Academic Programs Thermodynamics

Thermodynamics

Basic Course Specification				
Course Title	Course Code	Program on which the course is given		
Thermodynamics	ME 231 T	Bachelor		
Academic Year	Specialization (hr/week)	Pre-Requisites		
2020 - 2021	Theoretical (2)Application (3)Credit (3Cr.)	Physics 2 (BA 114)		

Overall Course Objectives

- This course provides description of thermodynamics. It introduces and classifies: heat engine cycles, steam cycles and gas turbine cycles.
- This syllabus covers the requirements of the STCW-78, as amended. In particular Chapter III, Section A-III/1 for the function "Marine Engineering at the Operational Level", STCW-78, as amended. The syllabus is so designed with the guide of IMO Model course 7.04, version 2014, function1

Course Learning Outcomes. By successful completion of the course each student will be able to:

Торіс	Linking to PLOs	7th Week Assessment	12thWeek Assessment	Class Activities	Final Exam
By successful completion of the course each student will be able to:	ъ	ء ا	ء ا		
1) apply the first and second laws of thermodynamics for the complete thermal analysis of vapor power cycle.	В	V	V		V
2 Demonstrate knowledge on the principle of operation, layouts, components, construction, selection criteria and maintenance and troubleshooting aspects of different types of power plants and industrial utility systems	A,c	√	V	V	V
3) derive and analyze Otto, Diesel and Dual cycle air standard thermal efficiencies		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
4) demonstrate the implications of thermodynamics power, refrigeration, and air-conditioning systems on the environmental and future sustainability.	A,b,d		V	√	V

Course Content

Lec./ Week #	Торіс	Hrs.#	Theoreti cal	Applicati on
1	-Introduction to thermodynamics (Revision)-Revision	5	2	3
2	-Heat Engine Cycles (Introduction, Carnot Cycle) - Heat Engine Cycles (Carnot Cycle)	5	2	3
3	 -Heat Engine Cycles (Constant Pressure Cycle, Constant Volume Cycle). -Heat Engine Cycles (Constant Pressure Cycle, Constant Volume Cycle) 	5	2	3
4	-Heat Engine Cycles (Diesel Cycle, Dual Cycle) and Heat Engine Cycles (Diesel Cycle, Dual Cycle)	5	2	3

Academic Programs Thermodynamics

Course Content				
Lec./ Week #	Торіс	Hrs. #	Theoretical	Application
5	-Heat transfer(Fourier's Law, Newton's Law, Stefan-Boltzmann Law) and Heat transfer (Composite wall).	5	2	3
6	-Heat Transfer (The Composite wall and the electrical analogy) -Heat Transfer (cylinder & sphere)	5	2	3
7	-Heat Transfer (Heat flow through a cylinder & a sphere) - 7th Week Exam	5	2	3
8	Steam Cycle (Rankin Cycle) Steam Cycle (Using Steam Chart)	5	2	3
9	-Steam Cycle (Using Steam Chart).	5	2	3
10	-Gas Turbine Cycle (The practical gas turbine cycle)	5	2	3
11	-Gas Turbine Cycle (use of a power turbine).	5	2	3
12	Positive Displacement Machine (Reciprocating Compressors) -12th Exam		2	3
13	-Positive Displacement Machine (Multi stage compression).- Positive Displacement Machine	5	2	3
14	 -Refrigeration and Air Conditioning (Reversed heat engine & vapor Compression cycle). - Refrigeration and Air Conditioning 	5	2	3
15	-Refrigeration and Air Conditioning (Using Refrigeration charts)Refrigeration and Air Conditioning (Using Refrigeration charts)	5	2	3
16	Final Assessment			
Total Hours			30	45

Teaching & Learning Methods		Facilities Required for Teaching & Learning Methods			
 Explaining and demonstrating the contents Share practical experience and k Discussing and asking questions with students 	knowledge	White board and data showLab.			
	Students Assessment Methods				
Assessment Schedule					
Assessment#1		Week 7			
Assessment#2		Week 12			
Assessment#3		Continuous Assessments			
Assessment#4		Week 16			
Grading Method					
7th Week Assessment	Written Exam		30%		
12 th week Assessment	Written Exam		20%		
Class Activities	Participation and Quiz		10%		
Final Exam	Written Exam		40%		
		Total	100 %		

Academic Programs Thermodynamics

Grading Method				
Assessment criteria meets the standards of the STCW 78 convention "as amended"; and in				
the light of the related	the light of the related IMO model courses.			
Staff Requirements				
Marine Chief Engineer/ Ph.D.				
List of References				
Course Notes Essential Books				
Lecturer notes and sheets	Applied thermodynamics for engineers			
technologist, 9781782730439				
Recommended Books Periodicals and Publications				
	None			
Others (websites, e-booksetc)				
N/A				

Accreditation Bodies

Nasi Abdel rohman

*Egyptian Authority for Maritime Safety (EAMS)

European Commission (EC)

*ISO (9001 – 2015) DNV-GL

*Central Evaluation and Accreditation Agency Hanover, Germany (ZEVA)

- *Ministry of Education (KSA)
- *Ministry of Higher Education (Greece)
- *Ministry of Higher Education (Oman)
- *Commission for Academic Accreditation (CAA), Ministry of higher Education (UAE)
- *University of Plymouth, United Kingdom (dual degree)

Prepared by: Course Coordinator Reviewed by: Head of Department

A. Swidan

Date: November 2020