Arab Academy for Science and Technology and Maritime Transport Computer Science Curriculum Course Syllabus				
Course Code: CE243	Course Title: Introduction to Computer Architecture	Classification:	Coordinator's Name: Prof. Aliaa Youssif Lecturer: Prof. Aliaa Youssif	Credit: 3
Pre-requisites: CE216-Digital Logic Design	Co-requisites: None	Schedule: Lecture Tutorial/Lab	2 hrs. 2 hrs.	

Office Hours:

Course Description:

The course Includes the organization and architecture of computer systems hardware; instruction set architectures; addressing modes; register transfer notation; processor design and computer arithmetic; memory systems; hardware implementations of virtual memory, and input/output control and devices This course exposes the student to computer design & organization. It aims for the student to understand the software/hardware interface, instructions, processor, modules & performance issues.

Textbook:

Null Linda and Julia Lobur, *The Essentials of Computer Organization and Architecture*, Jones and Bartlett Publishers.

References:

- 1. <u>David A. Patterson, John L. Hennessy,</u> *Computer Organization and Design: The Hardware/Software Interface*, <u>Morgan Kaufmann</u>.
- 2. Morris Mano, Computer System Architecture, Prentice Hall.
- 3. John L. Hennessy, David A. Patterson, Computer Architecture_A Quantitative Approach, Morgan Kaufmann.

Course Objective/Course Learning Out-come:	Contribution to Program Student Out-comes:
1.Present the various digital components used in the organization and design of digital computers.	(SO1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2.Explain the detailed steps that a designer must go through in order to design an elementary basic computer.	(SO6) Apply computer science theory and software development fundamentals to produce computing-based solutions.
3. <u>Introduce the organization and architecture</u> of the main units of a digital computer.	
4. <u>Experiment with assembly language</u> programming for a hypothetical machine	(SO2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.

Course Outline:				
Week 1. Introduction	Week 10. Types of Memory			
Week 2. <u>CPU basics and Organization</u>	Week 11. Memory Hierarchy and Cache Memory			
Week 3. MARIE	Week 12. <u>12th Week Exam</u> Week 13. <u>Virtual Memory</u> Week 14. <u>Performance Measurement and</u> <u>analysis</u>			
Week 4. Instruction Processing				
Week 5. Extending Instruction Set				
Week 6. <u>Instruction Formats</u> Week 7. <u>7th Week Exam</u>	Week 15. <u>Revision</u> Week 16. <u>Final Exam</u>			
Week 8. Instruction Types and Addressing Week 9. Instruction Pipelining and real world examples of ISAs.				
Grade Distribution: 7th Week Assessment (30%): Exam (20%) + Section Quiz 1 (10%) 12th Week Assessment (20%): Exam (20%)				
Year Work (10%): Year Work (10%) Final Exam (40%)				

Policies:

Attendance: AASTMT Education and Study Regulations (available at aast.edu)

Academic Honesty:

AASTMT Education and Study Regulations (available at aast.edu)

Late Submission:

Late submissions are graded out of 75% (1 week late), 50% (2 weeks late), 25% (3 weeks late), 0% (more than 3 weeks late)