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the amount of solar irradiance arriving on the earth. These
conditions are varying from deterministic to probabilistic. Sun
and earth motion are good example of deterministic aspects.
Probabilistic aspects like clouds, block the sun’s rays in a
stochastic way. To overcome these circumstances, an accurate
output solar power forecasting is necessary to guaranty power
system reliability, stability, and quality. It serves in reducing
the power uncertainty impact on the grid. Also, accurate
forecasting is required for operation cost reduction as a
proper forecast leads to massive reduction the number of the
hot standby units.

There is no standard way of evaluation measures for
the forecasting techniques that leads to difficulty in the
comparison between them. Also, all the literature reviews and
surveys considered illustrating the existing work by listing the
used algorithms and performance metrics with no collective
comparison based on any solid criteria [4]–[6]. Therefore, in
this paper a new classification criteria is proposed in order
to review the available PV power forecasting techniques in
more illustrative way to be a useful guide for the researchers
in this area. The proposed classification is based on the time
horizon that categorize the forecasting processes according
to the prediction time as shown in fig. (1). For each time
horizon, the classification is carried out considering: (i) the
input variable to the model, (ii) the predicted output, (iii) the
used forecasting technique and (iv) the assessment metric of
the model.
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Figure 1. Proposed Time Horizon Classification Criteria of PV Power
Forecasting

Abstract—Among the common renewable energy sources
(RES), photovoltaic (PV) energy holds an increasing share in 
the global energy market. The depending on various environ- 
mental aspects, weather conditions and non-linear characteristics 
create the main challenge in PV based installations specially 
on large farms level. Load variations and future expectations 
play a critical role in calculating the reserve stand-by units 
for vally-filling; a major challenge for grid-control authorities. 
Consequently, PV power generation forecasting is unavoidable 
for robust, reliable and cost-effective grid control from both 
operation and maintenance aspects. Despite the available review 
articles, recent forecasting techniques are not well classified 
or aggregated with solid benchmark assessments. This paper 
presents a novel criteria for classifying all the developed PV 
power generation forecasting techniques based on time horizon 
classification. In addition, inputs, outputs, forecasting methodol- 
ogy and performance metric are included in the proposed criteria. 
Detailed classification and comparison tables are concluded with 
detailed discussion and survey outcomes. The presented paper 
acts as a robust road-map for researchers concerned with this 
current topic as it accommodates all the available techniques 
with novel classification and comparison.

Index Terms—Forecasting, PV generation, Machine learning,
Artificial intelligence, Numerical weather predictor

I. INTRODUCTION

  Nowadays, electrical energy has a major share in several 
daily applications along with the rapid demand increase due to 
world globalisation and modernisation. Conventional sources 
of energy have caused several environmental problems in 
addition to massive depletion of fossil fuels. Consequently, the 
need of alternative source of energy arises where renewable 
energy sources (RES) witnessed booming interest globally.

The most dominant source among RES is the photovoltaic
(PV), characterized by high penetration rate in energy markets. 
PV based generation has great potential in electrification 
of both rural and urban areas in addition to other forms of 
utilization like heating/cooling generation, passive systems 
and combined power. Also, it has advantages of low 
maintenance cost, long lifetime, increased robust and reliable 
operation [1]–[3].

PV power generation is affected by the weather condition and
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The paper is structured as follows: Section 2 illustrate the
classification criteria that will be considered in the paper.
Section 3 includes the proposed classification based on time
horizon. Section 4 discuss the concluded benefits of the
proposed classification for the researchers in the field.

II. CLASSIFICATION CRITERIA

The proposed classification is based on time horizon as men-
tioned in the introduction. For each forecasting time duration,
the previous work is grouped based on certain classification
aspects which are listed in fig. (2). These factors are crucial
for the proposed comparison assessment of the forecasting
performance.
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Figure 2. Proposed Internal Classification Criteria

A. Input Variable

Each model basically depends on the input variables which
may be a present and/or delayed time-series for the PV
power production records. Also, the input may come from
local measurements such as cell temperature or information
from satellite images, sky imagers, numerical weather pre-
dictions (NWP) like irradiance, ambient temperature, cloud
cover, etc..., values from other meteorological data base. In
the presented classification the mostly common used input
variables are considered.

B. Output Variable

The targeted variable of the prediction process has been cat-
egorized into two main categorise (i) solar irradiance and (ii)
power output. These two approaches are considered as indirect
and direct ways to predict the power. For the first approach
after estimating the irradiance of the sun the pv performance
model of the plant can be used to obtain the power generated.
The second approach calculate directly the produced power of
the plant. The indirect approach of forecasting is related to the
physical model and the direct prediction of the power using
the statistical and machine learning methods.

C. Performance Metric
In order to evaluate the accuracy level of the model used

in the forecasting process, several statistical measure are used
[7]–[9]. The mostly common used performance metrics are:

1) Mean Bias Error (MBE):

MBE =
1

N

N∑
i=1

(ŷ(i)− y(i)) (1)

2) Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|ŷ(i)− y(i)| (2)

3) Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷ(i)− y(i)

y(i)

∣∣∣∣ (3)

4) Mean Square Error (MSE)/ Root MSE (RMSE):

RMSE =
1

N

N∑
i=1

(ŷ(i)− y(i))
2 (4)

5) Normalized Root Mean Square Error (nRMSE):

RMSE =

√
1
N

∑N
i=1 (ŷ(i)− y(i))

2

ȳ
(5)

6) Correlation Coefficient (R)/ Coefficient of Determination
(R2):

R =
(Cov(y(i)− ŷ(i)))2

V ar(ŷ(i))
(6)

R2 = 1− V ar(y(i)− ŷ(i))

V ar(ŷ(i))
(7)

7) Skewness (skew) / Kurtosis (kurt):

skew =
N

(N − 1)(N − 2)

N∑
i=1

(
nE − nÊ

SD

)3

(8)

kurt =

[
N(N−1)

(N−1)(N−2)(N−3)

∑N
i=1

(
nE−nÊ

SD

)4]
. 3(N−1)2

(N−2)(N−3)

(9)
8) Skill Score:

ss = 1− MSEforecated

MSErefrence
(10)

D. Forecasting Techniques
Classical PV power prediction techniques are commonly

based on mathematical techniques which are devided into
two subcategories: (i) persistence model and (ii) statistics
method. These methods deliver forecasting with low level
of accuracy and fail to process non-linear data. According
to these limitations, more advanced techniques are of recent
interest. These techniques; used for forecasting the generated
power of the PV or solar irradiance; are categorized into three
main groups [10]–[12]:

• Physical Methods
• Statistical and Numerical Methods
• Hybrid Methods
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1) Persistence Model: This model is considered as the
benchmark of the developed model for testing the accuracy of
forecasting . Therefore, many studies present their work using
skill score. It uses the historical data and deliver a prediction
of spam time 1 hr for the solar power where it is assumed
that the forecasting power is equal to output power of the
measured for the past or upcoming day. Also, it is called a
naive predictor. The predicted power for the next day can be
expressed as follow, [13]–[18]:

Pt(t + h) = Ppd(t) (11)

where, Pt(t + h) is the forecasted power and Ppd(t) is the
prior day output power at the same time.

Due to stochastic nature of irradiance variability; this
approach is not suitable for intra-hour prediction. So, other
approaches were developed to overcome this problem by
decomposing the production of the solar power into both the
stationary and the stochastic component [9].

2) Physical Methods: This method is based on the inter-
action between the solar radiation dynamic motion and the
physical state which is used for irradiance forecasting and
hence solar power. Also, it is called the PV performance model
that is classified into three groups:

• Numerical weather prediction (NWP) model
• Sky imagery model
• Satellite imaging or Remote sensing model

NWP models has three types which are global, mesoscale and
regional [19]. For forecasting in short-term time horizon the
used technique is Sky imagery models that deal with clouds
variable motion creating small scale variability [10]. For both
remote sensing or the satellite imaging models, there is no
need for ground sensors.

3) Statistical and Numerical Methods: As the climate con-
ditions are the main factors that affect the power generation
which is a non-stationary type of data; classical statistics meth-
ods fail in dealing with non-linear data. Therefore, stochastic
techniques and machine learning models are considered to
work with these limitations. Machine learning is suitable for
handselling the problems that explicit algorithms can not solve
and it can evolve a relation between the past meteorological
parameters and output power or irradiance. It is capable to use
the historical data to extract information to be able to forecast
time series. This group of forecasting method contains the
following models:

• Statistical models:
1) Regression methods
2) Autoregressive Moving Average (ARMA)
3) Markov Chain

• Machine Learning:
1) Artificial Neural Network (ANN)
2) Support Vector Machine (SVM)
3) Support Vector Regression (SVR)

4) Hybrid Methods: Each of the previous two forecasting
methods has its own weakness. In order solve that hybrid
methods were proposed to solve this issues and to enhance
their strength and accuracy although it leads to increase the
complexity of the computations. The hybrid methods are
mainly consists of combination of machine learning, optimiza-
tion techniques and physical methods to deliver high level
of accuracy for solar forecasting that is more sufficient for
time horizons intervals of medium/long terms [20]. Also, the
combination of one of the optimization techniques with any
of the earlier two mentioned methods can improve the speed
of the convergence during the training stage. The classes of
hybrid methods are:

• Physical model and Machine learning
• Machine learning and optimization technique
• Statistical model and optimization technique

III. PROPOSED TIME HORIZON BASED CLASSIFICATION
OF PV POWER GENERATION

Literature articles that classify PV forecasting techniques
commonly utilize one or more of the core aspects mainly
time interval, adopted algorithms and meteorological data.
Integrating all the classification aspects in one review was not
presented before although it will improve the analysis of the
previous work and give valuable insights on the forecasting
results. This is the core motivation of the current article.

Forecast time horizon is defined as the time span into
future for which it is used to predict the PV power outputs.
The accuracy level varies depending on time horizon for same
forecasting model and parameters. So, time horizon must be
taken into consideration in advance of the model designing
process. Although there is no clear establishing strategy for
classifying time horizon, most researches adopt the four
groups mentioned earlier. PV forecasting is crucial due to
its importance to wide applications as but not limited to:
scheduled grid equipment maintenance, power grid stability,
and storage/spinning reserve planning. An extensive survey
is carried out in this article based on the novel proposed
classification criteria mentioned in previous section fig. (2) of
PV power generation forecasting categorized based on time
horizon as shown in fig. (1).

A. Nowcasting (Intra hour)

The intra-hour forecasting involves few second to several
minutes investigation. This period is vital for decision making
especially for real time applications like decentralized load
dispatch and energy storage management. For high renewable
energy penetrated grids, short time manoeuvring with renew-
able energy resources and associated storage strengthen the
grid stability mainly when sudden islanding/fault scenarios
occur.
Commonly, historical and/or meteorological records are uti-
lized for now casting assessment noticing degradation perfor-
mance of NWP based techniques. Recently elaborated image
processing of sky captures acn lead to promissing results.
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B. Short-term Forecasting

This time horizon forecasting is useful to increase the grid
security. Satisfactory results were obtained using a wide range
of methods of forecasting short-term horizon which is also
called intra-day. Therefore, it is difficult here to select a single
suitable technique. The commonly recommended models were
ANN, SVR and regressive methods. Also, for this time frame,
NWP variables were extensively used. Cloud accumulation
and motion detection can reveal promising results while ben-
efiting from neighbouring PV plants forecasting.

C. Medium-term Forecasting

Medium-term forecasting, like other time horizons, it is dif-
ficult to get conclusion about which are the best predictor due
to the diversity of techniques used. However, the use of NWP
variables give promising prediction performance. Noticeable
trade-off is recorded between complexity and accuracy of the
data based model that relies on weather condition instead of
previous days.

D. Long-term Forecasting

This time horizon is not investigated in many studies as
power grid operators commonly utilize shorter time horizons
for decision making. NWP variables are recommended to be
used as information from neighbouring PV plants won’t be
beneficial due to low spatio-temporal correlation.

Table (I) summarizes the investigated studies based on two
aspects the input/output variables to the model of forecasting.
This is categorized for the adopted classification time horizon.

The proposed time horizon based classification of the
forecasting of PV power generation is presented in the
following tables categorized according to the prediction
technique into: (A)-Physical Methods, (B)-Statistical and
Numerical Methods, and (C)-Hybrid Methods, table (II), (III),
(IV), respectively.

IV. DISCUSSION AND CONCLUSION

PV performance models outweigh statistical ones from
various aspects. Among them, the irrelevance to historical
data is the core. On the contrary, dependency on NWP
exhibits reported resolution errors.

Regarding various interval forecasting assessments, statistical
techniques suffer a tradeoff between accuracy and interval
period. From the proposed classification it can be concluded
that the statistical methods are suitable for short-term
forecasting while machine learning techniques can present
better performance for medium term studies.

Among all the investigated techniques the presented study
shows that hybrid methods that combines advanced machine
learning with physical and/or optimization techniques offer
highest performance from both accuracy and forecasting
period aspects.

From the authors points of view, research regarding
optimal determination of input variables (like: temperature,
humidity, ...) and how this selection affects the forecasting
accuracy will be the elaborating investigation area in the field
of PV forecasting.
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Table I
CLASSIFICATION BASED ON INPUT/OUTPUT VARIABLES OF PV POWER GENERATION FORECASTING

Output Time Input Variable
Variable Horizon Weather Rep. Solar Irradiance Ambient Temp. Cell Temp. PV o/p power

T1 [21]–[27] [23], [24], [28]–[34] [29], [34]

Solar T2 [21]–[23], [36]–
[44], [78]

[23], [31], [36],
[39], [40], [78], [36],
[45]–[56]

[45], [47], [48], [52],
[54]–[57], [78]

Irradiance T3 [38], [43] [54], [48], [58], [59] [54], [48], [58], [59]
T4 [60] [60]
T1 [61] [62]–[66] [62]–[64] [61]–[67]

PV output T2 [61], [68]–[77] [65], [78]–[87] [71], [72], [79]–[88] [81], [82],
[87]

[61], [65], [67], [73], [77], [80], [84],
[86], [87] [89]–[91]

Power T3 [73] [92] [92] [73]
T4

T1: Nowcasting, T2: Short-term forecasting, T3: Medium-term forecasting, T4: Long-term forecasting

Table II
PROPOSED TIME HORIZON BASED CLASSIFICATION OF PV POWER GENERATION FORECASTING (A-PHYSICAL METHODS)

Forecasting Time Performance Metrics
Technique Horizon MAE MBE MAPE MSE/RMSE nRMSE R/R2 skew/kurt SS

T1
NWP T2 [40], [85] [38] [38], [73], [39] [90] [40]

T3 [38] [38], [73]
T4
T1 [24] [24] [25] [30]

Sky T2
imagery T3

T4
T1

Satellite T2
image T3

T4
T1: Nowcasting, T2: Short-term forecasting, T3: Medium-term forecasting, T4: Long-term forecasting

Table III
TIME HORIZON BASED CLASSIFICATION OF PV POWER GENERATION FORECASTING (B-STATISTICAL/NUMERICAL METHODS)

Forecasting Time Performance Metrics
Technique Horizon MAE MBE MAPE MSE/RMSE nRMSE R/R2 skew/kurt SS

T1
Regression T2 [89] [80], [50] [71], [72] [50], [71], [72], [89] [80] [80]

T3
T4
T1 [22], [27] [22], [27]

ARMA T2 [22] [49] [49], [22] [78]
T3
T4
T1 [64]

Markov T2
Model T3

T4 [60] [60] [60]

T1 [28], [31], [61],
[32], [33] [28], [61] [62], [28], [63],

[31], [61] [31] [45], [28], [63] [34] [31]

ANN T2 [91], [31], [61],
[83], [42], [55]

[45], [79], [80],
[61], [83] [37], [41], [42], [57]

[45], [79], [31],
[61], [83], [54], [41],
[53], [42], [77], [55]

[78], [37], [80],
[81], [31], [83]

[45], [79], [80],
[41], [42], [55] [31]

T3 [58], [92], [54]
T4
T1 [33] [29] [29] [29], [26] [29], [26]

SVM T2 [70], [55] [70] [69], [46], [47], [55] [81] [46], [47], [55] [84]
T3
T4
T1 [65]

SVR T2 [83] [83] [59], [83] [83]
T3
T4

T1: Nowcasting, T2: Short-term forecasting, T3: Medium-term forecasting, T4: Long-term forecasting
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Table IV
TIME HORIZON BASED CLASSIFICATION OF PV POWER GENERATION FORECASTING (C-HYBRID METHODS)

Forecasting Time Performance Metrics
Technique Horizon MAE MBE MAPE MSE/RMSE nRMSE R/R2 skew/kurt SS

T1 [23] [23]
ANN+ T2 [74], [75], [85] [23], [39] [21], [23] [39], [75] [21], [39], [76]

physical T3
T4
T1 [66]

ANN+ T2 [44] [44] [86] [43], [56], [44] [44]
optimization T3 [43]

T4
T1 [67] [21] [67] [67] [21]

ANN+ T2 [67] [67] [67]
WT T3

T4
T1

SVM+ T2 [48] [48] [48]
WT T3 [48] [48] [48]

T4
T1 [66]

SVM/SVR+ T2 [88], [87] [82], [51] [82]
optimization T3 [59] [59] [59]

T4
T1

ARMA+ T2 [52] [52]
ANN T3

T4
T1

Fuzzy+ T2 [68] [36] [68]
NN T3

T4
T1: Nowcasting, T2: Short-term forecasting, T3: Medium-term forecasting, T4: Long-term forecasting

[21] Lima FJ, Martins FR, Pereira EB, Lorenz E, Heinemann D. Forecast for
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[79] Mellit A, Sağlam S, Kalogirou S. Artificial neural network-based model
for estimating the produced power of a photovoltaic module. Renew
Energy 2013;60:71–8.

[80] De Giorgi MG, Congedo PM, Malvoni M. Photovoltaic power forecast-
ing using statistical methods: impact of weather data. IET Sci Meas
Technol 2014;8:90–7.

[81] Zhang Y, Beaudin M, Taheri R, Zareipour H, Wood D. Day-ahead
power output forecasting for small-scale solar photovoltaic electricity
generators. IEEE Trans Smart Grid 2015;6:2253–62.

[82] Bouzerdoum M, Mellit A, Pavan AM. A hybrid model (SARIMA–SVM)
for shortterm power forecasting of a small-scale grid-connected photo-
voltaic plant. Sol Energy 2013;98:226–35.

[83] Antonanzas J, Urraca R, Aldama A, Fernández-Jiménez LA, Martı́nez-
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