Co-occurrence 
Matrix (GLCM) + PCA 

Diagonal Quadratic Discriminant 
Analysis (DQDA) 
Neural networks 

Naïve Bayes 
Random forest  

92% 
93% 

91.63% 
90.3% 

The proposed 
framework 

Deep features: 
GoogleNet + AlexNet + ResNet 50 

Linear SVM 
Quadratic SVM 

84.2% 
87.7% 

Deep features: 
AlexNet + ResNet 50 

Linear SVM 
Quadratic SVM 

87.2% 
88.6% 

Deep features: 
GoogleNet + ResNet 50 

Linear SVM 
Quadratic SVM 

86% 
83.8% 

Deep features: 
GoogleNet + AlexNet 

Linear SVM 
Quadratic SVM 

82% 
86.8% 

6. Discussion 

Early detection of NDs in embryos is vital; however, it is a complicated process due to several 
reasons. The complication arises during the MRI scanning process of embryos. This is due to the small 
embryonic brain size and the continuous motion of the embryo inside the utero. Also, parts of the 
parental body appear in the MRI images in addition to the embryonic body. Moreover, tissue contrast 
variations are observed in utero for older GA [6]. Recently, machine learning and specifically deep 
learning methods attracted a lot of researchers working in the medical field to help solve medical 
problems. The use of such techniques can assist neurologists and facilitate the detection and 
classification of ENDs. However, the use of machine learning and deep learning techniques was not 
extensively explored. There are a limited number of research articles [8–11] that investigated the use 
of such techniques for detecting ENDs. These articles utilized conventional machine learning 
methods for feature extraction and the classification of ENDs. The feature extraction techniques 
employed in these articles were handcrafted and depended on the delineation of brain structures, 
which had several limitations and drawbacks [12,13]. Deep learning approaches are another class of 
machine learning methods which are more favorable as they are capable of inferring an optimum 
explication from the raw images without image enhancement, segmentation, and feature extraction 
processes, leading to a better classification process and lower complexity [15]. 

In this paper, a new framework based on deep learning methods was proposed for detecting 
ENDs. To the best of our knowledge, this is the first study that examined the use of deep learning 
approaches for detecting ENDs. The new proposed framework consists of four stages: transfer 
learning, deep feature extraction, feature reduction, and classification stages. In the transfer learning 
stage, different CNN architectures, such as AlexNet, GoogleNet, and ResNet 50, were constructed for 
detecting ENDs. Deep features were then extracted from each DCNN in the deep feature extraction 
stage. These features were of large dimension; therefore, a feature reduction process was carried out 
using PCA to lower their dimension in the feature reduction stage. In the classification stage, several 
SVM classifiers were built to detect ENDs using deep features separately extracted from each DCNN. 
Afterward, several deep feature combinations were used to train different SVM classifiers to test the 
effect of feature fusion on the classification accuracy and to select the best combination of deep 
features. 
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This study conducted three experiments. Experiment I executed an end-to-end deep learning 
method via three different structures of CNNs to detect ENDs. in experiment II, deep features were 
extracted from each DCNN structure and used individually to train different SVM classifiers. 
Afterward, PCA was employed to separately reduce the deep feature dimensions and then construct 
several SVM classifiers. In experiment III, deep feature fusion was performed to determine its impact 
on the classification performance and to select the best combination of deep features which enhanced 
the performance. As can be seen in Table 1, the highest accuracy of 77.9% was achieved using the 
GoogleNet DCNN. This accuracy was improved in experiment II, as shown in Table 2, to 83.8% using 
the SVM classifier trained with deep features extracted from the GoogleNet DCNN. It was further 
increased to 84.6% when the PCA feature reduction method was applied. This indicated that 
exchanging the FC layers of the DCNN with SVM classifiers improved the classification accuracy. An 
addition improvement in the classification accuracy was noted in experiment III when using deep 
feature fusion. The highest accuracy achieved was 88.6% using a combination of deep features 
extracted from AlexNet and ResNet 50 DCNNs. An accuracy of 87.7%was also achieved using deep 
features of GoogleNet, AlexNet, and ResNet 50 DCNNs. This shows that the feature fusion can 
impact classification accuracy and improve the performance of SVM classifiers. 

The advantage of the proposed framework is using deep learning techniques on raw data 
without the need for image enhancement, segmentation, and feature extraction, thereby achieving 
good classification accuracy compared to other related work that used conventional machine learning 
methods for ENDs. Moreover, it was capable of detecting ENDs with images containing embryos of 
various GAs, not only one age. 

Deep learning (DL) techniques are the newest class of machine learning techniques. Recently, 
DL methods were used extensively, as they can overcome limitations of classical machine learning 
methods. DL methods showed their superiority over classical machine learning methods in most 
cases. As long as the amount of data increases, DCNNs outperform standard machine learning 
techniques. Our approach outperformed the method proposed in Reference [10]. However, in some 
cases, when the dataset was relatively small, standard machine learning techniques might 
outperform deep learning methods [36,37], which was the case when comparing with Reference [11]. 
Reference [11] applied handcrafted feature extraction methods such as a Gabor filter and Gray Level 
Co-occurrence Matrix (GLCM). Although these feature extraction methods produced higher results, 
they are time-consuming, they need high computational cost, and they are arduous and prone to 
inter- and intra-rater inconsistency, or compound pre-processing of MRI images [12,13]. DL methods 
reduce such limitations. 

Certainly, in the biomedical area, finding huge datasets that are as completely labeled as the 
ImageNet dataset remains a challenge [20,24]. When adequate data are not available, as for the 
dataset employed in our article, transfer learning is essential in order to overcome overfitting and 
convergence problems that would occur due to a small dataset size. In transfer learning, DCNN 
models are pre-trained from a large image dataset like ImageNet or from a large dataset from a 
different medical domain. These pre-trained DCNNs are then used for a new medical task similar to 
the one at hand [24]. Therefore, we employed pre-trained networks instead of constructing our own 
CNN, as the dataset used in the proposed framework was relatively small, which increased chances 
of overfitting and convergence problems. 

Table 8 shows the difference between elapsed times of the AlexNet, Google Net, and ResNet 50 
DCNNs, which were 5 min 57 s, 10 min 29 s, and 6 min 57 s. As can be noted, although ResNet is a 
dense network, it had effective computational abilities compared to AlextNet (less dense) and 
GoogleNet, which were more likely to fade and hardly converge with the increase in the number of 
layers [31]. The experiments were performed on am Intel® CORE™ I7 processor and NVIDIA 
GETFORCE GTX 1050, Windows 10, 64 bit with 16 GB of random-access memory (RAM). The 
software used to implement the experiments was Matlab R2018b. 
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Table 8. The elapsed time of AlexNet, GoogleNet, and ResNet 50 DCNNs. 

DCNN Training Time 
AlexNet  5 min 57 s 

GoogleNet 10mins 29 s 
ResNet 50 6 min 25 s 

SVM classifiers were used to classify ENDs in this article. The concept of the SVM classifier is to 
change an input vector which is not linearly separable using a hyperplane into a higher-dimensional 
feature space that is able to linearly distinguish between classes of input data to ease the classification 
process. The procedure is achieved using a kernel function which maps the similarity between the 
input vector and the new higher-dimension feature space. A linear kernel is usually used when that 
dataset is simply separated by a linear line. However, a quadratic kernel is a nonlinear kernel used 
when the dataset is complex and not linearly separable. Quadratic kernels may increase the accuracy. 
Other advantages of quadratic kernels include having elegant mathematical tractability and direct 
geometric interpretation [38]. The dataset used was not linearly separable; therefore, the quadratic 
kernel produced better results than that of the linear kernel. Kernel equations used to transform the 
feature space into a higher dimensional feature space are shown below. Figure 11 displays the 
difference between linear and quadratic kernels. 𝐾 = 𝑦 ∗ 𝑥 + 𝑏 (4) 𝐾ொ௨ௗ௧ = (𝑦 ∗ 𝑥 + 𝑏)ଶ (5) 

where x and y are the input n-dimensional feature values, b is the kernel parameter, and K is the 
Kernel function. 

 

Figure 11. The difference between (A) a linear kernal and (B) a quadratic kernel. 

PCA is commonly used to reduce the high-dimensional space of the deep features extracted 
using DCNNs. It was used extensively in References [39–46] to lower the dimension of deep features 
used in training SVM classifiers and to also lower the SVM’s complexity. SVM classifiers have very 
effective performance in classification tasks with limited training samples. As can be seen in 
experiments II and III, the accuracy increased after using PCA in most cases. 

As mentioned before, the literature showed that the work done for ENDs is limited to a few 
research articles. These articles used standard machine learning techniques for detecting ENDs. To 
the best of our knowledge, the use of deep learning techniques for ENDs was not studied. We did 
not find any article that used deep learning for ENDs to allow a comparison with our work. Therefore, 
we only compared recent related work based on conventional machine learning methods for END 
detection. 
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7. Conclusions 

Neurodevelopmental disorders are dangerous defects affecting the human brain and 
influencing the natural development of the central nervous system. These defects lead to malfunction 
of the brain activity, which corresponds to obvious neuropsychiatric deficiencies, learning 
complications, language or non-verbal communication difficulties, or motor function disability [2]. 
Recent studies showed that three out of 1000 pregnant women have embryos with NDs. Early 
discovery of embryonic NDs is essential. Recently, machine learning and specifically deep learning 
methods were used extensively to solve medical problems like ND detection. Primary detection using 
such techniques has several benefits. Firstly, they can help doctors precisely identify the brain 
deficiency before the infant is born, allowing them to select the appropriate follow-up and treatment 
plans. Moreover, families will be ready and aware in terms of managing the defect. Correspondingly, 
the quality of diagnosis and health management will be enhanced. It will also reduce the chances of 
progression of the neurological disorder after the birth of the embryo. 

Even though the early discovery of ENDs is a very important research topic, little work was 
done to explore this area. Such work was limited to studies that used conventional machine learning 
techniques; to the best of our knowledge, this is the first study which investigated the use of deep 
learning methods. This paper proposed a framework based on deep learning techniques for the early 
detection of ENDs. It consisted of four stages: transfer learning, deep feature extraction, feature 
reduction, and classification stages. The study conducted three experiments. In the first experiment, 
an end-to-end deep learning method was implemented via three different constructions of CNN. In 
experiment II, deep features were extracted from the FC layer of each DCNN. They were then 
employed to separately train different SVM classifiers. After that, these features were reduced using 
PCA and then used to construct several SVM classifiers. On the other hand, deep features were 
combined to examine their impact on the classification performance and to select the best 
combination of deep features which enhanced the performance. 

The results of the proposed framework indicate that it is capable of detecting ENDs with good 
classification accuracy. The accuracy of the proposed framework is competitive with recent related 
work for END detection. Therefore, it can be used by neurologists to facilitate the diagnosis process 
of embryonic brain deficiencies. It will also ease the treatment and follow-up management plans and 
enable parents to understand the nature of the defect. This will consequently decrease the chances of 
development of the NDs after the birth of the embryo and enhance the quality of health management. 

Future work will focus on using other deep learning architectures and constructing a new 
DCNN. Also, fusing more deep features and combining such features with other handcrafted features 
will be investigated. Moreover, collecting more images for embryos will be done. Furthermore, 
feature selection methods will be studied to try to improve the classification performance of the 
classification models. 
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