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ABSTRACT

One of the major culprits that faces Mobile Ad-hoc networks (MANET) is
broadcasting, which constitutes a very important part of the infrastructure of such
networks. Broadcasting in mobile ad hoc networks (MANETs) is an information
dissemination process of sending a message from a source node to all other nodes
of the network. Even though it has been studied extensively for wired networks,
broadcasting in MANETs poses more challenging problems because of the
variable and unpredictable characteristics of its medium as well as the fluctuation
of the signal strength and propagation with respect to time and environment.
Furthermore, node mobility creates a continuously changing communication

topology in which routing paths break and new ones form dynamically.

This thesis presents a nested genetic algorithm (GA) technique with fuzzy
logic-based fitness that optimizes the broadcasting capability of such networks.
While normally the optimization of broadcasting is considered as a multi-
objective problem with various output parameters that require tuning, the
proposed system taps another approach that focuses on a single output parameter,
which is the network reachability time. This is the time required for the data to
reach a certain percentage of connected clients in the network. The time is
optimized by tuning different decision parameters of the Delayed Flooding with
Cumulative Neighborhood (DFCN) broadcasting protocol. The proposed system
is developed and simulated with the help of the Madhoc network simulator and is
applied on different realistic real-life scenarios. The results reveal that the
reachability time responds well to the suggested system and shows that each

scenario responds differently to the tuning of decision parameters.
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CHAPTERI
INTRODUCTION

Mobile Ad-hoc Networks (MANETs) are dynamic types of network
consisting of an uncontrolled setup of end-point communication devices known as
terminals, which are able of arbitrarily connecting with each other without the
need of a base station or a fixed infrastructure [1]. The types of devices that are
usually found in MANETs are laptops and smartphones equipped with limited
range wireless technologies such as Bluetooth and Wi-Fi (802.11) Fig. I-1 shows
the MANET. This, in turn, limits the communication capability of such devices,

but allows them to move while communicating.
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Figure I-1. Infrastructure-based analogy Vs Ad-Hoc analogy

This makes the MANET very unpredictable as it needs to continuously self-reconfigure
itself to accommodate these dynamic changes [2]. This is considered a major drawback for
the efficiency and effectiveness of the MANETSs and, by failing to readjust, link breakage
will start to take place and some of the routes can become undiscoverable [3]. For the devices
to be able to reach a certain destination, they start sending route discovery requests to their
neighboring nodes [4] which, in turn, do the same thing. This results in the network being

overwhelmed with an extreme amount of broadcast traffic known as a broadcasting storm

[5].
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1.1 Broadcasting Definition

Since it is clear that broadcasting plays a very critical role in network
discovery and assists the nodes in MANETs in discovering their neighbourhood
[6], optimizing it constitutes a major step as it will save both energy and time,
especially since most of the devices in the network have limited energy as they

are battery powered [7].

Due to the previously mentioned limitations, a key threat known as node
‘selfish behaviour’ arises in the network, in which the nodes purposely tend to
drop the messages that do not target it, in an effort to save its energy [8] [9]. In
other words, the nodes are not encouraged to contribute to the forwarding process.
This kind of self-regarding behaviour negatively impacts the network because, as
already stated, there is no solid infrastructure in MANET and all the nodes rely on
the cooperation of other nodes in the network to deliver and forward their

messages.

Delayed Flooding with Cumulative Neighbours (DFCN) is a broadcasting
protocol that can handle this behaviour and, at the same time, can reduce the
number of packets that need forwarding with minimal punitive actions on the
final coverage [10] [11] [12]. This is achieved by dropping the forwarded
message when enough of the neighbourhood devices have already got it. Also,
once a node decides to forward a certain packet, it waits for a specified amount of
time before executing this action, which is then cancelled if another node in the

network actually forwards the message [13].

1.2 Delayed Flooding with Cumulative Neighbours (DFCN)

DFCN is considered as an event driven technique which is divided into three
main parts. The first two parts of the technique are responsible of handling the

outcoming events like:
(1) Reception of New Messages.

(ii)  Detection of New Neighbours
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The third part is responsible of the decision making for the emission. The behaviour
resulting from receiving a message is known as “Reactive Behaviour” and the behaviour

resulting from the discovery of new neighbours is known as “Proactive Behaviour”.

Let us assume d; and d» are two nodes within reachable neighbourhoods. When a
message is sent from d; to dz, the packet gets attached to the set N(di). Then, during
reception, d» will be able to know that each node inside N(d1) has received the packet. In this
case, the number of nodes that which has probably not yet received the packet, can be
calculated by subtraction N(di) from N(dz). If d> decides to re-emit the packet, the effective

number of newly reached nodes can be maximized by means of the heuristic function:
h(d;,dy) = | N(d;) —N(d,) |

So, in order to minimize the increase in network utilization caused by the possible re-
emission of packet, a message will be only forwarded if the number of newly reached nodes
is greater than a certain threshold, which is calculated based on the number of nodes in the
neighbourhood (local density) of the recipient node d». It is denoted as Threshold ([N(d))),
and the decision taken by d» to re-emit the packet forwarded from d; is defined by the

boolean function:

true, if h(d,, d,) = threshold (|N(d,)|)

B(dy, dy) = { false,otherwise

If this threshold is exceeded, the recipient node d» becomes a transmitter in turn. This
message is then effectively sent when a random delay (denoted by RAD) expires. The
threshold function, which allows the protocol to facilitate the message broadcasting/re-

broadcasting depends on the size of the neighbourhood ‘n’, given by:

1, if n < SafeDensity

Threshold (n) = {MinGain *Mn, Otherwise
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Where SafeDensity is the maximum safe density below which, DFCN will always
rebroadcast, and MinGain is a parameter of DFCN used to compute the minimum threshold
to forward the message (e.g. it is the ratio between the number of neighbours which have not

yet received the message and the total number of neighbouring nodes).

Each time a new node ‘n’ discovers a new neighbour, the value of RAD for all messages
is set to 0. This means that the message is set for immediate emission. If N(d) is greater than
a given threshold, known as ProD, this behaviour will be disabled, and therefore, no events

or actions will be taken when a new node is discovered.

1.3 Thesis Objective and Motivation

The work proposed in this thesis tackles a specific type of MANET, known as
Metropolitan Mobile Ad-Hoc Networks, which is characterized by a disparate density that
is continuously changing, whereas highly dense areas can swing from being active to
inactive over short periods of time. Because creating a real testbed for this type of network
is very costly and challenging, and might also lack the reproducibility factor, it was decided
that the best approach to handle it is by means of a simulation framework. The Madhoc

simulator has been selected to achieve this [14].

An evolutionary algorithm-based technique that combines nested GA with
fuzzy-based fitness is proposed and implemented. The technique integrates the
Madhoc simulator in its core and considers DFCN optimization over multiple

real-life mobility scenarios.

Another reason for choosing to work with AdHoc network is the prevalence of
Internet-of-Things (IoT) and 5G technology, which uses super high frequencies (3
-30 GHz) and extremely high frequencies (30-300GHz). This technology requires
a direct line-of-sight in order to deliver the promised the promised Gbps speeds
wirelessly. In order to do so, it is expected that multiple micro/small cells will
need to be deployed and be arranged in such a way that a direct line-of-sight is

maintained.

These cells will eventually act as a adhoc networks and will require optimization. The
DFCN protocol is selected because of its highly-scalable nature, where only five parameters

require calibration according to different environmental surroundings (e.g. node density,
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node speed, distance, etc.). Therefore, the cells can be reprogrammed with the newly
calculated parameters whenever the surrounding change, without the need to physically

modify them.

1.4 Problem Statement

In order to optimize the DFCN protocol, multiple decision parameters need to
be considered. These parameters dictate how DFCN operates and they
characterize the search space. Since the optimization heavily relies on each

specific scenario, an individual optimization trend is expected for each scenario.

The reachability time # is the output benchmark that is used to measure the
optimization result. It is the amount of time required for the network to reach a
certain number of pre-defined nodes. The goal of this research is to optimize the
DFCN parameters to decrease the reachability time of the nodes inside the

MANET. The problem is formulated as follows:

m: instance of Madhoc simulator, t,.: reachability time.
t, = m(LowerRAD,UpperRAD, ProD, MinGain, SafeDensity) €))

f(LowerRAD, UpperRAD, ProD, MinGain, SafeDensity) = min (t,)

The function f corresponds to the proposed system where the target is to
minimize the reachability time ¢ for each instance of the simulator m. Table I-1
below shows the DFCN parameters along with their respective threshold and

domain values.

As already stated, this will be done on three different mobility model scenarios, namely

Highway, Mall and Human mobility. The description for these scenarios is shown next.
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Table I-1. DFCN PARAMETERS DESCRIPTION

Introduction

Parameter Name

Domain

Description

Unit

Threshold Value

LowerRAD

Real (R)

Minimum time required to
rebroadcast.

Second

[0, UpperRAD]

UpperRAD

Real (R)

Maximum time required
to rebroadcast

Second

[LowerRAD, 10]

ProD

Integer (Z)

Maximum Density for
which it is still required to
use proactive behaviour
(reacting to new
neighbours)

Device

[0, 100]

MinGain

Real (R)

Minimum gain for
rebroadcasting.

[0, 1]

SafeDensity

Integer (Z)

Maximum density, below
which the protocol will
always broadcast.

Device

[0, 100]

1.4.1 Highway Scenario

The main feature of the highway mobility model is that the nodes move at

significantly higher speeds compared to the other mobility models and the nodes

are lower in numbers.

The spot density is also set to one spot per square kilometre, which is very

sparse, and the number of spots per simulation area is limited to three. In this

scenario, most of the generated traffic comes from nodes moving in opposite

directions to simulate cars moving on different and opposing lanes of a highway.

Table I-2 below shows the properties of this scenario.
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Figure I-2. Highway Scenario Illustration

1.4.2 Mall Scenario

The mall mobility scenario is composed of separate regions connected by
relatively narrow areas. It represents a group of shops interconnected using
corridors. In this scenario, the surface area is smaller than the highway one and

the velocity is much slower.

Also, the nodes move randomly for most of the time with no clear targets,
representing humans wandering around and shopping in arbitrary shops. Table I-3

illustrates the different parameters for this scenario.
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Figure I-3. Mall Scenario Illustration

1.4.3 Human Mobility Scenario

This scenario is more distinctive than the mall one and is considered one of
the most daunting models. In this context, the focus is on the human mobility
scheme, where the movements are not random, but instead, there is a list of target
destinations that each node mostly moves towards. These targets can be far away,
as well as a few meters around. Also, the targets can dynamically change with
time depending on human behaviour. For instance, a waiter in a restaurant can be

regularly moving back and forth between the kitchen and customers’ tables.

The human mobility scheme is defined as a round simulation area, where
fixed places that act as target spots are scattered and where the distance between
two places cannot be less than 10 meters. Table [-4 shows the parameters for the

human mobility model.
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Figure I-4. Human Mobility Scenario Illustration

Table I-2. HIGHWAY MOBILITY SCENARIO PARAMETERS

Parameter Value Units
Surface Area Ix1 km?
Nodes Density 80 nodes / km?
Velocity [20 40] m.s™




Chapter I

Table I-3. MALL MOBILITY SCENARIO PARAMETERS

Parameter Value Units
Surface Area 0.3x0.3 km?
Nodes Density 6,500 nodes / km?
Velocity [0.3 1] m.s

Table I-4. HUMAN MOBILITY SCENARIO PARAMETERS

Parameter Value Units
Surface Area 0.05 x 0.05 km?
Nodes Density 80,500 nodes / km?
Velocity [0.3 1.5] m.s’!

-10 -
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1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter II shows an analogy of
the genetic algorithm, what is a fuzzy logic system and describes its architecture.
Chapter III introduces the Madhoc simulator and gives an insight about its

features and the different modes of operations.

In Chapter IV, a review of the related work concerning the optimization of
broadcasting techniques in MANETs is presented. Chapter V demonstrates the
algorithms and techniques used to solve the problem. Chapter VI shows the
obtained results and discusses them. Finally, Chapter VII concludes this work and

proposes the potential future work.

-11 -



Chapter (II)

GENETIC ALGORITHM and FUZZY
LOGIC

-12 -



Chapter I1 Genetic Algorithm and Fuzzy Logic

CHAPTER I
GENETIC ALGORITHM and FUZZY LOGIC

2.1 Genetic Algorithm

Genetic Algorithm is considered as one of the most renowned metaheuristic techniques
inspired by natural selection and natural genetics and it is used to reach approximate or true
solutions for various optimization problems [15]. GA relies on techniques inspired by
evolutionary biology (e.g. inheritance, selection, crossover, and mutation to solve the

problem the same way the nature does with the living organisms.

The basic idea of GA is to randomly create an initial population consisting of individual
potential solutions to a given problem known as chromosomes, and then evolve this
population for a given number of iterations, known as GA generations. For each generation,
each chromosome is evaluated using a predetermined fitness function that is selected based

on the application.

To reach the next generation, an offspring individual is formed by merging two
chromosomes from the current generation. This is done by using a crossover operator which
is applied on two chromosomes or by altering a chromosome using what is known as a

mutation operator [16] [17].

A new generation is then constructed by means of a selection operation, according to the
fitness values of the chromosomes, where the fittest chromosomes have higher probabilities
of getting selected [18]. After evolving several generations, the algorithm is expected to
reach a better solution, which represents the optimum or sub optimal solution to the problem.

This is known as the convergence of the GA [19].

The following are some benefits the GA has got over traditional numerical optimization

techniques:

e Does not require derivative information [20].
e Can optimize with both discrete and continuous parameters [21].

e Can operate on big data scale and handle a large number of parameters.

-13-
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e Can be run on parallel computers [22].

e Can be used to provide a set of solutions to a given problem.

2.1.1 Theory of Genetic Algorithm

GA has been developed by John Holland in 1975 [23]. Back then, it has been widely
used in Data Mining applications like data clustering and data classification, etc [24], to
provide a randomized and global search methodology to find the optimum solution of a given

problem.

GA begins by generating the first initial population, randomly, followed by the
evaluation of the fitness function for each individual chromosome, in such a way that the
fitter individuals will have a greater chance of survival and pass the information they possess

to the newer generation.

The crossover operator allows each potential solution to exchange information in such a
way that is similar to that used by natural organisms to create a new biological offspring.
Each chromosome might as well be subjected to a mutation operation, in which a random
change with a predetermined percentage takes place in the individual chromosome. After the
aforementioned operations are applied to the population, a new one emerges and the
generations keep evolving until the convergence criteria have been met or a predetermined
number of generations have finished. Most of the times, GA algorithms are studied on

different data with various sizes to find.

2.1.2 The analogy between nature and genetic algorithm
GAs derives its behaviour from the concept of the natural biological evolution. Table

II-1 highlights the analogy between GA and its biological counterpart.

Table II-1. COMPARISON BETWEEN GA AND BIOLOGICAL COUNTERPART

Genetic Algorithm (GA) Biological Counterpart
Optimization problem Nature
Feasible solution Individual living in the nature

Fitness function Level of adaptation to its surrounding

environment
Stochastic operators Reproduction and mutation in nature
evolutionary process

Progressively applying a set of stochastic Evolution of the organisms to suit their

operators on a set of potential solutions environment
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2.1.3 Applications of genetic algorithms

As already mentioned, GAs have been used in many applications including data
mining, clustering, classification and scheduling and time optimization, in addition to

optimizing many real-world problems such as:

¢ Financing and Stock

GA can be used to take investment decisions and to predict future performance in

traded stocks and stock markets in general [25].

e Identifying criminal suspects

A lot of facial recognition programs use GA to evolve pictures of faces based on the
databases of hundreds of individuals features. This methodology can help identify faces,

even when the person ages up [26].

It can also be used to do blind prediction where the GA-based programs show
randomly generated face images to different witnesses, who pick up the ones that most
resembles the suspect, and then the selected faces are mutated and combined using GA-
related stochastic operations to create new combinations of facial features, and the process

is sustained until an accurate picture of the suspect face is obtained [27].

e Route Planning

Shipping and Freight companies can rely on GA to determine the best route to their

destination [28].

e Medical

GA can help in the developments of new treatments by optimizing drug formulas and

improve diagnostics [29].

2.1.4 Canonical genetic algorithm

This section will explain the different operations carried by the GA in brief as follows:

Representation
An initial population is first generated in a random fashion. It represents a random set of
chromosomes (population) that corresponds to a possible solution in the form of its genetic

structure. Each one of these chromosomes consists of a group of numerical values (int, float,
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etc.) known as the genes. For some applications, the initial population can be generated
according to a certain criterion, instead of being totally random, in such a way that will

enhance the final solution of the GA.

Evaluation

Fitness values are calculated for each chromosome based on how likely it might solve
the problem and contribute to the desired solution. The fitness function is used to evaluate
the fitness of each chromosome. Therefore, the fitness function is designed with special care
as it decides which individuals can reproduce and create the next generation of the

population.
Selection

The selection operation of the chromosomes that decides whether they will reproduce
or live to the next generation mainly depends on the designed fitness function. According to
Darwin’s’ theory, the best individuals are the ones that should survive and be used to create
new offspring. This means that chromosomes possessing higher fitness values should be
assigned a higher probability of reproducing offspring. After evaluating the fitness of all
individuals, the selection operation chooses the fittest individuals for reproduction or

recombination.

Selection that is based on the individuals’ fitness is usually based on roulette wheel
which is one of the techniques used for selecting the best solution for crossover. The roulette
wheel selection resembles a roulette wheel in a casino where a certain part of the wheel is

assigned to each of the possible outcomes.

Crossover

Crossover operation in a biological system consists of a candidate of solutions

combined together to produce an offspring in each iteration which is known as a generation.

The offspring that will survive (yield a higher fitness value) will be considered as one
the fittest and its offspring will become a candidate solution in the next generation. Crossover
works by combining one or more pairs of chromosomes randomly (based on their fitness) as
parents and swapping their segments of genes according to the designed crossover operator.
This will yield the offspring for the generations to come. In some cases, parent chromosomes

can pass on their bad genes to their offspring, but this can be overcome by employing a

-16 -



Chapter I1 Genetic Algorithm and Fuzzy Logic

powerful selection algorithm. As already highlighted, there are different crossover methods

such as single point crossover, two-point crossover and uniform crossover, etc.

Single point crossover
In a single point crossover, a single crossover point is selected, and a binary string from
the start of one chromosome to the crossover point is copied from one parent, and the rest is

copied from the other parent.

Two-point crossover

In Two-Point crossover method, two different crossover points are randomly selected,
and a binary string from the start of the first chromosome to the first crossover point is copied
from one parent, the region from the first to the second crossover point is then copied from

the second parent to the first region in the first parent.

Uniform crossover
There is no clear separator in this type of crossover. Bits are randomly copied from the

first parent or from the second one.

Mutation

The mutation operation is used to modify a chromosome for the next generation. This
operation assures the diversity of the population from one generation to another. It does so
by randomly mutating one or more genes inside the chromosome. This prevents the GA from

stagnating in the earlier phases of evolution.

Therefore, the main aim of mutation in GAs is to introduce diversity and to avoid local
minima. The GA performance depends mainly on the crossover and mutation operations.

These operations are designed according to the problem or the required application.

Elitism

Sometimes, during the converging process of the GA, the fittest chromosome might get
lost and not get transferred to the newer generation. Therefore, the fittest chromosome can
be directly transferred to the newer generation to ensure a continuous or a sustained fitness
of the population, in such a way that the fitness value for the newer generation will always

be either the same or better than the previous one.

As a result of this, elitism can rapidly increase the performance of the GA as it prevents

the loss of the already calculated fittest individual. It is worth noting that elitism does not

-17 -



Chapter 11 Genetic Algorithm and Fuzzy Logic

interfere with the normal stochastic operations of the GA. It is done after the whole

calculations of the current generation have already finished.

An illustration for the GA is graphically illustrated in the flow chart shown in Fig II-1.

( STA;RT )

Generate initial population P, randomly

Y

Criteria
satisfied or

Yes

termination
condition
reached?

Evaluate fitness of individuals
!

Selection
=
Crossover

!
Mutation

Replace old population P;_; with
new population P;

Figure I1-1. llustration of the GA
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2.2 FUZZY LOGIC

2.2.1 Introduction to Fuzzy Logic

Fuzzy logic is considered as a type of multi-valued logic system, in which variable reality
values can be any real number between zero and one [30]. It is used to address the definition
of partial reality, where the value of truth can vary between absolute true and total false. In
binary conditional systems, such as the Boolean system, the value of truth for the variables

can only either be a zero or a one.

Fuzzy logic is based on the fact that sometimes people make decisions based on non-
accurate and non-numerical data. Fuzzy models map ambiguity and imprecise knowledge

by means of computational intelligence [31].

The first major part of a fuzzy system is the fuzzification process, which transforms
numerical inputs into what is known as fuzzy membership functions, which are then used
achieve a fuzzy output membership function and a crisp output value that can then be used

as a final decision for the system and for control purposes.

An illustration for the Fuzzy Logic system is shown in Fig. II-1 below [32].

Rules
. ] ] | Crisp
Crisp Fuzzifier Defuzzifier ; .
T—— EGLIIPHT.‘-
HIiHI";
L
F r F d
i Inference S
Il'l[J'J'IJI Sols l:lilt[.lll[ S0

Figure II-2. Fuzzy Logic Illustration
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2.2.2 Fuzzy Logic System Architecture

Fuzzy logic systems are divided into four main parts:

o Fuzzification Module: It transforms the system inputs, which are crisp numbers, into
fuzzy sets. It splits the input values into different regions of various strength (LOW,
MED, HIGH, etc...). These regions can vary in numbers, according to the application

and the fuzzification model.

e Knowledge Base: Fuzzy logic systems are regarded to as Al-based system; therefore,
they possess a knowledge base where all of the agent's reference information and data
are stored. The rules that govern the Fuzzy Logic system contained in its knowledge

base. These rules take the form of an if-else ladder.

o Inference Engine: The Inference engine is the Fuzzy Logic System’s core. It is
analogous to the computer Central Processing Unit (CPU). It is the module where all the
information processing takes place within. The main task of the inference system is to
derive an acceptable result by interpreting all the data it receives from the unit of
fuzzification. This is accomplished with the help of the knowledge base rule. Finally, the
output conclusions will be sent to the defuzzification module to get the final meaningful

application-dependent output.

e Defuzzification Module: This module collects the data received from the Inference
Engine and transforms this data into a user-accepted application-dependent form. In
other word, it is the process that maps a fuzzy set to a crisp set. A lot of techniques can
be used to achieve this. The centre of gravity method is a very common one; in which,
the results of the rules are first added together according to certain criteria. The widely
used fuzzy set membership function has the shape of a triangle. If this triangle was cut
with a straight horizontal line somewhere between its upper and lower part, and its top
portion was removed, the remaining part will form a trapezoid. All the trapezoids

resulting from different function are then superposed together, forming a single shape
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and a fuzzy centroid is formed, where its centre corresponds to the defuzzified value.

Fig. III-2 below shows a demonstration of this method.

rule: IFxIS ATHEN nIS D:

rule 2: IFyISBTHENN IS E:

rule 3: IFzISCTHEN RIS F:

DEFUZZIFICATION:

CENTROID DEFUZZIFICATION
USING MAX-MIN INFERENCING

crisp value = n

Figure I1-3. Example of a Defuzzification module
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CHAPTER 111
MadHoc Simulator

Madhoc is a metropolitan MANET simulator completely written in Java and

available to use publicly [33] on the author’s website [34]. The simulator provides

the ability to simulate MANET using different parameters and real-life constraints

such as working area size, mobility speed, wall thickness, etc. It also supports

many different wireless technologies (e.g. Wi-Fi, Bluetooth, GSM, etc.). Most

importantly,

required decision parameters to optimize @it.

it implements the full DFCN broadcasting protocol with all the

Madhoc can be executed as a

standalone application, as shown in Fig. Ill-1, or as an Application Programming

Interface (API).
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Figure I1I-1. Madhoc Standalone Application Ilustration

To be able to collect the required statistics and results, a Madhoc monitor

class is used. A monitor is not a part of the physical network and does not have an

instance in real networks and is regarded to as an abstraction entity that only

exists at simulation level. It mainly aims at maintaining a global perspective on all
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nodes and for carrying out the required operations such as node deployment and

initialization. It mainly serves as an observer of the Ad-hoc decentralized process.

Fig. III-2 shows an illustration for such Monitor. Another major attribute of
the Madhoc simulator is that it does not use an event-driven simulation
architecture, but instead, the simulator’s kernel iterates upon a discrete time

domain, where the distance between two intervals is known as the resolution.

MadHoc Simulator

| Zmabity Woration: 47

@] e s — =
State: Seeping... Projection name

Gofor 1000 [terationts) || 7 measure Terminated: /alse

Figure I1I-2. Madhoc Numerical Measures

This parameter is defined by the user and should be fixed throughout all the
related applications to guarantee comparable and consistent results. The higher
this value is, the less accurate the simulation will become. This value should be
carefully used according to the required application. In the case of DFCN, this
value must be at least twice lower than the maximum RAD, otherwise the benefits

of using RAD will be completely lost.

Another important factor to consider while choosing the resolution is the
mobility scheme of the nodes, the resolution must be small enough to make sure
that the nodes move in reasonable steps, otherwise, some connections that could

have taken place in real life would not be simulated.
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CHAPTER YV
Related Work

In the literature, most research has been dedicated to solving the broadcasting issues by
using a multitude of different methods. Evolutionary multi-objective approaches have been
proven to be effective in solving broadcasting problems [35], however, they suffer from time
and performance issues [36]. Other methods focus on combinatory numerical models but
most of them fail to adequately reduce the routing overhead with highly scalable networks,

which is a main feature of MANET.

Those who focused on the DFCN protocol did not formulate a trending mobility model
for optimizing the decision parameters. Some of the researchers directly focused on detecting
the selfish nodes in the network and avoiding them to increase the efficiency of the
broadcasting protocols, the most notable work in this regard is by S. Subramaniyan et al.
[37], where a Record-and-Trust-Based Detection (RTBD) technique was simulated that can
efficiently detect selfish nodes in MANET.

The main focus of this work was to accelerate the detection of misbehaving selfish nodes.
The suggested technique consists of a packet dropping detection mechanism and a selfish
node reduction mechanism. The selfish node generates a trust report with each neighbour,
which in turn, reports its previous communication reports to the neighbouring node. Based
on that info, the neighbouring node can detect whether the selfish node has dropped packets
or not. Then, the neighbouring node gathers the trust report to detect misreporting and finds
out which node has dropped any packets. Also, a selfish node may report a false record to

hide the packet drops from being detected.

The proposed method managed to diminish the overhead, latency and overhead ratio
which improved the broadcasting performance of the MANET. However, the authors did
not demonstrate how the acquired security could be transferred to the neighbouring nodes in
the network so that they could avoid being compromised by the selfish nodes detected by
RTBD, meaning that the technique is not scalable on larger networks and the performance
will be degraded. Another key focus in the literature is intelligent rebroadcasting techniques
that reduce the overhead by estimating the usefulness of rebroadcasts and the probability of

causing a collision.
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S. S. Basurra et al. [38] discussed a Zone based Routing with Parallel Collision Guided
Broadcasting Protocol (ZCG) to reduce redundant broadcasting and to accelerate the path
discovery process. The authors compared ZCG with two other techniques, Dynamic Source
Routing (DSR) and Ad-hoc On Demand Distance Vector Routing (AODV). It was
concluded that ZCG can speed up the routing process in MANET due to its on-demand
parallel collision guided broadcasting. ZCG uses a one hop clustering algorithm that divides
the network into different group or zones led by reliable leader nodes that are mostly static

and have plentiful power resources.

The ZCG protocol depends on the decomposition of the network into contiguous zones,
with one node being selected from a group of nodes to be considered the zone leader, known
as ZL, which is selected based on a predetermine fitness criteria, such as high battery power
and/or zero/low mobility. Eventually, the ZL(s) establish connectivity among themselves,
either directly or via reliable intermediate nodes that are situated in the overlap of two or

more zone coverage arcas.

However, the proposed method lacked distribution fairness among the nodes and did not
protect zone members from selfish behaviour attributed to the Zone Leader. Another
interesting finding in the literature is the clustering of MANETSs as a mean to reduce the

complexity of the routing table.

M. Ahmad et al. [39] provided a comprehensive survey about the different clustering
algorithms that address this issue. It concluded that the effectiveness of the clustering
algorithms depends on a set of specific parameters, which are the nodes remaining power,

the relative mobility, the overhead data, the trust value, and the node reputation.

Raziel Carvajal-Gomez et al. [40] proposed and designed an emergent overlay technique
for efficient and reliable broadcast in heterogencous MANETSs. The proposed technique
allows the devices in the network to automatically switch from a controlled flooding
broadcasting scheme, to the use of an overlay. The authors tested the proposed technique on

600 mobile nodes using a full-stack simulation in OMNeT++ over an area of 90*45m.

The achieved results have shown that the adaption of emergent overlays reduced the
overall energy consumption and have improved the total coverage compared to other
protocols. It has also decreased the collision rate significantly. The proposed system tackled
the poor performance of the controlled flooding broadcasting, where the nodes density is

very large, and a broadcasting storm is likely to arise. In the proposed work, the nodes in

-27-



Chapter IV Related Work

very dense areas autonomously decide to switch from controlled flooding to the use of an
overlay. The authors also presented a mechanism for the autonomous adaption of overlay
where the nodes collect observables about their surrounding and the environment and then
an adaption policy triggers the creation of an overlay based on predefined thresholds over

the collected observables.

The suggested protocol was compared with two other adaptive protocols (ACF [41] and
S-H Flooding [42]) reached a reach-value of 99.99% outside points of interest (POI) regions
and 100% reach-value in POI regions, compared to values of 100%, 98.9% and 90.99%,
96.34% for the other algorithms respectively. The most challenging aspect about the
proposed system was the estimating of the threshold values that need to be applied over the
collected observables, therefore an automated technique that can calculate and estimate these

thresholds would significantly add to the proposed work.
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CHAPTER V
Proposed System

The proposed technique consists of a nested GA with fuzzy-based fitness. The aim is to
optimize the DFCN decision parameters according to the reachability time and to find certain

trends for each of the different scenarios.

The benchmark used is the reachability time for 10% of the nodes, which is the time
required so that 10% of the nodes in the network successfully deliver their messages. The
outer GA contains the DFCN parameters and the to-be-calculated output from the simulator.
The inner GA evolves a set of rules for the fuzzy system, where each chromosome represents

a complete fuzzy set and the inference output represents the inner fitness.

The final inner fitness value that is calculated after the convergence has completed sets
the fitness value of the outer GA. The proposed system is developed using C# language on
Microsoft Visual Studio 2017 under 64-bit Windows 10 with 8GB of RAM and an Intel Core
15-6500 CPU. Because the proposed system is built using C# and the Madhoc simulator
operates fully in Java, a mechanism that interfaces them was required. To be able to
accomplish this, each time the simulator is required to calculate the reachability time, it is
executed by the developed application as a command line program running inside a virtual

sandbox process, where all the standard inputs and outputs are redirected to the application.

Fig. V-1 shows a pseudo code for the system. Fig. V-2 shows the class diagram of the
designed system. The class Diagram shows the relation and the dependencies between the
different classes inside the code. and Fig. V-3 shows an illustration for the system. Figure

V-4 shows an example for running the system on one outer chromosome.
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r FUNCTION RunlnnerGA (innerGenerationsCount, oChromosome)

i< 0;

P; < InitializeInnerPopulation(innerPopulationSize, keyMin, keyMax );
r WHILE (i < innerGenerationsCount -1 )

FL <« BuildFuzzySystem_VariableSets( oChromosome );
Pis1 «— NULL;
j<0;
WHILE ( j < innerPopulationSize)
FL « InitializeFuzzySystemLinguistics( Pi[ j ] );
Fitness( Pi[ j ] ) «— FuzzySystem_InferenceResult( );
Jeitl
END WHILE
j<0;
WHILE ( j < innerPopulationSize /2 - 1)
parents = RouletteSelect( P; );
offspring[0,1] = Crossover(parents, innerGACrossoverProbability);
Pis1 « Pisy + offspring[0,1 ];
END WHILE
j<0
WHILE ( j < innerPopulationSize)
Pi[ j ] = Mutate( Pi[j ], innerGAMutationProbability);
jeith
END WHILE
Pis1 < Pyt + GetFittest( P; );
i—1i+1;

END WHILE
RETURN GetHighestFitnessValue( Pi );
END FUNCTION

(FUNCTION RunOuterGA (outerGenerationsCount): MAIN
i< 0;
P; < InitializePopulation(outerGenerationsCount, thresholds Values][ ]);

i

r WHILE (i < outerGenerationsCount -1 )

Pi+1 < NULL;

j<0;

WHILE( j < outerPopulationSize)
Output( Pi[ j J) < GetMadhocOutput( Pi[ j ]);
Fitness( Pi[ j ] ) < RunlnnerGA (Pi[j]);
J—Jth

END WHILE

j<0;

WHILE(j < OP_ outerPopulationSize /2 - 1)
parents = RouletteSelect(P;) ;
offspring[0,1] = Crossover(parents, outerGACrossoverProbability);
Pis1 < Pisy + offspring[0,17;

END WHILE

<0

WHILE ( j < outerPopulationSize)
Pi[ j ] = Mutate( Pj[ j ], outerGAMutationProbability);
Je<ith

END WHILE

Pi+1 < Py + GetFittest( P; );

i—i+1;

ExtractParametersAndOutput( P; );

END WHILE
57 END FUNCTION

Figure V-1. Pseudo-Code of the Proposed System
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The RunOuterGA function is the entry point of the program. The
InitializelnnerPopulation function creates the initial population with random fuzzy logic
keys that correspond to the linguistic strings. The oChromosome variable is the outer
chromosome passed from the outer GA to the inner one, per generation. The keyMin and
keyMax variables represent the range for the allowed number of keys per chromosome. At
line 5, the fuzzy logic system is initialized and the fuzzy sets are created using the
oChromsome genes, then at line 9, the linguistics are generated using the inner chromosome
Pifj], and finally at /ine 10, the fitness is calculated by getting the inference result for the
developed fuzzy logic system. The ExtractParametersAndOutput function is called per each
outer GA generation to extract the current values of the decision parameters and the output

from the fittest chromosome.

5.1 The Fuzzy Logic System

The fuzzy system is used to calculate the fitness for the inner GA. Each chromosome
from the inner GA will act as complete fuzzy set. Each DFCN parameter will act as a

linguistic variable with LOW, MED and HIGH as values.

All of the variables have a triangular membership function that is equally divided over
the maximum threshold of the respective parameters it represents. The rules for the fuzzy set
are generated and optimized using the inner GA, which will be highlighted later. In order to
accomplish this, the inner chromosome is decoded from a numerical form to equivalent

linguistic strings, according to Table V-1.

To get the output values, the inference system uses a centroid defuzzifier with an interval
of 1000. The interval represents the number of segments that the linguistic universe will be

split into to perform the numerical approximation of the area center.

Table V-1. NUMERICAL TO LINGUISTIC CONVERSION TABLE

Value Equivalent Linguistic

1 LOW

2 MED

3 HIGH

-1 NOT LOW

-2 NOT MED

-3 NOT HIGH

0 NOT APPLICABLE
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5.2 Outer Genetic Algorithm

The chromosome structure for the outer GA contains a hybrid of floating-
point and integer values that correspond to the DFCN parameters, and also
contain the output parameter which corresponds to the reachability time that will

be calculated using the Madhoc simulator.

The chromosome size for the outer GA has a fixed length of six genes. Fig.V-
5 illustrates the chromosome structure. The crossover is a standard single-point
operator that takes into consideration the gene placement to make sure the

swapped parameters are still compatible and are within the specified thresholds.

The mutation is performed through a non-uniform operator, which can be used
to limit the lower and upper boundaries for the genes - which is crucial to avoid
out-of-boundaries parameters - and also because it prevents the population from
stagnating during the early evolution stages. The outer population size is fixed at
100 chromosomes and runs for a maximum of 300 generations. The crossover and

mutation probabilities are fixed at 30% and 10% respectively.

The selection is done through a traditional Roulette-Wheel operator. It is
worth noting that the last gene (reachability time) is excluded from the evolution
process and is stored inside the chromosome and passed later to the fuzzy system.
All of the other aforementioned decision parameters are randomly generated

within the threshold.

Inputs Output

A )

Lower Upper Min Safe '
RAD RAD ProD Gain Density Time

Figure V-5 Outer Chromosome Structure (Size=6)
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5.3 Inner Genetic Algorithm

structure is different. It consists of a variable number of genes ranging from 3 to 15. Each
gene represents a key that encodes a linguistic string into numerical values as shown
previously. This had to be done in order to be able to evolve the rules using the GA. Each

key has a fixed length of 6 which corresponds to the number of input parameters and the

The inner GA uses the same operators as the outer one. However, the chromosome

output parameter.

generations is 100. Fig. VI-6. illustrates a sample inner GA with a population size of 7 and
random chromosome sizes, denoted with S,, where n is the chromosome number inside the

population.

The population size for the inner GA is set to 50 and the maximum number of

=7

Population Size

—— e — — ——— —— ———— ———————y

ProD is LOW AND SafeDensity is

| |
| |
i upperRad is NOT MED AND :

|
| |
| |

Proposed System

Fixed KEV Size=6

Figure V-6. Inner Genetic Algorithm Illustration
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Chapter V Proposed System

It also shows an example of how the key is decoded into a linguistic string. The inner
GA makes a complete run of 50 generations for each outer chromosome. The target is to

diversify the linguistics of the fuzzy logic to reach the best possible output.

The defuzzified output value represents the fitness of the outer chromosome. After doing
this for all the outer GA chromosomes, the best one is chosen and the outer GA transits into

the next generation.
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CHAPTER VI

Results and Discussion

The experiments are run five times and the results are averaged. The results show the
convergence of decision parameters and the output (solid black line). The calculated

logarithmic trendline (red dotted line) provides a mathematical model for the parameters.

The trend line is calculated using a curve fitting software called “Curve Expert” since
the high number of points of the 300 generations for each scenario, the “Curve Expert”
software calculate a non-linear regression “Curve Fit” for the points. The software is
implemented using “R” language which is aprogramming language and free
software environment for statistical computing and graphics supported by the R Foundation
for Statistical Computing. The R language is widely used among statisticians and data
miners for developing statistical software and data analysis. Polls, data mining surveys, and
studies of scholarly literature databases show substantial increases in popularity, as of
November 2019, R ranks 16th in the TIOBE index, a measure of popularity of programming

languages.

5.1 Results for Highway Mobility Model

Fig. VI-(1-7) shows the results for the highway mobility environment. The time required
to reach the destination decreased from 26.44 to 23.41 seconds, which amounts to 11.45%.
Given that the number of nodes in this network is 80, the average time for a node to deliver
a message decreased from 3.3 to 2.92 seconds. the average time for a node to deliver a
message decreased from 3.3 to 2.92 seconds. The average time for each node is calculated

by dividing the reachability time (tr) by the number of nodes per kilo meter square “km?”.

- 40 -



Chapter VI Results and Discussion

5.2

»
o

Py
o

»
>

»
N

LowerRAD (second)

=Y

3.8

3.6 -

3.4

1 24 47 70 93 116 139 162 185 208 231 254 277 300
Generations

Figure VI-1. LowerRAD Convergence for The Highway Mobility Model

9.5

8.5

7.5

UpperRAD (second)

1 24 47 70 93 116 139 162 185 208 231 254 277 300

Generations

Figure VI-2. UpperRAD Convergence for The Highway Mobility Model

-4] -



Chapter VI Results and Discussion

47

42

w
~N

SafeDensity (device)
w
N

27

22

1 24 47 70 93 116 139 162 185 208 231 254 277 300
Generations

Figure VI-3. SafeDensity Convergence for The Highway Mobility Model

72

2 | [ T

(9]
N

ProD (device)

=
N

32

22

1 24 47 70 93 116 139 162 185 208 231 254 277 300
Generations

Figure VI-4. ProD Convergence for The Highway Mobility Model

-4) -



Chapter VI Results and Discussion

0.65

0.6

0.55

MinGain

0.5

0.45

0.4

0.35

1 24 47 70 93 116 139 162 185 208 231 254 277 300
Generations

Figure VI-5. MinGain Convergence for The Highway Mobility Model

26.4

25.9

25.4

N
P
o

N
»
kS

Time (second)

. 1 .........................

22.9

1 24 47 70 93 116 139 162 185 208 231 254 277 300
Generations

Figure VI-6. Time Convergence for The Highway Mobility Model

- 43 -



Chapter VI Results and Discussion

109

. j ........................

107

106

Fitness

105

104

103
1 24 47 70 93 116 139 162 185 208 231 254 277 300
Generations

Figure VI-7. Fitness Convergence for The Highway Mobility Model

Table VI-1 shows the output trendline for each decision parameter and the equivalent

logarithmic regression expressions.

Table VI-1. TRENDLINE PARAMETERS FOR THE HIGHWAY SCENARIO

Parameter Trendline Expression
LowerRAD ! —0.117 * In(G) + 4.2076
UpperRAD ! —0.105# In(G) + 6.6723
ProD 1 3.3079 * In(G) + 47.885
MinGain 1 —0.014 * In(G) + 0.5087
SafeDensity ! —1.818 % In(G) + 43.76

5.2 Results for Mall Mobility Model

Fig. VI-(8-14) shows the results for the Mall mobility scenario and Table VI-2 shows the

trendline for the decision parameters. The time to reach the nodes decreased from 4.98
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seconds to 3.57 seconds which amounts to 28.3%, which brings down the average required

time to deliver a message from 7.6ms to 5.49ms.
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Table VI-2. TRENDLINE PARAMETERS FOR MALL SCENARIO

Parameter Trendline Expression
LowerRAD ! —0.463 * In(x) + 5.7409
UpperRAD ! —0.106 * In(x) + 7.3855
ProD ) 0.9608 * In(x) + 82.223
MinGain T 0.0502 * In(x) + 0.445
SafeDensity 1 2.0984 * In(x) + 60.488

5.3 Results for Human Mobility Model

The results for the human mobility model are shown in Fig. VI-(15-21) and the respective
trendline parameters are shown in Table VI-3. As for the human mobility scenario, the time
to deliver the messages to their respective destinations decreased from 4.07 to 3.78 seconds,
which amounts to 7.12%. The average time to deliver a message decreased from 5Sms to

4.6ms.
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Table VI-3. TRENDLINE PARAMETERS FOR HUMAN MOBILITY SCENARIO

Parameter Trendline Expression
LowerRAD ! —0.088 * In(x) + 5.2098
UpperRAD 1 0.3832 * In(x) + 6.526
ProD l —0.757 * In(x) + 22.479
MinGain ! —0.012 * In(x) + 0.5084
SafeDensity l —7.621 x In(x) + 66.544

5.4 Discussion

By inspecting all the previous results, it appears that the mall mobility model benefited
the most from the optimization of the DFCN decision parameters and the human mobility
model benefited the least. While these two models have very close features, the major
difference between them, as stated previously, is the randomness of the movements. The
human mobility model is governed by human intentions of moving between a dynamic list
of targets while the mall one is governed by random motion of shoppers moving between

random shops. Also, by inspecting the highway scenario, it seems that the lack of enough
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nodes has significantly raised the average delivery time six times (6x) the delivery time in

other scenarios.

As for the highway scenario, one of the most notable outcomes, is the range for the RAD
parameters. Both the UpperRAD and the LowerRAD are uniformly decreasing throughout
the whole GA evolution process without fluctuating. This can be attributed to the fact that

the nodes are sparse (situated far apart) and are moving relatively fast.

The LowerRAD assures that the minimum time for rebroadcasting is as low as possible
to avoid missing the chances of delivering a message to a nearby fast-moving node. It can
also be seen that the ProD parameter has increased in the same manner. This is responsible
for the network sensitivity or awareness towards newly introduced neighbours. This

optimization model can decrease the probabilities of a broadcasting storm from happening.

To demonstrate the consistency and statistical validity of the achieved results, a 5%

confidence interval for the final reachability time is calculated and is shown in Table VI-4.

Table VI-4. 5% CONFIDENCE INTERVAL FOR THE FINAL TIME

(1)
Mobility Model 5% Confidence Interval
(seconds)
Highway 23.4+£0.75
Mall 3.57+0.34
Human 3.78 £ 0.02
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CHAPTER VII

Conclusion and Future Work

The proposed system managed to decrease the message delivery time for the three real-
life scenarios (the highway, the mall and the human mobility models) by optimizing the

decision parameters for the DFCN protocol.

The mall mobility model benefited the most from the optimization of the DFCN
parameters, which is mainly attributed to the randomness of the mobility, since the human

mobility model also shares very close parameters but only differs in the movement intention.

In the human mobility model, the mobility is governed by the intentions of the humans
to reach a certain dynamic list of destinations and, therefore, the randomness significantly
decreases. Also, the highway mobility model yielded the highest average message delivery
time, which is attributed to the lack of nodes and the very high mobility speed, and since the
DFCN protocol relies on 1-hop neighbours to deliver the messages to their destinations, this

scenario severely affects it.

In the future, a mathematical model that is based on the calculated trendlines can be
established and tested. This will help achieve faster results, instead of relying solely on
metaheuristic techniques, which require a significant amount of time to converge to the
optimal solutions. Another key-point to consider is to test the proposed system with a higher
number of reachable nodes, other than the specified 10%. This will help understand how the
tuned parameters of the DFCN protocol respond to the increased number of nodes for the

same scenarios.

This mathematical model can also help with real time broadcasting in MANETSs and will
allow the network to dynamically readjust the broadcasting parameters as the network

density and structure change.

Also, Genetic Programming (GP) can be experimented with, in order to evolve programs
and expressions dedicated to each one of the three aforementioned scenarios. The resulting
programs can then be used as a rigid optimization model without the need to repeat the

evolution process each time like GA.
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