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ABSTRACT This paper presents new parallel strategies for preprocessing and solving the issue of Boolean
Satisfaction (SAT) on Heterogeneous systems of multicore and many-core CPU and Graphics Processing
Unit (GPU) using Open Multi-Processor (OpenMP) and NVIDIA - CUDA. We propose exceptionally
proficient and parallel techniques for SAT simplifications using the variable elimination method based on
the Davis-Putnam-Logemann-Loveland (DPLL) slitting rule algorithm performed with a shared-memory
model on a multicore CPU platform, where the clause elimination subsumption and the pure-literal
removal techniques are completely performed on the CUDA framework. We demonstrate how efficient
an evolutionary SAT solver is by using the suggested heterogeneous pre-processing, leading to important
acceleration improvements in the solution’s quality enhancement. The penalization of the transformative
SAT solver is executed with Ant Colony Optimization (ACO) scheme utilizing CUDA. (Compute Unified
Device Architecture) We perform thorough benchmarks to test the performance of our preprocessor and
solver implementations against various random SAT formulas. The promoted H-SAT pre-processor scheme
has gotten a speed-up of a factor 15x over the sequential implementation with statistical reductions on the
original CNF which becomes up to 49% and 43% in case of literals and clauses numbers exclusively, where
the H-SAT gain strength the solvability of the ACO solver by 100% in some cases.

INDEX TERMS Ant colony optimization, CUDA, GPU, heterogeneous, pure-literal elimination, satisfia-
bility, subsumption.

I. INTRODUCTION
For a multitude of reasons, interest in Boolean satisfaction is
growing as more issues are now being solved more quickly
by SAT solvers over others. This is undeniable because satis-
faction is at the intersection of logic, fault diagnosis [1]–[3]
automatic program testing [4]–[6], auto debugging systems
based on real-time [7], biological systems [8], [9], and com-
puter engineering studies in general [10]–[13]. Particularly
many problems stemming from one of these areas has various
Satisfaction translations or encodings, and there are numer-
ous numerical techniques accessible for the SAT solution to
help in solving them with improved performance.

In particular, several modern evolutionary solvers have
been implemented for heterogeneous parallel architectures
with prior simplifications. Numerous techniques are gener-
ally used in the field of computational problems, which can
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produce significantly faster algorithms: complete and incom-
plete (tentative) techniques.

Although no schemes are familiar for fixing the SAT prob-
lem effectively, or optimally for all possible cases or formu-
las, there are some of the problems as circuit design [16], [17],
and automatic theorem proofing [18], can be resolved rather
efficiently using incomplete or empirical SAT-solvers. Such
schemes are not accepted to be effective on all SAT occasions,
however tentatively these schemes will in general function
admirably for some reasonable applications. Even though the
solution quality, i.e. howmany trials required to find best pos-
sible solution, of this kind of solvers can be further enriched
by using variable and clause eliminations for reducing SAT
input formulas.

Modern solvers and preprocessors such as Non-increasing
Variable Elimination Resolution (NiVER) [19] and
SatELite [20] are based on DPLL algorithm [21]. Subsump-
tion, Unit propagation, and pure-literal removal [22], [20],
[23], [24] are the best well-known simplification methods
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used in most of the DPLL based SAT preprocessors. The
NiVER process is like to other simplifiers accepts a Conjunc-
tive Normal Form (CNF) as inputs and outputs with a less or
equal number of variables by resolving away variables that
have a limited number of occurrences, i.e., how many times
a variable appears in a SAT formula.

The NiVER technique considers the least constrained vari-
ables to be removed away, where our implementation of a
variable elimination technique considers the Extreme Vari-
ated Variables (EVVs), i.e., the variables that appear in the
highest number of clauses. These factors/ variables are set-
tled utilizing the slitting rule of the DPLL algorithm, which
depends on crafted byMoritz and Springer [25]. The SatELite
extends the NiVER process by subsumption elimination,
where the slitting of a CNF with a particular variable yield
an enormous number of subsumed clauses and pure-literals.
The clauses which enfold a purely literal and thus that have
been subsumed ought to be detected and removed instantly to
save memory and simplify further the output of the CNFs.

Currently, multicore and many-core multiprocessors are
becoming prevalent in SAT tackling problem, where several
major solvers are skillfully introduced to minimize the timing
output as observed in [26], [27], and [28]–[30]. The previous
analysts utilized an arrangement of comparing successive
schemes got through cautious varieties of the standard DPLL
scheme to build on CPU. The other is a parallel version from
the Mini-SAT solver [31]–[35] that uses the farm strategy
which creates a master process responsible for slitting the
original formula with guiding paths (assumptions) and send-
ing to slaves.

There might be multiple sub-formula per slave, but each
receives one at a time. When a slave is finished with its
offer, it sends its outcomes to the master and waits for further
research. A master sends more work to the slaves while
no solution is found or while there are sub-formulae to be
solved. The latter introduces a 3-SAT solver that uses CUDA
to adopt a deterministic strategy implemented on the GPU.
Since every one of its clauses is 3 literals long, it picks a
clause and tests 3 mixes of factors attributions for its literals:
The first is true; the first is strict and the second is real and
the first and subsequent literals are independently false and
genuine. It is intended for arbitrary occurrences, which are
commonly difficult to comprehend, despite when little, for
lacking inward structures to be exploited.

So far, none of these measures were intended to be par-
allel incomplete SAT solver that enhanced with a parallel
preprocessor on the heterogeneous multi-core processing unit
architecture. This paper shows a proficient, and quick parallel
heuristic SAT solution with H-SAT pre-processor. The solver
applies the ACO algorithm [36]–[39] based on Springer’s
work [25] and implemented with CUDA on GPU. [40], [41].
Our suggested H-SAT preprocessor uses OpenMP to dis-
play a skilled variable removal method [42], [43] to
make full use of the multicore CPU based on a shared-
memory model and notable quick parallel subsumption algo-
rithms and pure-literal elimination architecture based on

(Single-Instruction Multiple Thread) SIMT shared-memory
architecture for complete GPU operation with CUDA.

The primary enrichment of this article is to use vari-
able elimination, subsumption and pure-literal cuts on the
CPU-GPU system using the parallel SIMD architectures to
achieve a fine-simplified SAT CNF that is proper for our
solver utilizing the Max-Min Ant System (MMAS) method
to SAT solving [44]–[47], requiring trivial formulas to be
processed.

II. BACKGROUND AND RELATED WORK
This area audits the SAT issue and how it very well may
be preprocessed utilizing the DPLL slitting rule (variable
elimination), the clause subsumption elimination algorithm,
pure-literal elimination algorithm, and outlines the basic pro-
cedure of the MMAS for SAT ex-plaining. For extra sub-
tleties, we urge the per user to read the authentic works
of Subbarayan and Pradhan [19]; Eén and Biere [20];
Zhang [48]; Stützle [44]; Moritz and Springer [25]; Villagra
and Barán [45]; Youness et al. [46].

A. BOOLEAN SATISFIABILITY ISSUE
The Boolean or propositional satisfaction problem can only
be answered in one sentence: given a Boolean formula, it is
conceivable to decide if Boolean qualities are allocated to
the propositional factors in the recipe so that the formula
is assessed as real. The formula is considered satisfactory if
such an assignment exists; otherwise, it is unsatisfactory.

For a combinatorial problem to be solved using the latest
SAT schemes, it usually has to be encoded into a CNF:
sequence of clauses ∧ici, where, each clause ci is a disjunc-
tion of k literals ∨mlm, and every literal lm being either a
Boolean variable v or its negative v̄. There are some variations
of k-SAT formulas like 3-SAT (k = 3) which also falls within
the NP-complete problem category. 3-SAT restricts the literal
numbers for each clause to precisely 3 literals. CNF is a
simple form, easy to implement, and its common format
for files. A format for files CNF SAT issues conceived and
pursued since in the DIMACS Challenge [49]. The popular
file format promoted the compilation of SAT benchmark
issues on the SATLIB website, as well as the periodic SAT
solver competitions [50], which stimulated much research
into effective algorithms and implementations.

There are two primary algorithm classes that were created
to fix SAT cases. The first class is the full algorithms that are
guaranteed to end with a right choice as to whether the CNF is
satisfied or unsatisfied. DPLL and Clause Learning (CDCL)
Conflict-Driven algorithms fall into the full algorithm cate-
gory [26], [21], [51]–[55]. The second class is incomplete
schemes that don’t give the assurance that a good satisfactory
assignment will either be reported in a preset time limit or
declared unsatisfactory, but a solution can be found quicker
than a complete algorithm. Our parallel ACO-SAT solver on
GPU [46] is based on incomplete approaches which will be
revised briefly in this paper.
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Algorithm 1 Elimination of Dynamic Variable Based on
DPLL Slitting Algorithm, Where Slit Has Two Parameters
(Form = Formula, Pro = Propositional)

1: Slit(Form, Pro)
2: i = 0 // i is a variable
3: while (i 6= limit (Pro)) // limit is a size
4: v = Pro (i)
5: for (C ⊆ For m) // Clause subset of Formula
6: if (v ∈ C) // belong to
7: delete C ; reduce Form
8: elseif ((v̄ /∈ C) (limit(C) == 1)
9: return false

10: end if
11: delete v̄
12: Pro← Pro ∪C
13: end for
14: end while

B. DPLL SLITTING METHOD
In this method, the SAT formula is factored or split by
choosing a variable v, generating two simplified formulae.
Factored formulas can again be factored by another vari-
able [25], [56], [57]. We assign the chosen variable v once
a true value to get one of the two new formulas and once a
false value to get the other formula. If we can prescribe a
CNF formula in the following form: S = (Ci ∨ v) ∧ . . . ∧
(Cn ∨ v) ∧ (Ct ∨ v̄) ∧ . . . ∧ (Cn ∨ v̄) ∧ Sr , where Ci and
Ct are clauses wherein v and v̄ do not appear together, and
Sr is a set of clauses in which v and v̄ do not appear, then
we can acquire two formulae S ′ = Ci ∧ . . . ∧ Cn ∧ Sr and
S ′′ = Cj ∧ . . . ∧ Cn ∧ Sr .
The set S is unsatisfiable if and only if S ′ and S ′′ are unsat-

isfiable, where S ′ and S ′′ are pure-literal formulations. The
slitting rule is applied by recursively removing the clauses
that have the positive literal v because it is now satisfied,
otherwise we remove the negative literal v̄ from any clauses if
found. The factored formula is unsatisfiable if we end up with
an empty clause and satisfiable if we end up with no clauses.

We introduce a new sequential implementation for this
method using dynamic programming to over-whelm the
pitfalls of recursion and the out-of-memory exceptions
(see Algorithm 1). Dynamic programming is an approach
for optimization that converts a complicated issue into a
sub-problem series; its essential characteristic is overlapping
these sub-problems without any recursion taking far less time
than the other traditional methods.

The input parameter, Pro of the procedure is a vector
of variables chosen to fragment the input formula. Each
variable v returned by this vector is stored in a CPU reg-
ister (step 4) to accelerate the operations performed on v
thru minimizing the system memory traffic. Note that the
formula and propositional vectors are updated and reallo-
cated inclusively inside the procedure; which is considered
a major advantage for using the dynamic programming con-
cepts. A modern innovated algorithm calculates the number

Algorithm 2 The Proposed Algorithm for Parameters Set-
tings,Where,max_nop Is theMax. No. of Parameters,Occur-
rence Is the No. of Occurrence for Every Variable in Each
Clause, And Occur Is the Occurrence Parameter

1: parameters _ settings (EVV, max_nop)
2: i = 0, nop = 0, occurrence = 1
3: While (i 6= limit (EVV)))
4: v←EVV(i)
5: if (occur(v) >= occurrence) then
6: nop ++, i++
7: if (nop >max_nop)then
8: occurrence ++, nop = 0; i = 0
9: end if

10: elseif (nop == 0 )then
11: nop = max_nop
12: end if
13: end while
14: return nop, max_nop

of variables (parameters) in a propositional that called
parameters_settings (as shown in Algorithm 2). This algo-
rithm acquires the most appropriate number of the EVVs
consistent with their appearance in the formula and an input
limit variable called max_nop initiated by the user.

C. SUBSUMPTION
Assume that lit (C) in the formula of CNF shows the set of
literals in clause C . Given the clauses C1 and C2, if lit (C1) ⊆

lit (C2) then C1 subsumes C2. A subsumed section is redun-
dant and can be withdrawn without changing the representa-
tion of Boolean functions from the CNF formula. The main
drawback of variable elimination is that it produces many
extra clauses which subsume or is subsumed by another
clause. Since redundant clauses ingest memory and time in
SAT solving, it is more desirable to detect and remove the
subsumed clauses immediately after the variable elimination
phase is completed.

In modern SAT preprocessors like SatELite, whenever new
clauses are added to the formula, it is checked against current
provisions in the database to see if they are subsumed or not.
This check is called a reverse/backward subsumption [20]
that can be applied during SAT goals, which is now being
presented in most SAT solvers. Furthermore, the fresh clause
is checked against the current provisions to see whether it
is subsumed by any of them; this check is referred to as the
forward subsumption [20].

In our implementation, we introduce a straightforward
brute-force algorithm that is suitable for SIMT architectures
and performs extremely fast if it executed on these parallel
platforms. The sequential and the parallel techniques are pre-
sented in this paper as shown in Algorithms 3, 6, respectively.

First and foremost, at the presented sequential algorithm,
we sort the clauses in the input formula according to their
sizes, then we do a brute-force search for the subsumed
clauses and flag them at once to be removed later. If the size
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Algorithm 3 Serial Subsumed Removal
1: Subsumed_removal (Form)
2: for (C ∈ Form)
3: for (C ′ ∈ Form)
4: subsume = true
5: if (C ′ 6= C)
6: for (L ∈ C ) //L is a group of literal
7: if (L 6⊂ C ′)
8: subsume = false
9: else

10: Remove (C ′ )
11: end if
12: end for
13: end if
14: end for
15: end for

of the formula is n, it will have a complexity ofO(n2) which is
considered high compared to its parallels in the present state-
of-the-art pre-processors, conversely, the complexity can be
O(1) if we allocate each clause to separate worker to do the
check. With that granularity, our algorithm is more likely
to perform faster than any other counterpart exists if it is
implemented and executed on SIMT architectures such as the
GPU.

D. ELIMINATION OF PURE-LITERALS
Initially, the pure-literal principle was expected for the
advancement of the unit-clause spread of the DPLL tech-
nique. The unit propagation or the Boolean Constrained Prop-
agation (BCP) searches over each clause (except for the unit
clause itself) that comprises the unit literal l to be removed.
If a clause found inclosing l, this literal is deleted.
In the pure-literal rule, in a CNF formula S, a literal

l is called pure if and only if l̄ does not occur in S. Pure-
literal words may still be added, without affecting satisfac-
tion, which adds together with the removal of the clauses.
As this can make other literals pure, the method has to be
iterated in order to produce an equal formula for satisfaction
utilize with no pure-literal materials. This is called pure literal
removal [24]. Consider the following formula S of the CNF
with a pure b literal:

S → (a ∨ b) ∧ (−c ∨ a) ∧ (c ∨ d) ∧ (−a ∨−d ∨ b)

By implementing a fresh set, S’ of pure-literal removal will
be

S ′→ (−c ∨ a) ∧ (c ∨ d)

A complete list of the new parallel algorithm for elimina-
tion in pure literality can be found in the next section. The
algorithm is made up of two principal steps:

1: detect each variable for all clauses, storing their foot-
steps, counting their appearance (polarity is excluded), and
finally summing their values (polarity is included), see Algo-
rithm 7 (detector algorithm).

2: checking the virtue of every factor and correspondingly
evacuating the clauses which hold any factor that has been
observed pure, as seen in Algorithm 8 (implementer algo-
rithm).

E. MAX-MIN ANT SYSTEM
The SAT procedure Max-Min Ant System (MMAS) has
three primary phases attempting to discover the best possible
alternative: the production of an ant colony; refreshing of
pheromones, and obscuring of pheromones [25]. All phases
are repeated until the condition of termination is fulfilled. The
ant colony comprisesm artificial ants, wherem is a parameter
defined by the user.

Each ant j constructs its alternative by comparing a ran-
dom value with a likelihood (random proportional rule) for
selecting a literal

(
l ∈ L2×n

)
positive or negative, where L

represents a twin set of factors n and their complement in a b
clauses SAT formula. The random proportional law lies in the
attractiveness of the pheromone. and the heuristic EVV [25],
[46], i.e., the factors appear more desirable by ants in most
provisions/clauses.

pj (l)←
phαlj .evv

β
lj∑

l∈L ph
α
l .evv

β
l

(1)

where: phlj is the measure of pheromone as of now arranged
by subterranean ant j on literal l; evvlj is the extreme variated
variables heuristic of exacting l for an ant j; and α and β are
client characterized parameters to control the adequacy of phlj
and evvlj.

When an ant chooses a candidate for a solution, the candi-
date will be assessed to compute the quantity of clauses that
satisfiable in the SAT formula and the quality of the assess-
ment. The quality of the assessment is the number of clauses
complied with multiplied by the weights of certain things cal-
culated by the heuristic rule of weight adaptation [45], [46].
Heuristic weight adjustment is to increase the importance of
unresolved provisions during each period of assessment.

After every one of the ants has scanned for choices, it is
important to refresh the pheromone esteems for all literals
and their limits. To evade the slump of the populace or falling
into local optima, every quantity of pheromone is reduced
by a factor defined by the client called the dissipation rate
ρ [36], [37], [45]. This enables ants to overlook terrible
assignments, where all pheromones amount and points of
confinement are refreshed as follows:

τl ← (1− ρ) τl +1τ (x, l)

With 1τ (x, l) ←
{
f (x)
f (x̄)

, (x, l)∈i∗ (2)

where (ρ) is the dissipation rate 0 ≤ ρ≤ 1, τl is the ant
pheromones level, and i∗ is the present best arrangement
per cycle i. The amount of a pheromone is legitimately cor-
responding to the target function f(x), i.e., the picked task
x duplicated by the assessment quality. The points of con-
finement of the pheromones refreshed by the accompanying
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FIGURE 1. The recommended pre-processor and solver outline.

equations as follows [36], [45].

if τl < τmin, then τl ← τmin

if τl > τmax , then τl←τmax (3)

where τmax = n
1−ρ and τmin =

τmax
2n

III. CPU-GPU IMPLEMENTATIONS
This segment presents the parallel methodology of the H-SAT
preprocessing scheme and the ACO solver on CPU and GPU
using OpenMP and CUDA as seen in Fig. 1. A flow diagram
in Fig. 2 reviews the workflow of the H-SAT preprocessor
implementation on both multicore CPU and many core GPU.

TheACO solver may processed a simplified CNF stemmed
from the H-SAT or the input original CNF, so we perform
benchmarks to test the solving performance of the ACO
solver on both fed formulas and compare the solving times
of both runs.

Toward the beginning of the ACO strategy, we set the
calculation parameters (m, α, β, etc.), parse the SAT occasion
which is spoken to in DIMACS file (streamlined or unique),
assign memory for memory requirements and grids, make
CUDA streams [58], for example an arrangement of instruc-
tions that execute in issue-request on the GPU. Furthermore,
a CUDA arbitrary number generator RNG sent in cuRAND
library [59] that accompanies NVIDIA SDK with various
sorts of excellent RNG schemes has been set up. The host

FIGURE 2. The workflow of the H-SAT implementation.

(CPU + Machine Memory) side initializes the pheromone
concentrations, heuristic EVV, and probabilities. We only
copy all data synchronized to the global memory of the GPU
once to avoid the possible overhead communication with the
CPU.

A. THE CNF PARSER
The initial parsing of the SAT formula, which is usually repro-
duced in CNF or DIMACS format, is required [49] in case to
begin the preprocessing stage. In these formats, each clause
is shown as a collection of signed entries, where a negative
value is the negated variable; for formula, (1− 42) stands for
the clause (v1 ∨ v̄4 ∨ v2). The CNF parser peruses out the
number of factors and clauses from the content document,
at that point peruses every clause and put it in a separate
(Standard Template Library) STL vector [60].

Each vector of the clause is pushed to the STL 2-D vector
of formula. We use 1-D host side arrays to allocate mem-
ory (CPU + System Memory) to formula clauses and their
dimensions.We then only once copy the assigned information
to the device’smemory (GPUworldwidememory) to perform
the necessary subsumption and literal removal computations
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FIGURE 3. SAT settings segment.

on the GPU. The information transfers performance penalty
is not more than a few microseconds and may not be taken
into account. As appeared in Fig. 2 that outline the H-SAT
usage.

B. SAT SETTINGS
This phase applies the DPLL slitting rule in the formula at
which phases from 3-5 are performed on each processor of
the CPU (Fig. 3):

1: calculating the variable’s occurrences number in the
formula (occurrence subroutine).
2: Performing the procedure parameters_settings.
3: generating the propositional array (Propositional create

(Pro_Parallel) subroutine).
4: applying the slitting algorithm (slit subroutine).
5: checking the reduced formulas for their literal number

and solution (local Solvable_Min Selection routine).
In 1 and 2, the CPU sequentially performs the occurrence

and parameters_settings subroutines. The occurrence sub-
routine performs two operations; the number of occurrences
in each variable in the original formula is counted for each
clause and stored in a vector (occur), then the variables are
sorted according to their appearance.

The sorted variables are transferred to the EVV vec-
tor after completion. The parameters_settings subroutine as
mentioned in Algorithm 2 calculates the amount of factors
(number of eliminated variables).

Algorithm 4 Thread Identifications
1: Thread (Form, Par, EVV, thrid )
2: i = 0, S = false, limit = 0
3: while (i != true)
4: Pro = Pro_Parallel (Parameters, EVV, i)
5: C_S = Slit (r_Form, Pro) // C_S is Clause Set
6: for (c = 0 to limit) do
7: Limit + = r_Form(C) //r_Form reduced Form
8: end for
9: if (C_S 6= false) then

10: if (limit < min ||S = false) then
11: min= limit; S =C_S; min_r_Form= r_Form
12: end if
13: end if
14: r_Form← Form
15: End while
16: Global(thrid )← min_r_Form //min. reduced formu-

las

Each removed variable produces twomore propositionals v
and v̄, so we should have (2factors) new propositionals or vari-
able candidate combinations g, to be removed from the initial
formula. Let q be the CPU amount of cores, consequently,
we decompose this number g into q tasks; sequentially, each
task runs a removal package called ω such that (ω = g/q).
The Kit result is a simple, solvable formula that is saved in an
array which is a global with a thread ID (thrid ) index.
The two logical threads are attached to each core, and we

generate the p threads using the integrated OpenMP subrou-
tine [61], [42] and tie every thread by its index, thr id such
that (0 ≤thr id ≤ 2q) to any subsequent core physique yi. This
is possible with the OpenMP KMP_AFFINITY environment
variable [62] that established to scattermode. This mode allo-
cates the threads throughout the entire scheme as uniformly
as possible. The granularity of the core is correspondingly
defined so that each thread can migrate to any thread context
within a core. Following many tests on multiple SAT CNFs,
this setup has demonstrated the highest timing efficiency.
A detailed description for the task operations is outlined in
process Algorithm 4.

For the subroutines discovered in Fig. 3 steps 3 through 5,
we allocate a distinct address space for non-shared of each
operative. In step 3, the (Pro_Parallel) subroutine is carried
out in parallel as what we show in Fig. 3 with different iter-
ators i to generate a binary-like random mixture of variables
under the algorithm 5 operation.

The operation is very rapid as it only utilizes a low-memory
change using shift and logical AND operations.

After all the steps are over, the Global procedure transfers
the reduced formulas stored in the global Solvable_Min selec-
tion phase, in order to determine what formula has minimum
literal dimensions and whether or not it is resolvable. This
means that a solvable formula is returnedwith the information
stored in min_r_Form and C_S arrays via the succession of
the call to the slit procedure.
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Algorithm 5 Propositional Create
1: Pro_Parallel (Parameters, EVV, i)
2: for (par = 1 to Parameters)do
3: shift = 1�

(
bitshiftleft

)
par

4: fast = i & shift /fast operation
5: pro(k) = (fast ? − EVV(par) : EVV(par))
6: end for
7: return Pro

Algorithm 6 Subsumed Parallelism Where No_C Is the
No. of Clauses, and new_C Is the Next Clause

1: subsumed_kernel (Form, limit, delete, No_C)
2: C = thread .y; new_C = thread .x
3: If ((C && new_C) < No_C) && (∼ delete (new_C)

&& (limit(new_C)) > limit(C))) then
4: while (par = 1 to limit(C))
5: literal = clauses (C ∗ width + par);
6: if (∼ find (Form(new_C), literal, limit(new_C)))

then
7: break
8: end if
9: end while
10: if (par == limit(C)) then
11: delete(new_C) = true
12: end if
13: end if

In the solvable formula, the last simplified CNF formula-
tion in the SAT settings technique is more important than the
other ones.

C. SUBSUMPTION ELIMINATION
To carry out the subsumption trial, a device kernel (as Algo-
rithm 6 for the parallel algorithm and Fig. 4 for a visual
insight of the kernel execution) is called by the host which
initializes a 2-D grid with blocks (set of threads that can be
run parallelly) of ceiling length ceil (N/32) on the x-size and
ceil(N/32) on the y-size side, each block size is 32 × 32
threads, with a clause in the formula simulated for each
thread. So, the SAT Setting procedure results in a linear array
of the streamlined input 2-D SAT formula using the Allocate
& Adjust step as shown in Fig. 2.
In a separate array, the limit variable (number of literal k in

each clause) is stored for description of head and tail of each
clause in the mapping array.

The range of clauses has been loaded for use in the global
device memory at the assignment point for execution. The
other array was loaded into the device’s constant memory for
quicker reading [63]. A substantial performancewas achieved
using GPU SMPs (Streaming Multi Processors), using up to
99 percent of its maximum load with the existing configura-
tion as in Algorithm 6.

As discussed earlier, we can reduce the algorithm’s com-
plexity to O(1) by creating the largest possible threads to
cover all the clauses that equal to (N×N ). The delete array in

FIGURE 4. A subsumption removal kernel execution.

Algorithm 7 Detector Technique
1: Kernel_detector (Form, Detect, Sum, No_C, No_V,

Counter)
2: v = thread .y+ 1, c = thread .x
3: while (v < No_V && c < No_C) // No_V is No. of

variables
4: P_Var = find (Form(c), v) // P_Var is positive

variables
5: N_Var = find (Form(c), ¬v) // N_Var is negative

variables
6: clearness = ∅
7: Detect (v− 1, c) = false
8: if (P_Var = N_Var && P_Var = true then
9: clearness = 2

10: else if (P_Var && ∼ N_Var) then
11: clearness = 1
12: else if (∼ P_Var && N_Var) then
13: clearness = −1
14: end if
15: if (clearness ∼ = ∅) then
16: Detect (v− 1, c) = true
17: AtomicAdd(&Counter(v− 1), 1)
18: AtomicAdd(&Sum(v− 1), clearness )
19: end if
20: end if
21: end while

the subsumed kernel is initialized to zeros, and its elements
represent the clause positions, where the element x is set to 1
if a clause x need to be removed from the SAT formula.

D. PURE-LITERAL REMOVAL
We implement this type of elimination totally on GPU uti-
lizing two successive kernels dispatches as talked about in
section II.D. The first kernel (detector) starts a 2-D grid of
blocks with length ceil(N/32) in x-size and the ceil(M/32)
in y-size, each block size encapsulates 32 × 32 threads,
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FIGURE 5. A visual model for the detector execution.

Algorithm 8 Implementer Scheme
1: kernel_implementing (Form, Detect, Sum, delete,

No_C, No_V, Counter)
2: v = thread .y, c = thread .x
3: while (v < No_V)
4: summing = Sum(v), counting = Counter(v)
5: if (c < No_C && ((summing = counting)

|| (−summing = counting)) && Detect
(v, c)) then

6: Delete = 1
7: end if
8: end while

that represents the clauses and parameters amount in every
formula’s SAT as (N,M).

The variable v is simulated from 1 to M by using the
y-thread. Then v is searched in every clause using the
x-thread, to locate its position, and count its appearance
(exclude polarity). The x-thread sums up its value whenever
it is+ ve/−ve (include polarity) using the AtomicAdd opera-
tions [64]. i.e., a few cycles of memory lock until the threads
complete their procedure.

Algorithm 7 sums up the parallel detector that is in the
past kernel. In this algorithm, the detect array is a Boolean
matrix with a row indicating the absolute variable value
and a column indicating the clause position. The matrix
is initialized to zeros and, if a clause x contains a vari-
able y, the matrix element is set to 1 at index (y, x).
Fig. 5 presents a graphic illustration of the detector technique
parallelization.

In the subsequent kernel (implementing) proposed in Algo-
rithm 8, we utilize a similar arrangement as the detector
kernel starts. Anyway, the x-thread checks for the virtue of
the variable utilizing the insights we get from the detector
portion (counter, Sum,Detect). If the variable is uncorrupted,
the SAT formula recognized by the delete array removes all
the provisions which contain this variable. The implementing
algorithm provides a visual example of the parallel execution
in Fig 6.

FIGURE 6. A visual model for the implementing execution.

FIGURE 7. GPU usage of MMAS for SAT scheme.

E. MMAS PROCEDURE
This part shows our parallel usage of the MMAS Procedure
for SAT calculation on the GPU utilizing CUDA (see Fig. 7).

First, we parse the reduced SAT CNF that yielded by the
H-SAT preprocessor, then execute each routine on that for-
mula, and as expressed previously, we have three principles
arranges in theMMAS system.We are making the counterfeit
subterranean ACO framework in the main stage, which is
responsible for the accompanying two stages.:
Stage 1: scanning for a competitor answer (ChooseSolution

Procedure).
Stage 2: Evaluate the elective examination (evalSolution

Procedure).
TheChooseSolution subroutine is run on GPU, which orig-

inates a kernel that estimates the probability pj (l) and looks
at an arbitrary number rl to pj (l) and bounces a positive task
TRUE, if rl ≤ pj (l), and a negative task FALSE something
else.

The inherent capabilities that performed as Special Func-
tion Units (SFUs) inside the GPU system [58] are utilized
in the calculation of pj (l), which needs power and division
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activities. SFUs can manage transcendental and graphical
guidelines for interpolation with a minimum amount of IPCs
(Instructions per cycle) but reduces the precision of floating-
point numbers. This allows us to cut down the quantity of
floating and integer instructions to 84% and 54% respectively,
that lower the execution period by a factor of 2.68 for the
ChooseSolution subroutine [46].

An irregular number sequencer rn of consistently dispersed
floating-point esteems anywhere in the range of 0.0 and 1.0
(where, 0.0 is rejected) is at first created at the beginning
of MMAS run utilizing curandGenerateUniform work in the
cuRAND library. In this manner, we create new groupings for
the subsequent ants in the territory covering the scattering
work with others GPU parts as being shown in Fig. 5 to get
the improvement of the simultaneous bit execution ability in
the GPU. The competitive execution of several kernels can
withstand 32 kernels if various streams are assigned.

Our use of evalSolution includes 3 kernels, as GPU
streams1,2, and 3.

1) The kernel evalFullCand Initializes a 2-D range block
grid of ceil(m/32) in x-axis and ceil(n/32) in y-axis; every
block size is (32× 32) threads, where apiece thread mimics a
literal. The formulas of SATwere a table of clauses that being
complete [13], where a table is a qmatrix of n×m elements as
q ∈ B∧(n×m× 2)), where B is a boolean bit. The candidate
for the solution is displayed in an array d∈B1×m.
We calculate procedure qij

∧
dj bit by bit for each clause

such that 1 ≤ i ≤ n and 1 ≤ j≤m to test the applicant d ,
where d fulfills q iff each matrix u2×mi arising from the pre-
vious procedure includes at smallest one TRUE. q is stacked
in the initialization period of the common GPU memory (as
previously stated) and d has been stacked into the shared
memory during the execution of the kernel to gain from a
regular access to data.

2, 3) The kernels evalSol1 and evalSol2 calculate the sum
of the clauses that have been resolved as s ∈ B ∧ (1 × n)),
where si =

∨
i ui and the evaluation quality (E) according to

the succeeding calculations:

E ←
∑k

i=1
siwi (4)

S ←
∑k

i=1
si (5)

where wi is the clause capacity, 1 ≤ i ≤ k i, and k is the
number of the satisfiable clauses.

The summation in equalizations 4 and 5 is measured uti-
lizing the parallel decrease calculation as Harris [65]. Brent’s
theorem [66] says that each thread should add O (logN )
components to the shared memory, and then the tree-based
reduction system [67] will be applied to the shared memory.
We have adjusted the scheme to include the last partials sums
consequence with the atomic-add activity (see Fig. 8) to help
the dot product in the form (4) safeguard the time complexity
of the scheme to O(N/logN ).

In the subsequent stage, the updatePheromones subrou-
tine updates all pheromones focus τl and points of con-
finement (τmin, τmax) as indicated by the best elective found

FIGURE 8. Atomic add process reducing scheme.

based on colony of ants and of the highest quality appraisal
techniques.

This subroutine dispatches a GPU kernel with enough
threads comparable to the m variables. There are 512 threads
in a block, where each thread is mapped to a trail of
pheromones to vanishing and deposit forms to restrain the
pheromones limits.

Finally, the blurPheromones subroutine foggy spots all
pheromones τl by adding the worth rl .phl to every pheromone
amount, where rl is an irregular number with the end goal
that −max i ≤ rl≤max i, where max i is called the most
extreme difference parameter and is determined [25] as
follows:

max i← µ.e−
i
σ (6)

where µ is the base blurring and σ is the factor of decline.
This strategy has given phenomenal outcomes in choosing
arrangements competitors just with the obscuring in periodic
cycles. The procedure of blurPheromones begins a kernel
comparable to the previous updatePheromones kernel, but the
method of evaporation and depositing is substituted by the
blurring method.

IV. PERFORMANCE BENCHMARKING
In this section, on countless random SAT CNFs, we con-
duct the benchmarks acquired by executing our preprocessor
and ACO solver implementations. We compare these bench-
marks to the sequential implementation of our algorithm. The
benchmarks introduced in this paper includes the following
criteria for efficiency:

1. The running times of our H-SAT preprocessor parallel
implementation against serial implementation.

2. The execution times of our parallel implementation of
ACO SAT against serial deployment.

3. Acceleration acquired towards the serial equivalents.
4. Statistics on cuts and percentages of the literal and the

clauses compared to the initial SAT cases.
5. Comparison of time with and without our preprocessing

H-SAT.
6. Comparison of the quality for the solution with and

without our preprocessing H-SAT.
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TABLE 1. The proposed sequential and parallel implementations execution times (ms).

FIGURE 9. The average reductions in clauses in H-SAT pre-processor vs.
different CNF sets.

FIGURE 10. The average cuts in our H-SAT preprocessor literals against
different CNF sets.

We have implemented the SAT Factoring in our H-SAT
preprocessor using OpenMP V2.0 with C++ backed by
Microsoft Visual Studio compiler (VS2013) running on Intel
Core i7 3770 K with 4 cores and 4 threads (one thread/core)
running at 3.9 GHz and 8 GB memory. Instructions set for
the Advanced Vector Extensions (AVX) [68] is subjugated to
boost host execution cycle throughout the host-side program
execution phase. Intel AVX is a 256-bit extension to the Intel
Streaming SIMD Extensions (SSE) set of guidelines and is
specifically intended to enhance intensive data applications
efficiency due to bigger vectors, fresh extendable syntax and

FIGURE 11. The average reduction after all simplification of clauses and
literal.

TABLE 2. H-SAT pre-processing power dependent on ACO solution.

rich characteristics. Our subsumption in aggregation with
pure-literal removals along with the MMAS SAT solver that
programmed utilizing CUDA C++ running with 2880 pro-
cessing cores on NVIDIA Geforce GTX (15 multiprocessors
with 192 processing cores each) operating at 1 GHz and 6 GB
of memory [69].
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FIGURE 12. Solution performance convergence without the use of the H SAT pre processor.

FIGURE 13. Solution performance convergence with the use of the H-SAT pre-processor.

NVIDIA SDK is used on Windows 10 × 64 with
CUDA Tool Kit v6.5. CUDA Compute Capability 3.5 opti-
mized the GPU binary code [63] to take the advantage

of the NVIDIA’s Kepler GK110, which is the architec-
ture for the next generation GPU [70]. The executable
sequential code was introduced using C++ and performed
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FIGURE 14. The reductions proportion of our H-SAT clauses to different SAT CNFs of set 4 (S4) benchmark.

FIGURE 15. The reductions proportion of our H SAT literals to different SAT CNFs of set 4 (S4).

on a single core operating at 3.9 GHz with a single
thread.

We have generated 14 benchmark formulas sets of irregular
k-SAT (5 each) in DIMACS arrangement utilizing ToughSAT
library [71]. Each set name comprises of the SAT sort pursued
by the number of factors in this set. For formula, the bench-
mark set 5_sat_600 implies that the SAT sort is 5 SAT or
5 CNF and the quantity of factors in each occurrence is 600
factors/variables.

Within 30 distinct runs, all solving times of k-SAT sets are
averaged over 6,000 iterations in the algorithm.We used three
kinds of CUDAgenerators in theGPU application of theACO
SAT solver, PSEUDO_MTGP32, PSEUDO_XORWOW and
PSEUDO_MRG32K3A [59]; the average timing for each
generator is over 10 distinct runs, that is, 30 runs in total.

Table 1 presents the SAT parameters (Variable Elimination
or VE) with a max_nop set to 12, the Subsumption Elimina-
tion (SE) kernel, and the parallel Pure-Literal Removal (PLR)
algorithm. Furthermore, the speed-ups achieved against the
sequential implementation of our methods are also provided
for the chosen CNF cases.

Table 1 findings reveal a velocity up to 4.75x quicker than
the sequential counterpart in the parallel execution of kernel

deletion subsumption in the GPU and acceleration in parallel
execution of CPU of the factor 3.12x elimination variable.
Relatively velocity up to 15x demonstrates our fresh parallel
algorithm of pure-literal removal.

In Figures 9, 10 The percentages of clause and literal
reductions observed for each of our H-SAT preprocessor’s
simplification methods that appropriately are shown vs. the
initial formula. In Fig. 11, We observe a large part of the
complete cuts owing to all the simplifications, up to 43% and
48.5% in the number of clauses and literals respectively. Note
that the prefix (R_C) concerns the reduction of the clause in
a set, with the prefix (R_L) concerns the literal reduction.

Table 2 demonstrates our solver’s solving times with and
without pre-processing H-SAT. The results show that in the
case of using the preprocessor actions in solving big SAT
cases, the ACO solver is so efficient with a small amount
of time. In Table 2, the notation (Excess) implies that the
solver surpassed the maximum amount of iterations or tests
attempting to fix the SAT equations in a set.

Fig. 12, represents the H-SAT solver’s solution charac-
teristics without using the preprocessor in S2 set. Similarly,
in Fig. 13, we demonstrate the H-SAT solver solution charac-
teristics using the same set of preprocessors. We observe in
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the graphs (3, 4 and 5) in Fig.13 a quick convergence to the
solution over the ones found in Fig. 12.

V. EXPERIMENTAL RESULTS OF REDUCTIONS
The SAT, as a generic problem has many solutions, where
the authors used many platforms to solve and to speed up.
So, some libraries as SATLIB are used as test banks to get
some of the benchmarks for their solutions. Also, present-day
SAT solvers are exceptionally subject to heuristics. Conse-
quently, benchmarking is of prime significance in assessing
the exhibitions of various solvers. In any case, applicable
benchmarking isn’t direct.

Figures 14, 15 indicate the percentages of actual H-SAT
and clause reductions compared to the initial formulae and
thus acquired by the SatELite. The figures show that the
preprocessor H-SAT defeats the SatELite by 13.5% and 24%
respectively in removing the additional amount of literals
and clauses, even quicker by 4.41. H-SAT also accomplished
more clause and literal cuts than those acquired through
the SatELite by 31% and 60.7%. The average decreases in
H-SAT provisions and literals compared to the initial cases
are respectively 13.7 percent and 14.2 percent.

VI. CONCLUSION
In this research paper, we performed a fresh effective par-
allel SAT heuristic solver with parallel preprocessor on
heterogeneous CPU-GPU systems.We have developed a vari-
able elimination technique that executes the SAT factoring
exhausting the most constrained variables of a SAT formula
on the CPU’s multicore architecture.

We have shown how the subsumption and pure-literal
eliminations implemented in our H-SAT preprocessor can
benefit from the massive-data parallelism of the GPU
CUDA platform. Our benchmarks divulge an increase in
speed-up to 15x more quickly than the sequential imple-
mentation and significant reductions of 43% and 49% in
clauses and literal respectively, compared with the initial
CNF.

With the help of our parallel preprocessor, we have shown
how a metaheuristic SAT solution can be so efficient in solv-
ing broad CNF formulae. In our implemented task, we have
considered numerous highlights of the host and gadget SIMT
designs, for example, the multicores working with strong
CPU frequencies, shared memory, and simultaneous part
execution.

Also, they work with atomic activities, two-dimensional
grid with a large number of threads that run in parallel, and
quick steady memory. Likewise, we have exploited the AVX
guidance built-in CPU’s sets and GPU’s SFUs to produce an
effective and quick executable code.
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