Arab Academy for Science and Technology and Maritime Transport Computer Science Curriculum Course Syllabus					
Course Code: CE216	Course Title: Digital Logic Design	Classification: R	Coordinator: Prof. Aliaa Youssif Lecturer: Prof. Aliaa Youssif Prof. Nashwa El- Bendery	Credit: 3	
Pre-requisites: CS111	Co-requisites: None	Schedule: Lecture Tutorial/Lab	2 hrs. 2/2 hrs.		

Office Hours:

Course Description:

This course aims to develop computer science skills in the design and analysis of digital logic circuits with applications to digital computing. It presents: Numbering systems, binary arithmetic and codes, logic gates, Boolean algebra, and logic simplifications. It covers design and realization of combinational circuits.

It also covers functions of sequential logic circuits: Flip-Flops, analysis design, registers, and realization of counters.

Textbook:

Thomas L. Floyd, Digital Fundamentals, Prentice Hall.

References:

- 1. M. Mano, Digital Design, Prentice Hall.
- 2. J. F. Wakerly, Digital Design Principles, Prentice Hall.

Course Objective/Course Learning Outcome:	Contribution to Program Student Outcomes:
1. <u>Know the basic differences between analog</u> and digital systems.	
 <u>Use binary numbers and codes.</u> <u>Describe the operation of logic gates.</u> <u>Apply Boolean algebra and K-map to simplify functions.</u> <u>Design combinational and sequential logic circuits.</u> 	 (SO-2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline. (SO-3) Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
Course Outline: 1. Introduction to Digital Concepts. 2. Numbering systems, Operations and Codes. 3. Logic Gates. 4. Combination Logic Circuits. 5. Truth Tables and Standard Forms. 6. Boolean algebra and Logic simplification. 7. 7 th Week Assessment.	 8. <u>Simplification using K-map.</u> 9. <u>Basic Adders and Comparators.</u> 10. <u>Decoders and Encoders.</u> 11. <u>MUX and DMUX.</u> 12. <u>12th Week Assessment.</u> 13. <u>Flip-Flops.</u> 14. <u>Registers and Counters Operations.</u> 15. <u>Revision.</u> 16. <u>Final Examination.</u>
Grade Distribution: 7th Week Assessment (30%): Mid-Term Exam (20%) + Quizzes 10% 12th Week Assessment (20%): Project (20%)	

Year Work (10%): Laboratory Assignments 5% + Quizzes 5%

Final Exam (40%)

Policies:

Attendance: AASTMT Education and Study Regulations (available at aast.edu)

Academic Honesty: AASTMT Education and Study Regulations (available at aast.edu)