
Chapter 32

Inductance



Joseph Henry

 1797 – 1878

 American physicist

 First director of the 

Smithsonian

 Improved design of 

electromagnet

 Constructed one of the first 

motors

 Discovered self-inductance

 Unit of inductance is named 

in his honor



Some Terminology

 Use emf and current when they are caused 
by batteries or other sources

 Use induced emf and induced current when 
they are caused by changing magnetic fields

 When dealing with problems in 
electromagnetism, it is important to 
distinguish between the two situations



Self-Inductance

 When the switch is 

closed, the current 

does not immediately 

reach its maximum 

value

 Faraday’s law can be 

used to describe the 

effect



Self-Inductance, 2

 As the current increases with time, the 

magnetic flux through the circuit loop due to 

this current also increases with time

 This increasing flux creates an induced emf 

in the circuit



Self-Inductance, 3

 The direction of the induced emf is such that 

it would cause an induced current in the loop 

which would establish a magnetic field 

opposing the change in the original magnetic 

field

 The direction of the induced emf is opposite 

the direction of the emf of the battery

 This results in a gradual increase in the 

current to its final equilibrium value



Self-Inductance, 4

 This effect is called self-inductance

 Because the changing flux through the circuit and 

the resultant induced emf arise from the circuit 

itself

 The emf εL is called a self-induced emf



Self-Inductance, Equations

 An induced emf is always proportional to the time 

rate of change of the current

 The emf is proportional to the flux, which is proportional to 

the field and the field is proportional to the current

 L is a constant of proportionality called the 

inductance of the coil and it depends on the 

geometry of the coil and other physical 

characteristics

L
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Inductance of a Coil

 A closely spaced coil of N turns carrying 

current I has an inductance of 

 The inductance is a measure of the 

opposition to a change in current
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Inductance Units

 The SI unit of inductance is the henry (H)

 Named for Joseph Henry
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Inductance of a Solenoid

 Assume a uniformly wound solenoid having N
turns and length ℓ

 Assume ℓ is much greater than the radius of the 

solenoid

 The flux through each turn of area A is
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Inductance of a Solenoid, cont

 The inductance is

 This shows that L depends on the geometry 

of the object
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RL Circuit, Introduction

 A circuit element that has a large self-

inductance is called an inductor

 The circuit symbol is 

 We assume the self-inductance of the rest of 

the circuit is negligible compared to the 

inductor

 However, even without a coil, a circuit will have 

some self-inductance



Effect of an Inductor in a 

Circuit

 The inductance results in a back emf

 Therefore, the inductor in a circuit opposes 

changes in current in that circuit

 The inductor attempts to keep the current the 

same way it was before the change occurred

 The inductor can cause the circuit to be “sluggish” 

as it reacts to changes in the voltage



RL Circuit, Analysis

 An RL circuit contains an 

inductor and a resistor

 Assume S2 is connected to 

a

 When switch S1 is closed 

(at time t = 0), the current 

begins to increase

 At the same time, a back 

emf is induced in the 

inductor that opposes the 

original increasing current
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Use the 

active figure 

to set R and 

L and see 

the effect on 

the current

Active Figure 32.2 (a)
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RL Circuit, Analysis, cont.

 Applying Kirchhoff’s loop rule to the previous 

circuit in the clockwise direction gives

 Looking at the current, we find

0
d I

ε I R L
dt
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RL Circuit, Analysis, Final

 The inductor affects the current exponentially

 The current does not instantly increase to its 
final equilibrium value

 If there is no inductor, the exponential term 
goes to zero and the current would 
instantaneously reach its maximum value as 
expected



RL Circuit, Time Constant

 The expression for the current can also be 

expressed in terms of the time constant, t, of 

the circuit

 where t = L / R

 Physically, t is the time required for the 

current to reach 63.2% of its maximum value

 1 t τε
I e

R

 



RL Circuit, Current-Time 

Graph, (1)

 The equilibrium value 
of the current is e /R
and is reached as t
approaches infinity

 The current initially 
increases very rapidly

 The current then 
gradually approaches 
the equilibrium value

 Use the active figure 
to watch the graph
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RL Circuit, Current-Time 

Graph, (2)

 The time rate of change 

of the current is a 

maximum at t = 0

 It falls off exponentially 

as t approaches infinity

 In general, 

t τd I ε
e
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RL Circuit Without A Battery

 Now set S2 to position b

 The circuit now 

contains just the right 

hand loop 

 The battery has been 

eliminated

 The expression for the 

current becomes
t t
τ τ
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Use the 

active figure 

to change the 

values of R 

and L and 

watch the 

result on the 

graph

Active Figure 32.2 (b)
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Energy in a Magnetic Field

 In a circuit with an inductor, the battery must 

supply more energy than in a circuit without 

an inductor

 Part of the energy supplied by the battery 

appears as internal energy in the resistor

 The remaining energy is stored in the 

magnetic field of the inductor



Energy in a Magnetic Field, 

cont.

 Looking at this energy (in terms of rate)

 Ie is the rate at which energy is being supplied by 

the battery

 I2R is the rate at which the energy is being 

delivered to the resistor

 Therefore, LI (dI/dt) must be the rate at which the 

energy is being stored in the magnetic field

2 d I
I ε I R LI

dt
 



Energy in a Magnetic Field, 

final

 Let U denote the energy stored in the 

inductor at any time

 The rate at which the energy is stored is

 To find the total energy, integrate and

dU d I
LI

dt dt

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Energy Density of a Magnetic 

Field

 Given U = ½ L I2 and assume (for simplicity) a 
solenoid with L = mo n2 V

 Since V is the volume of the solenoid, the magnetic 
energy density, uB is

 This applies to any region in which a magnetic field 
exists (not just the solenoid)
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Energy Storage Summary

 A resistor, inductor and capacitor all store 

energy through different mechanisms

 Charged capacitor 

 Stores energy as electric potential energy

 Inductor

 When it carries a current, stores energy as magnetic 

potential energy

 Resistor

 Energy delivered is transformed into internal energy



Example: The Coaxial Cable

 Calculate L for the 

cable

 The total flux is

 Therefore, L is
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Mutual Inductance

 The magnetic flux through the area enclosed 

by a circuit often varies with time because of 

time-varying currents in nearby circuits

 This process is known as mutual induction
because it depends on the interaction of two 

circuits



Mutual Inductance, 2

 The current in coil 1 
sets up a magnetic field

 Some of the magnetic 
field lines pass through 
coil 2

 Coil 1 has a current I1 

and N1 turns

 Coil 2 has N2 turns



Mutual Inductance, 3

 The mutual inductance M12 of coil 2 with 

respect to coil 1 is

 Mutual inductance depends on the geometry 

of both circuits and on their orientation with 

respect to each other
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Induced emf in Mutual 

Inductance

 If current I1 varies with time, the emf induced 

by coil 1 in coil 2 is

 If the current is in coil 2, there is a mutual 

inductance M21

 If current 2 varies with time, the emf induced 

by coil 2 in coil 1 is 
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Mutual Inductance, Final

 In mutual induction, the emf induced in one 

coil is always proportional to the rate at which 

the current in the other coil is changing

 The mutual inductance in one coil is equal to 

the mutual inductance in the other coil

 M12 = M21 = M

 The induced emf’s can be expressed as
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LC Circuits

 A capacitor is 
connected to an 
inductor in an LC circuit

 Assume the capacitor is 
initially charged and 
then the switch is 
closed

 Assume no resistance 
and no energy losses 
to radiation



Oscillations in an LC Circuit

 Under the previous conditions, the current in 
the circuit and the charge on the capacitor 
oscillate between maximum positive and 
negative values

 With zero resistance, no energy is 
transformed into internal energy

 Ideally, the oscillations in the circuit persist 
indefinitely

 The idealizations are no resistance and no 
radiation



Oscillations in an LC Circuit, 2

 The capacitor is fully charged

 The energy U in the circuit is stored in the electric 

field of the capacitor

 The energy is equal to Q2
max / 2C

 The current in the circuit is zero

 No energy is stored in the inductor

 The switch is closed



Oscillations in an LC Circuit, 3

 The current is equal to the rate at which the 

charge changes on the capacitor

 As the capacitor discharges, the energy stored in 

the electric field decreases

 Since there is now a current, some energy is 

stored in the magnetic field of the inductor

 Energy is transferred from the electric field to the 

magnetic field



Oscillations in an LC Circuit, 4

 Eventually, the capacitor becomes fully 

discharged

 It stores no energy

 All of the energy is stored in the magnetic field of 

the inductor

 The current reaches its maximum value

 The current now decreases in magnitude, 

recharging the capacitor with its plates having 

opposite their initial polarity



Oscillations in an LC Circuit, 

final

 The capacitor becomes fully charged and the 

cycle repeats

 The energy continues to oscillate between 

the inductor and the capacitor

 The total energy stored in the LC circuit 

remains constant in time and equals
2
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LC Circuit Analogy to Spring-

Mass System, 1

 The potential energy ½kx2 stored in the spring is analogous to 

the electric potential energy (Qmax)
2/(2C) stored in the 

capacitor

 All the energy is stored in the capacitor at t = 0

 This is analogous to the spring stretched to its amplitude
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LC Circuit Analogy to Spring-

Mass System, 2

 The kinetic energy (½ mv2) of the spring is analogous to the 
magnetic energy (½ L I2)  stored in the inductor

 At t = ¼ T, all the energy is stored as magnetic energy in the 
inductor

 The maximum current occurs in the circuit

 This is analogous to the mass at equilibrium 
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LC Circuit Analogy to Spring-

Mass System, 3

 At t = ½ T, the energy in the circuit is completely 

stored in the capacitor

 The polarity of the capacitor is reversed

 This is analogous to the spring stretched to -A

PLAY

ACTIVE FIGURE

../../Active_Figures/active_figures/AF_3211.html


LC Circuit Analogy to Spring-

Mass System, 4

 At t = ¾ T, the energy is again stored in the 

magnetic field of the inductor

 This is analogous to the mass again reaching the 

equilibrium position
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LC Circuit Analogy to Spring-

Mass System, 5

 At t = T, the cycle is completed

 The conditions return to those identical to the initial conditions

 At other points in the cycle, energy is shared between the 
electric and magnetic fields
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Active Figure 32.11

Use the 

active 

figure to 

adjust the 

values and 

L and C 

and see the 

effects on 

the current
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Time Functions of an LC
Circuit

 In an LC circuit, charge can be expressed as 

a function of time

 Q = Qmax cos (ωt + φ)

 This is for an ideal LC circuit

 The angular frequency, ω, of the circuit 

depends on the inductance and the 

capacitance

 It is the natural frequency of oscillation of the 

circuit
1ω

LC




Time Functions of an LC
Circuit, 2

 The current can be expressed as a function 

of time

 The total energy can be expressed as a 

function of time

max

dQ
I ωQ sin(ωt φ)

dt
   
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Charge and Current in an LC
Circuit

 The charge on the 

capacitor oscillates 

between Qmax and 

-Qmax

 The current in the inductor 

oscillates between Imax and 

-Imax

 Q and I are 90o out of 

phase with each other

 So when Q is a maximum, I
is zero, etc.



Energy in an LC Circuit –

Graphs 

 The energy continually 
oscillates between the 
energy stored in the 
electric and magnetic 
fields

 When the total energy 
is stored in one field, 
the energy stored in the 
other field is zero



Notes About Real LC Circuits

 In actual circuits, there is always some 

resistance

 Therefore, there is some energy transformed 

to internal energy

 Radiation is also inevitable in this type of 

circuit

 The total energy in the circuit continuously 

decreases as a result of these processes



The RLC Circuit

 A circuit containing a 

resistor, an inductor 

and a capacitor is 

called an RLC Circuit

 Assume the resistor 

represents the total 

resistance of the circuit
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Active Figure 32.15

Use the 

active 

figure to 

adjust R, L, 

and C.  

Observe 

the effect 

on the 

charge
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RLC Circuit, Analysis

 The total energy is not constant, since there 

is a transformation to internal energy in the 

resistor at the rate of  dU/dt = -I2R

 Radiation losses are still ignored

 The circuit’s operation can be expressed as
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RLC Circuit Compared to 

Damped Oscillators

 The RLC circuit is analogous to a damped 

harmonic oscillator

 When R = 0

 The circuit reduces to an LC circuit and is 

equivalent to no damping in a mechanical 

oscillator



RLC Circuit Compared to 

Damped Oscillators, cont.

 When R is small:

 The RLC circuit is analogous to light damping in a 

mechanical oscillator

 Q = Qmax e-Rt/2L cos ωdt

 ωd is the angular frequency of oscillation for the 

circuit and 
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RLC Circuit Compared to 

Damped Oscillators, final

 When R is very large, the oscillations damp out very 

rapidly

 There is a critical value of R above which no 

oscillations occur

 If R = RC, the circuit is said to be critically damped

 When R > RC, the circuit is said to be overdamped

4 /CR L C



Damped RLC Circuit, Graph

 The maximum value of 

Q decreases after each 

oscillation

 R < RC

 This is analogous to the 

amplitude of a damped 

spring-mass system



Summary: Analogies Between 

Electrical and Mechanic Systems


