Bio-inspired Machine Learning)
Mechanism for Detecting Malicious URL | @i
Through Passive DNS in Big Data

Platform

Saad M. Darwish, Ali E. Anber, and Saleh Mesbah

Abstract Malicious links are used as a source by the distribution channels to broad-
cast malware all over the Web. These links become instrumental in giving partial
or full system control to the attackers. To overcome these issues, researchers have
applied machine learning techniques for malicious URL detection. However, these
techniques fall to identify distinguishable generic features that are able to define the
maliciousness of a given domain. Generally, well-crafted URL’s features contribute
considerably to the success of machine learning approaches, and on the contrary, poor
features may ruin even good detection algorithms. In addition, the complex relation-
ships between features are not easy to spot. The work presented in this paper explores
how to detect malicious Web sites from passive DNS based features. This problem
lends itself naturally to modern algorithms for selecting discriminative features in
the continuously evolving distribution of malicious URLs. So, the suggested model
adapts a bio-inspired feature selection technique to choose an optimal feature set in
order to reduce the cost and running time of a given system, as well as achieving an
acceptably high recognition rate. Moreover, a two-step artificial bee colony (ABC)
algorithm is utilized for efficient data clustering. The two approaches are incorpo-
rated within a unified framework that operates on the top of Hadoop infrastructure
to deal with large samples of URLs. Both the experimental and statistical analyses
show that improvements in the hybrid model have an advantage over some conven-
tional algorithms for detecting malicious URL attacks. The results demonstrated that
the suggested model capable to scale 10 million query answer pairs with more than
96.6% accuracy.

S. M. Darwish
Department of Information Technology, Institute of Graduate Studies and Research, Alexandria
University, 163 Horreya Avenue, El-Shatby, P.O. Box 832, Alexandria 21526, Egypt

A. E. Anber (<)
Faculty of Computers and Information, Damanhour University, Damanhour, Egypt
e-mail: ali.anber @damanhour.edu.eg

S. Mesbah
Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 147
A. E. Hassanien et al. (eds.), Machine Learning and Big Data Analytics

Paradigms: Analysis, Applications and Challenges, Studies in Big Data 77,
https://doi.org/10.1007/978-3-030-59338-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59338-4_9&domain=pdf
mailto:ali.anber@damanhour.edu.eg
https://doi.org/10.1007/978-3-030-59338-4_9

148 S. M. Darwish et al.

Keywords Machine learning - Malicious URLs - Passive DNS - Big data -
Hadoop - Genetic algorithm - Artificial bee colony

1 Introduction

The web has become a platform for supporting a wide range of criminal enterprises
such as spam-advertised commerce, financial fraud, and malware propagation. The
security group has responded to this by creating blacklisting tools. The distribution
channels use harmful URLs as a medium to spread malware throughout the Internet.
These relationships help to give the attackers, who use systems for various cyber-
crimes, partial or comprehensive control over the system. Systems with the ability to
detect malicious content should be quick and precise to detect such crimes [1]. DNS
data analysis has several advantages compared to other methods like the blacklist
of compromised domains as the DNS traffic has a considerable number of useful
features to classify domain names affiliated with fraudulent activities [2].

Detection of malicious domains through the analysis of DNS data has a number
of benefits compared to other approaches such as blacklists [2, 3]. First, DNS data
constitutes only a small fraction of the overall network traffic, which makes it suitable
for analysis even in large-scale networks that cover large areas. Moreover, caching,
being an integral part of the protocol, naturally facilitates further decrease in the
amount of data to be analyzed, allowing researchers to analyze even the DNS traffic
coming to top level domains. Second, the DNS traffic contains a significant amount
of meaningful features to identify domain names associated to malicious activities.
Third, many of these features can further be enriched with associated information,
such as autonomous system number, domain owner, and so on, providing an even
richer space exploitable for detection. The large amount of features and the vast
quantity of traffic data available have made DNS traffic a prime candidate for exper-
imentation with various machine-learning (ML) techniques applied to the context
of security. Fourth, although the solutions to encrypt DNS data exist, still a large
fraction of DNS traffic remains unencrypted, making it available for the inspection
in various Internet vantage points. Fifth, sometimes researchers are able to reveal
attacks at their early stages or even before they happen due to some traces left in the
DNS data.

Detecting malicious URLSs is an essential task in network security. Despite many
exciting advances over last decade for malicious URL detection using machine
learning techniques, there are still many open problems and challenges which are crit-
ical and imperative, including but not limited to the following [4]: (1) High volume
and high velocity: The real-world URL data is obviously a form of big data with
high volume and high velocity. It is almost impossible to train a malicious URL
detection model on all worlds’ URL data using machine learning. (2) Difficulty in
collecting features: collecting features for representing a URL is crucial for applying
machine learning techniques. In particular, some features could be costly (in terms

Bio-inspired Machine Learning Mechanism for Detecting ... 149

of time) to collect, e.g., host-based features. (3) Feature representation: In addi-
tion to high volume and high velocity of URL data, another key challenge is the
very high-dimensional features. Some commonly used learning techniques, such as
feature selection, dimension reduction and sparse learning, have been explored, but
they are far from solving the challenge effectively. Besides the high dimensionality
issue, another more severe challenge is the evolving high dimensional feature space,
where the feature space often grows over time when new URLs and new features are
added into the training data. This again poses a great challenge for a clever design
of new machine learning algorithms which can adapt to the dynamically changing
feature spaces. (4) Concept drifting and new emerging challenges: Another chal-
lenge is the concept drifting where the distribution of malicious URLs may change
over time due to the evolving behaviors of new threats and attacks. This requires
machine learning techniques to be able to deal with concept drifting whenever it
appears. Besides, another recent challenge is due to the popularity of URL short-
ening services, which take a long URL as input and produce a short URL as an
output.

A variety of approaches have been attempted to tackle the problem of Malicious
URL Detection. According to the fundamental principles, these approaches can be
broadly grouped into three major categories: (i) Blacklisting, (ii) Heuristics, and
(ii1) Machine Learning approaches. The key principles of each category are briefly
described in [4]. Despite many exciting advances over last decade for malicious URL
detection using machine learning techniques, there are still many open problems
and challenges which are critical and imperative, including but not limited to the
following [3]: high volume and high velocity, difficulty in acquiring labels, difficulty
in collecting features, feature representation, and concept drifting [1]. In recent times,
improvements in technology and infrastructure have led to creating the problem of
big data. Accordingly, it is necessary for cyber security professionals to design and
implement novel methods to efficiently and effectively mitigate cyber security threats
in a big data world. Hadoop, an open-source distributed storage platform that can run
on commodity hardware, has been utilized to better accommodate the big data storage
requirements of massive volume and fast-speed processing criteria of potentially very
complex, heterogeneous data structures [5].

1.1 Problem Statement and Research Motivation

Compromised websites that are used for cyber-attacks are named as malicious URLSs.
In fact, nearly one third of all websites were identified as potentially malicious in
nature, showing that malicious URLs are used widely in order to commit cyber-
crimes [3]. To overcome the problem to maintain and update a blacklist, some systems
inspect the web page content and analyze the behavior after visiting the Web page.
Unfortunately, this increases the run time overhead and affects the user experience.
With the development of machine learning, several classification-based methods,
using the features of Web page content and URL text, are also used to detect malicious

150 S. M. Darwish et al.

URLs. However, the attackers adjust their strategies accordingly and invent new kinds
of attacks [6]. This work is motivated by the observation that attackers tend to abuse
certain domain features during this process. By basing a detection system on such
features, we can effectively detect and blacklist the malicious web pages.

1.2 Contribution and Methodology

This paper addresses the problem of detecting malicious Web sites using machine
learning over URL-based features. The challenge is to construct a system that is
accurate, scalable, and adaptive. To this end, the contributions of this paper are the
following: (1) Show that better classification is possible by extracting more mean-
ingful URL data characteristics that outweigh the advantages that a skilled learner
makes. For this reason, a bio-inspired reduction process is applied that adopts GA to
refine the lists of features (optimal features), with the goal of building a robust and
efficient learning model. (2) Adapt a two-step artificial bee colony (ABC) algorithm
for efficient Malicious URL clustering.

The rest of this paper is organized as follows: Sect. 2 presents a review of the
recent related works. Section 3 introduces the proposed malicious URL detection
model. Section 4 exhibits the experimental results to evaluate the performance study
of the proposed model. Finally, we conclude the paper and give future directions in
Sect. 5.

2 Related Work

Because the suggested technique is based on passive domain name-based features of
the URL, more emphasis in surveying related work that incorporates those features
are placed. Ma et al. [6] presented an approach for classifying URLs automati-
cally as either malicious or benign based on supervised learning across both lexical
and host-based features. Another approach was suggested by Zhang et al. in 2007
[7] that presented the design and evaluation of Carnegie Mellon Anti-phishing and
Network Analysis Tool (CANTINA), a novel content-based approach for detecting
phishing web sites. CANTINA uses the well-known Term Frequency/Invest Docu-
ment Frequency (TF-IDF) algorithm and applies it to anti-phishing, to robust
hyperlinks, the idea of overcoming problems with page.

Kan and Thi [8] introduced the notion of bag-of-words representation for clas-
sifying URLs. Concurrently, in 2009, Guan et al. [9] had examined the aspect of
instant messaging (IM) for classifying URLs. Although they used several URL-
based features, they also take advantage of a number of IM-specific features such as
message timing and content. Yet, this algorithm needs more URL message samples
to make their experiments more accurate and convincible. Watkins et al. [3] a strategy
focused on an integral feature of Big Data was launched in 2017: the overwhelming

Bio-inspired Machine Learning Mechanism for Detecting ... 151

majority of network processing in a historically guarded business (i.e., using defense-
in-depth) is non-malicious. The core objective of Bilge et al. [10] work is to build an
exposure system that is designed to detect such domains in real time by applying 15
unique features grouped into four categories. Although URLS cyber security models
have been studied for nearly many decades, there is still room to make it more efficient
and practical in the real application.

According to the aforementioned review, it can be found that past studies were
primarily devoted to (1) Blacklisting, which cannot predict the status of previously
URLSs or systems based on site content or behavior assessments that require visits
to potentially risky sites. (2) Not addressing the issues related to the selection of
optimal feature set from the pool of extracted features. In general, with appropriate
classifiers, it is feasible to automatically shift through comprehensive feature sets
(i.e., without requiring domain expertise) and identify the most predictive features
for classification. However, to best of my knowledge, little attention has been paid to
devising a new bio-inspired feature selection technique for a malicious URL detec-
tions system that relies on a big number for training samples (big data environment).
Most of the current bio-inspired optimization techniques for malicious URL detec-
tion depend on combining two or more algorithms to enhance the exploration and
exploitation fitness of the basic algorithm. The next Section discusses in detail the
suggested model that integrates the Hadoop framework to handle big data with a
bio-inspired artificial Bee colony algorithm for URL classification.

3 The Proposed Model

The work presented in this paper explores how to detect malicious Web sites from
passive DNS based features. This issue naturally leads to new algorithms in which
biased features may be chosen while Malicious URLs are constantly being spread.
So, the suggested model adapts a bio-inspired feature selection technique to choose
an optimal feature set in order to reduce the cost and running time of a given system,
as well as achieving an acceptably high recognition rate. Moreover, a two-step arti-
ficial bee colony (ABC) algorithm is utilized for efficient data clustering. The two
approaches are incorporated within a unified framework that operates on the top
of the Hadoop infrastructure to deal with large samples of URLs. Herein, a modi-
fied representation learning model based on genetic algorithm is proposed to select
the most representative features that keep the classification accuracy as high of the
state of the art models that use hundreds or thousands of features, allowing possible
embedded programs to run fast looking for the characteristics that match malicious
URL behavior. Moreover, this model requires large datasets to train and to tune the
learning prediction algorithm. To address this problem, Apache Hadoop is employed
as a distributed computing platform. Figure 1 shows the main components of the
suggested prediction model, and how these components are linked together and the
following subsections discuss its steps in detail.

152

Training Phase

P-DNS Dataset/
PCAPs Files

Data Management Phase

S. M. Darwish et al.

Testing Phase

,f‘ . \.\
{ Testing Data)

o] -

5 ’

3 ()
Sulbnet Subret Sabaet
of Data of Data it

Qo8
DNS zta;e: Featureggécég | |

Machine learning Phase

Extracted Features

p) F lection
0 4 eatures Selectio If \
Using (
9 Genetic Algorithm |\ /5 %/
A

l Optimal Features

—— Training

===p Testing

Non-Malicious URL Malicious URL

Fig.1 The proposed malicious URL detection model

Bio-inspired Machine Learning Mechanism for Detecting ... 153

3.1 Training Phase

Step 1: Passive DNS Dataset. The challenges of access to DNS data faced by the
research community lie in two aspects [2]: (1) first is the data collection phase; the
peculiarity of many existing DNS-based malicious domain detection techniques is
that they work best in big data scenarios. Thus, they may not be able to produce
meaningful results on datasets collected in small networks. Meanwhile, integrating
data from DNS servers belonging to different organizations would often face signif-
icant bureaucratic/legal obstacles, due to the sensitive nature of DNS logs. (2) Even
a bigger challenge lies in data sharing. Unfortunately, security related data are noto-
riously sensitive and hard to share. In general, Passive DNS data collection happens
through the installation of sensors to DNS servers or the connection to DNS server
logs for the purpose of obtaining real DNS queries. Furthermore, passive DNS data
are linked to the behavior of individual users, so passive DNS data could be used
to detect malicious domains with techniques that rely on user-level features (e.g.,
temporal statistics of user queries).

Step 2: Data Management Phase. Traditional computing storage platforms like rela-
tional databases do not scale effectively against the onslaught of big data challenges
posed by malicious URL detection. There should be only two types of headings. The
headings of the lower level stay unnumbered and formatted as run-in headings. To
address this problem, some authors suggested using distributed computing platforms
such as Apache Hadoop. Hadoop, an open-source distributed storage platform that
can run on commodity hardware, has been utilized to better accommodate Big data
processing requires of massive volume and high speed along with heterogeneous
data structures theoretically very complex. Hadoop provides a software framework
for distributed storage and distributed computing. It divides a file into the number of
blocks and stores it across a cluster of machines. It does distributed processing by
dividing a job into a number of independent tasks. These tasks run in parallel over
the computer cluster.

Hadoop MapReduce includes several stages [11]: In the first step, the program
locates and reads the «input file» containing the raw data. As the file format is
arbitrary, there is a need to convert data into something the program can process. The
«InputFormat» and «Record Reader» does this job. InputFormat uses the InputSplit
function to split the file into smaller pieces. Then the Record Reader transforms the
raw data for processing by the map. It outputs a list of key-value pairs. Once the
Mapper processes these key-value pairs, the result goes to «OutputCollector». There
is another function called «Reporter» which intimates the user when the mapping
task finishes. In the next step, the Reduce function performs its task on each key-
value pair from the Mapper. Finally, Output Format organizes the key-value pairs
from Reducer for writing it on HDFS.

Step 3: Data Preprocessing. Data pre-processing is an important phase in machine
learning, since the quality of the data and its useful information affects the capacity
of the proposed model to learn directly; therefore, it is extremely important that the

154 S. M. Darwish et al.

data are preprocessed before feeding it into the model [12]. Data preprocessing is
the process of simply transforming raw data into an understandable format. Prepro-
cessing involves various steps that help to convert raw data into a processed and
sensible format such as data cleaning, data integration, data transformation, and data
reduction. The main use of the cleaning step is based on detecting incomplete, inac-
curate, inconsistent and irrelevant data and applying techniques to modify or delete
this useless data.

Step 4: Feature Extraction. In machine learning, feature extraction starts from
an initial set of measured data and builds derived values (features) intended to be
informative and non-redundant, facilitating the subsequent learning and general-
ization steps, and in some cases leading to better human interpretations. Feature
extraction is a dimensionality reduction process, where an initial set of raw variables
is reduced to more manageable groups (features) for processing, while still accu-
rately and completely describing the original data set [6]. Content-features usually
require downloading the web-page, which would affect the feature collection time.
In general, the success of a machine learning model critically depends on the quality
of the training data, which hinges on the quality of feature representation. Given a
URL u € U where U denotes a domain of any valid URL strings, the goal of feature
representation is to find a mapping g : U — R? such that g(U) — X where X € R?¢
is a d-dimensional feature vector, that can be fed into machine learning models. The
process of feature representation can be further broken down into two steps:

e Feature Collection: This phase is engineering oriented, which aims to collect
most if not all relevant information about the URL.

e Feature Preprocessing: In this phase, the unstructured information about the
URL is appropriately formatted and converted to a numerical vector so that it can
be fed into machine learning algorithms.

The suggested model relies on DNS Answer-based, TTL Value-based, and
Domain-Name-based features. See [3] for more details.

Step 5: Feature Selection Using Genetic Algorithm. It is essential to select a
subset of those features which are most relevant to the prediction problem and are
not redundant. Heuristic search is an intelligent search process through an extremely
wide range of solutions to detect a satisfactory solution. No exhaustive sequential
selection process can generally be guaranteed for the optimal subset; any ordering
of the error probabilities of each of the 2" feature subsets is possible. In this case,
an instance of a GA-feature selection optimization problem can be described in a
formal way as a four-tuple (R, Q, T, f) defined as [13, 14]:

® R is the solution space (initial population—a combination of 16 feature vector per
URL—a matrix n x 16) where n represents the number of URL samples. Each
bit is signified as a gene that represents the absence or existence of the feature
within the vector. Every feature vector is represented as a chromosome.

e () is the feasibility of predicate (different operators—selection, crossover, and
mutation). The crossover is the process of exchanging the parent’s genes to

Bio-inspired Machine Learning Mechanism for Detecting ... 155

produce one or two offspring. The purpose of mutation is to prevent falling into
a locally optimal solution of the solved problem [14]. A uniform mutation is
employed for its simple implementation. The selection operator retains the best
fitting chromosome of one generation and selects the fixed numbers of parent chro-
mosomes. Tournament selection is probably the most popular selection method
in genetic algorithm due to its efficiency and simple implementation.

e [is the set of feasible solutions (new generation populations). With these new
generations, the fittest chromosome will represent the URL feature vector with a
set of salient elements. This vector will specify the optimal feature combination
explicitly according to the identification accuracy.

e fis the objective function (fitness function). The individual that has higher fitness
will win to be added to the predicate operators mate. Herein, the fitness function
is computed based on accuracy Acc value that shows the difference between the
real URL’s classification, and it’s computed one.

Acc = (True Positive + True Negative)/(no. Positive + no. Negative)

(D

Accuracy (Acc) is the ratio of the correctly identified domains to the whole size
of the test set. The higher the value is, the better (Acc € [0, 1]). True Positive (TP)
is the correctly identified malicious domains, True Negative (TN) is the correctly
identified benign domains, P is the total number of malicious domains, and N is the
total number of benign domains.

Step 6: Artificial Bee Colony (ABC) Classifier. The final step includes employed
an artificial bee colony to classify the URLs malicious or benign based on the training
dataset that contains the best feature vector of each URL. In this case, to accelerate
the convergence rate and maintaining the balance between exploration and exploita-
tion, in this research work two-step ABC algorithm is utilized to improve the ABC
algorithm for clustering problems by using K-means algorithm [15]. The combina-
tion of ABC and K-means (named ABCk) uses the merits of the k-means and ABC
algorithms for solving the problem of malicious URL classification. In this case,
the suggested model uses sensitivity as a fitness function. Sensitivity is defined in
Eq. 2 as the ratio of the True Positives to the sum of the True Positives and the False
Negatives. The True Positives are the correctly identified malicious domains, and the
False Negatives are the domains that are malicious but were incorrectly identified as
non-malicious.

Sensitivit True Positive @)
ensitivity =
y True positive + False negative

156 S. M. Darwish et al.

3.2 Testing Phase

In this step, given the unknown URL, the model starts with extracting the features
vector for this URL that follows the indices of the best features vector learned from
the training stage. This extracted feature vector is then classified according to its
similarity to the final cluster centers generated from applying the artificial bee colony
classifier in the training phase.

4 Experimental Analysis and Results

In this section, many experiments are conducted to validate the performance of the
suggested malicious URL detection model and compare it with some common detec-
tion techniques. The performance is validated in terms of precision, false positive
rates, Accuracy, True Negative rate, Recall, and F-Measure based. The experiment
was carried out in Intel Xeon E5-2620v3 @ 2.4 GHz (12 CPUs) processor with
32.00 GB RAM implemented in Java. The experiments are conducted using a bench-
mark dataset that is comprised of captured passive DNS data, which are answers (e.g.,
IP address, time to live (TTL), record counts) from authoritative DNS servers given
domain name queries from the browsers of users. A big dataset totaling 184 million
rows is extracted.

e Experiment 1: (The significance of features selection)

Aim: To validate the benefits of employing a feature selection module within
the suggested model; this experiment implements the suggested model using
both full features vector and optimal features vector to investigate the difference
between the two runs in terms of detection accuracy and time.

Observations: The results in Figs. 2 and 3 reveals that the use of optimal
features achieves an increase in accuracy in terms of True Positive, True Nega-
tive, False Positive and False Negative of approximately 1% compared to using
full feature vector. Although this increase is relatively small, the benefit is to
reduce the testing time for each URL from approximately one second to 500 ms.
Discussions: As the proposed model tries to select of the most prominent
features that contain the URLs characteristics which is able to distinguish Web
sites either malicious or benign, so this features vector as expected yields
increasing in detection accuracy. One possible explanation of these results is
that the feature selection module able to remove redundant features (high corre-
lated features) and discards features leading to mislabelled based on fitness
function.

e Experiment 2: (Classifier evaluation)

Aim: Since there is a wide range of supervised classification algorithms, this
set of experiments is conducted to assess a sample of the collected dataset

Bio-inspired Machine Learning Mechanism for Detecting ... 157

Fig. 2 Confusion matrix

using optimal features *False

Negative

*True
Positive

eTrue
Negative

*False
Positive

Fig. 3 Confusion matrix
using all features

*False
Negative

*True
Positive

*True
Negative

*False
Positive

according to three classifiers using Weka [16] as well as ABC and two-step
ABC classifiers. The three classifiers were tested covering tree-based (Random
Forest, C4.5) and function-based (SVM). The classification was made without
parameters tuning through a ten-fold cross-validation as a first step to select
the most promising approach.

Observations: Results for accuracy, true positives and true negatives are given
in Fig. 4 for each classifier. Among the tested classifiers, SVM yields the
worst accuracy (86.31%) while being efficient in identifying legitimate URLs
(93.1%). Tree-based classifiers have approximately the same performance
(around 90%) with disproportionate true positives and true negatives. The ABC
classifier has approximately the same performance of random forest classifier.
The best performer is two-step ABC classifier, correctly classifying 96.6% of
URLs, being the best.

158 S. M. Darwish et al.

100

98
96
94
92
W Accuracy
88 B TP rate
86
84 TN rate
82
80
SVM ABC

Random Cc4.5 Two-step
Forest ABC
Classifier

Score
(Vo)
o

Fig. 4 Classification results for 6 classifiers

Discussions: ABC classifier takes a long time because of its stochastic nature.
It is also observed that the position of bees and food sources is identified
randomly initially which takes more time for optimizing, especially in clus-
tering problems. The solution search equation of ABC is good at exploration,
but poor at exploitation, which results in the poor convergence. It is also noted
that the convergence speed of ABC algorithm is decreased as dimensions of
the problem are increased. In two-step ABC algorithm, the initial positions
of food sources are identified using the K-means algorithm instead of random
initialization. So, it yields more accurate classification.

e Experiment 3: (Concept drift)

Aim: Phishing tactics and URL structures keep changing continuously over
time as attackers come up with novel ways to circumvent the existing filters.
As phishing URLs evolve over time, so must the classifier’s trained model
to improve its performance. In general, retraining algorithms continuously
with new features is crucial for adapting successfully to the ever-evolving
malicious URLs and their features. An interesting future direction would be
to find the effect of variable number of features using online algorithms in
detecting phishing URLs. Herein, the whole passive DNS data set is divided
into 15 patches; each patch contains approximately 1,200,000 samples with
different numbers of benign and malicious URLs. The suggested model was
trained with each patch separately to validate its classification error rates using
each patch as a training set.

Observations: Fig. 5 shows the classification error rates for the suggested
classifier after training using different patches. The x-axis shows the patch
number in the experiment. The y-axis shows the error rates on testing the
suggested classifier. Figure 5 reveals that the error rate fluctuates between 2.2

Bio-inspired Machine Learning Mechanism for Detecting ... 159

2.5
2.45
2.4
2.35
Errorrate 2.3
2.25
2.2
2.15
2.1

- NN < N O N 00 OO0 0O 4 NN < N

S 55665566 % <=

T T m ®E®mmem® 2 LL L8 gL

a oo a0 @© (MM M © @©

a o o oo o

Patch No

Fig. 5 Error rates of the suggested classifier after training them on different patches

and 2.4% for all patches. So, the suggested model demonstrates the stability
regarding error rate despite the changing the dataset used.

Discussions: one possible explanation for these results is that the suggested
model is built based on optimal features vector that has discriminative ability to
distinguish between benign and malicious URLSs. This feature vector minimizes
the inter-class similarity while maximizes intra-class similarity. The inter-class
cluster show the distance between data point with cluster centre, meanwhile
intra-class cluster show the distance between the data point of one cluster with
the other data point in another cluster.

5 Conclusion

DNS data carry rich traces of the Internet activities, and are a powerful resource
to fight against malicious domains that are a key platform to a variety of attacks.
To design a malicious domain detection scheme, one has to consider the following
major questions that hinder the advances of the field: (1) data sources: what types
of DNS data, ground truth and auxiliary information are available; (2) features and
data analysis techniques: how to derive features to match intuitions of malicious
behaviors, and what types of detection techniques the malicious domain discovery
problem can be mapped to; (3) evaluation strategies and metrics: how to evaluate the
robustness of a technique given the adaptive nature of attackers, and what metrics to
use for these purposes.

The work presented in this paper proposes a new model to discover malicious
domains by analyzing passive DNS data. This model takes advantage of the dynamic
nature of malicious domains to discover strong associations among them, which are
further used to infer malicious domains from a set of existing known malicious ones.
The central finding of the work in this paper is that machine learning techniques

160 S. M. Darwish et al.

can alleviate the disadvantages of blacklists, heavyweight (use more features and so
have a higher accuracy) and lightweight (useless features and consumes the features
from the browser) classifiers for detecting malicious URLSs. This paper demonstrated
that the approach of using an optimal number of features (middleweight) extracted
from the original features vector had clear advantages over larger feature sets. One
of the major contributions of the work in this paper was to explore a hybrid machine
learning technique (K-mean and ABC) that used selected discriminative features and
the use of the Hadoop framework to handle the big size of URLs data. The results
demonstrated that the suggested model capable of scaling 10 million query answer
pairs with more than 96.6% accuracy. The major limitation of the suggested model
is that it cannot take an arbitrary given domain and decide whether it is potentially
malicious or not. Similarly, if a domain never shares IPs with other domains, it will
not appear in the domain graph, and the suggested model is not applicable to such
domain either. Future endeavors in this regard include improving the level of filtering
of non-malicious data to provide the analysts with an even smaller set of candidate
data to investigate.

References

1. Sayamber, A., Dixit, A.: Malicious URL detection and identification. Int. J. Comput. Appl.
99(17), 17-23 (2014)

2. Zhauniarovich, Y., Khalil, I., Yu, T., Dacier, M.: A survey on malicious domains detection
through DNS data analysis. ACM Comput. Surv. 51(4), 1-36 (2018)

3. Watkins, L., Beck, S., Zook, J., Buczak, A., Chavis, J., Mishra, S.: Using semi-supervised
machine learning to address the big data problem in DNS networks. In: Proceedings of the
IEEE 7th Annual Computing and Communication Conference (CCWC), pp. 1-6, USA (2017)

4. Sahoo, D., Liu, C., Hoi, S.: Malicious URL Detection Using Machine Learning: A Survey.
arXiv preprint arXiv:1701.07179, pp. 1-21 (2017)

5. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., Dagon, D.: Detecting malware domains
at the upper DNS hierarchy. In: Proceedings of the 20th USENIX Conference on Security
(SEC’11), pp. 1-16, USA (2011)

6. Ma,]J.,Saul, L., Savage, S., Voelker, G: Beyond blacklists: learning to detect malicious web sites
from suspicious URLs. In: Proceeding of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1245-1254, France (2009)

7. Zhang,Y.,Hong,J., Cranor, L.: CANTINA: a content-based approach to detecting phishing web
sites. In: Proceedings of the 16th International Conference on World Wide Web, pp. 639-648,
Canada (2007)

8. Kan,M.-Y., Thi, H.: Fast webpage classification using URL features. In: Proceedings of the 14th
ACM International Conference on Information and Knowledge Management, pp. 325-326,
Germany (2005)

9. Guan, D., Chen, C., Lin, J.: Anomaly based malicious URL detection in instant messaging. In:
Proceedings of the Joint Workshop on Information Security, Taiwan (2009)

10. Bilge, L., Sen, S., Balzarotti, D., Kirda, E., Kruegel, C.: EXPOSURE: a passive DNS analysis
service to detect and report malicious domains. ACM Trans. Inf. Syst. Secur. 16(4), 1-28 (2014)

11. Manikandan, S., Ravi, S.: Big data analysis using Apache Hadoop. In: Proceedings of the
International Conference on IT Convergence and Security (ICITCS), pp. 1-4, China (2014)

12. Figo, D., Diniz, P, Ferreira, D., Cardoso, J.: Preprocessing techniques for context recognition
from accelerometer data. Pers. Ubiquit. Comput. 14(7), 645-662 (2010)

http://arxiv.org/abs/1701.07179

Bio-inspired Machine Learning Mechanism for Detecting ... 161

13.

14.
15.

16.

El-Sawy, A., Hussein, M., Zaki, E., Mousa, A.: An introduction to genetic algorithms: a survey,
a practical issues. Int. J. Sci. Eng. Res. 5(1), 252-262 (2014)

Sivanandam, S., Deepa, S.: Introduction to Genetic Algorithms. Springer, USA (2007)
Kumar, Y., Sahoo, G.: A two-step artificial bee colony algorithm for clustering. Neural Comput.
Appl. 28(3), 537-551 (2015)

Vecek, N., Liu, S., Crepin§ek, M., Mernik, M.: On the importance of the artificial bee colony
control parameter ‘Limit’. Inf. Technol. Control 46(4), 566—604 (2017)

	 Bio-inspired Machine Learning Mechanism for Detecting Malicious URL Through Passive DNS in Big Data Platform
	1 Introduction
	1.1 Problem Statement and Research Motivation
	1.2 Contribution and Methodology

	2 Related Work
	3 The Proposed Model
	3.1 Training Phase
	3.2 Testing Phase

	4 Experimental Analysis and Results
	5 Conclusion
	References

