Chapter 25

Electric Potential

Electrical Potential Energy

- When a test charge is placed in an electric field, it experiences a force
- $\overrightarrow{\boldsymbol{F}}=q_{0} \overrightarrow{\mathbf{E}}$
- The force is conservative
- If the test charge is moved in the field by some external agent, the work done by the field is the negative of the work done by the external agent
- $d \mathbf{s}$ is an infinitesimal displacement vector that is oriented tangent to a path through space

Electric Potential Energy, cont

- The work done by the electric field is

$$
\overrightarrow{\mathbf{F}} \cdot d \mathbf{\mathbf { S }}=q_{0} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}
$$

- As this work is done by the field, the potential energy of the charge-field system is changed by $\Delta U=-q_{0} \mathbf{E} \cdot d \mathbf{S}$
- For a finite displacement of the charge from A to B,

$$
\Delta U=U_{B}-U_{A}=-q_{0} \int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \mathbf{\mathbf { s }}
$$

Electric Potential Energy, final

- Because the force is conservative, the line integral does not depend on the path taken by the charge
- This is the change in potential energy of the system

Electric Potential

- The potential energy per unit charge, U / q_{0}, is the electric potential
- The potential is characteristic of the field only

The potential energy is characteristic of the charge-field system

- The potential is independent of the value of q_{0}
- The potential has a value at every point in an electric field
- The electric potential is
$V=\frac{U}{q_{0}}$

Electric Potential, cont.

- The potential is a scalar quantity
- Since energy is a scalar
- As a charged particle moves in an electric field, it will experience a change in potential

$$
\Delta V=\frac{\Delta U}{q_{0}}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \mathbf{\mathbf { s }}
$$

Electric Potential, final

- The difference in potential is the meaningful quantity
- We often take the value of the potential to be zero at some convenient point in the field
- Electric potential is a scalar characteristic of an electric field, independent of any charges that may be placed in the field

Work and Electric Potential

- Assume a charge moves in an electric field without any change in its kinetic energy
- The work performed on the charge is

$$
W=\Delta U=q \Delta V
$$

Units

- $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
- V is a volt
- It takes one joule of work to move a 1-coulomb charge through a potential difference of 1 volt
- In addition, $1 \mathrm{~N} / \mathrm{C}=1 \mathrm{~V} / \mathrm{m}$
- This indicates we can interpret the electric field as a measure of the rate of change with position of the electric potential

Electron-Volts

- Another unit of energy that is commonly used in atomic and nuclear physics is the electron-volt
- One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt
- $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Potential Difference in a Uniform Field

- The equations for electric potential can be simplified if the electric field is uniform:

$$
V_{B}-V_{A}=\Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \mathbf{\mathbf { s }}=-E \int_{A}^{B} d \mathbf{s}=-E d
$$

- The negative sign indicates that the electric potential at point B is lower than at point A
- Electric field lines always point in the direction of decreasing electric potential

Energy and the Direction of

 Electric Field- When the electric field is directed downward, point B is at a lower potential than point A
- When a positive test charge moves from A to B, the charge-field system loses potential energy
- Use the active figure to compare the motion in the electric field to the motion in a gravitational field

(a)

More About Directions

- A system consisting of a positive charge and an electric field loses electric potential energy when the charge moves in the direction of the field
- An electric field does work on a positive charge when the charge moves in the direction of the electric field
- The charged particle gains kinetic energy equal to the potential energy lost by the charge-field system
- Another example of Conservation of Energy

Directions, cont.

- If q_{0} is negative, then ΔU is positive
- A system consisting of a negative charge and an electric field gains potential energy when the charge moves in the direction of the field
- In order for a negative charge to move in the direction of the field, an external agent must do positive work on the charge

Equipotentials

- Point B is at a lower potential than point A
$\overrightarrow{\mathbf{E}}$
- Points A and C are at the same potential
- All points in a plane perpendicular to a uniform electric field are at the same electric potential
- The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential

Charged Particle in a Uniform Field, Example

- A positive charge is released from rest and moves in the direction of the electric field
- The change in potential is negative
- The change in potential energy is negative
- The force and acceleration are in the direction of the field
- Conservation of Energy can be used to find its speed

Potential and Point Charges

- A positive point charge produces a field directed radially outward
- The potential difference between points A and B will be

$$
V_{B}-V_{A}=k_{e} q\left[\frac{1}{r_{B}}-\frac{1}{r_{A}}\right]
$$

Potential and Point Charges, cont.

- The electric potential is independent of the path between points A and B
- It is customary to choose a reference potential of $V=0$ at $r_{\mathrm{A}}=\infty$
- Then the potential at some point r is

$$
V=k_{e} \frac{q}{r}
$$

Electric Potential of a Point Charge

- The electric potential in the plane around a single point charge is shown
- The red line shows the $1 / r$ nature of the potential

Electric Potential with Multiple Charges

- The electric potential due to several point charges is the sum of the potentials due to each individual charge
- This is another example of the superposition principle
- The sum is the algebraic sum

$$
\begin{aligned}
& V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}} \\
& V=0 \text { at } r=\infty
\end{aligned}
$$

Electric Potential of a Dipole

- The graph shows the potential (y-axis) of an electric dipole
- The steep slope between the charges represents the strong electric field in this region

Potential Energy of Multiple Charges

- Consider two charged particles
- The potential energy of the system is

$$
U=k_{e} \frac{q_{1} q_{2}}{r_{12}}
$$

- Use the active figure to move the charge and see the effect on the potential energy of the system

More About U of Multiple Charges

- If the two charges are the same sign, U is positive and work must be done to bring the charges together
- If the two charges have opposite signs, U is negative and work is done to keep the charges apart

U with Multiple Charges, final

- If there are more than two charges, then find U for each pair of charges and add them
- For three charges:
$U=k_{e}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)$

- The result is independent of the order of the charges

Finding E From V

- Assume, to start, that the field has only an x component

$$
E_{x}=-\frac{d V}{d x}
$$

- Similar statements would apply to the y and z components
- Equipotential surfaces must always be perpendicular to the electric field lines passing through them

E and V for an Infinite Sheet of Charge

- The equipotential lines are the dashed blue lines
- The electric field lines are the brown lines
- The equipotential lines are everywhere perpendicular to the field lines

(a)

E and Vfor a Point Charge

- The equipotential lines are the dashed blue lines
- The electric field lines are the brown lines
- The equipotential lines are everywhere perpendicular to the field lines

(b)

E and Vfor a Dipole

- The equipotential lines are the dashed blue lines
- The electric field lines are the brown lines
- The equipotential lines are everywhere perpendicular to the field lines

Electric Field from Potential, General

- In general, the electric potential is a function of all three dimensions
- Given $V(x, y, z)$ you can find E_{x}, E_{y} and E_{z} as partial derivatives

$$
E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}
$$

Electric Potential for a Continuous Charge Distribution

- Consider a small charge element $d q$
- Treat it as a point charge
- The potential at some point due to this charge element is

$$
d V=k_{e} \frac{d q}{r}
$$

Vfor a Continuous Charge Distribution, cont.

- To find the total potential, you need to integrate to include the contributions from all the elements

$$
V=k_{e} \int \frac{d q}{r}
$$

- This value for V uses the reference of $V=0$ when P is infinitely far away from the charge distributions

V From a Known E

- If the electric field is already known from other considerations, the potential can be calculated using the original approach

$$
\Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \mathbf{s}
$$

- If the charge distribution has sufficient symmetry, first find the field from Gauss' Law and then find the potential difference between any two points
- Choose V = 0 at some convenient point

Problem-Solving Strategies

- Conceptualize
- Think about the individual charges or the charge distribution
- Imagine the type of potential that would be created
- Appeal to any symmetry in the arrangement of the charges
- Categorize
- Group of individual charges or a continuous distribution?

Problem-Solving Strategies, 2

- Analyze
- General
- Scalar quantity, so no components
- Use algebraic sum in the superposition principle
- Only changes in electric potential are significant
- Define $\mathrm{V}=0$ at a point infinitely far away from the charges
- If the charge distribution extends to infinity, then choose some other arbitrary point as a reference point

Problem-Solving Strategies, 3

- Analyze, cont
- If a group of individual charges is given
- Use the superposition principle and the algebraic sum
- If a continuous charge distribution is given
- Use integrals for evaluating the total potential at some point
- Each element of the charge distribution is treated as a point charge
- If the electric field is given
- Start with the definition of the electric potential
- Find the field from Gauss' Law (or some other process) if needed

Problem-Solving Strategies, final

- Finalize
- Check to see if the expression for the electric potential is consistent with your mental representation
- Does the final expression reflect any symmetry?
- Image varying parameters to see if the mathematical results change in a reasonable way

Vfor a Uniformly Charged Ring

- P is located on the perpendicular central axis of the uniformly charged ring
- The ring has a radius a and a total charge Q

$$
V=k_{e} \int \frac{d q}{r}=\frac{k_{e} Q}{\sqrt{a^{2}+x^{2}}}
$$

Vfor a Uniformly Charged Disk

- The ring has a radius R and surface charge density of σ
- P is along the perpendicular central axis of the disk

$$
V=2 \pi k_{e} \sigma\left[\left(R^{2}+x^{2}\right)^{1 / 2}-x\right]
$$

Vfor a Finite Line of Charge

- A rod of line ℓ has a total charge of Q and a linear charge density of λ
$V=\frac{k_{e} Q}{\ell} \ln \left(\frac{\ell+\sqrt{a^{2}+\ell^{2}}}{a}\right)$

V Due to a Charged Conductor

- Consider two points on the surface of the charged conductor as shown
- $\overrightarrow{\mathbf{E}}$ is always perpendicular to the displacement $d \mathbf{S}$
- Therefore, $\overrightarrow{\mathbf{E}} \cdot d \mathbf{s}=0$
- Therefore, the potential difference between A and B is also zero

VDue to a Charged Conductor, cont.

- V is constant everywhere on the surface of a charged conductor in equilibrium
- $\Delta V=0$ between any two points on the surface
- The surface of any charged conductor in electrostatic equilibrium is an equipotential surface
- Because the electric field is zero inside the conductor, we conclude that the electric potential is constant everywhere inside the conductor and equal to the value at the surface

E Compared to V

- The electric potential is a function of r
- The electric field is a function of r^{2}
- The effect of a charge on the space surrounding it:
- The charge sets up a vector electric field which is related to the force
- The charge sets up a scalar potential which is related to the energy

Irregularly Shaped Objects

- The charge density is high where the radius of curvature is small
- And low where the radius of curvature is large
- The electric field is large near the convex points having small radii of curvature and reaches very high values at sharp points

Cavity in a Conductor

- Assume an irregularly shaped cavity is inside a conductor
- Assume no charges are inside the cavity
- The electric field inside the conductor must be zero

Cavity in a Conductor, cont

- The electric field inside does not depend on the charge distribution on the outside surface of the conductor
- For all paths between A and B,

$$
V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=0
$$

- A cavity surrounded by conducting walls is a fieldfree region as long as no charges are inside the cavity

Corona Discharge

- If the electric field near a conductor is sufficiently strong, electrons resulting from random ionizations of air molecules near the conductor accelerate away from their parent molecules
- These electrons can ionize additional molecules near the conductor

Corona Discharge, cont.

- This creates more free electrons
- The corona discharge is the glow that results from the recombination of these free electrons with the ionized air molecules
- The ionization and corona discharge are most likely to occur near very sharp points

Millikan Oil-Drop Experiment Experimental Set-Up

Oil droplets

Millikan Oil-Drop Experiment

- Robert Millikan measured e, the magnitude of the elementary charge on the electron
- He also demonstrated the quantized nature of this charge
- Oil droplets pass through a small hole and are illuminated by a light

Oil-Drop Experiment, 2

- With no electric field between the plates, the gravitational force and the drag force (viscous) act on the electron
- The drop reaches terminal velocity with

$$
\overrightarrow{\mathbf{F}}_{D}=m \overrightarrow{\mathbf{g}}
$$

(a)

Oil-Drop Experiment, 3

- When an electric field is set up between the plates
- The upper plate has a higher potential
- The drop reaches a new terminal velocity when the electrical force equals the sum of the drag force and gravity

Oil-Drop Experiment, final

- The drop can be raised and allowed to fall numerous times by turning the electric field on and off
- After many experiments, Millikan determined:
- $q=n e$ where $n=0,-1,-2,-3, \ldots$
- $e=1.60 \times 10^{-19} \mathrm{C}$
- This yields conclusive evidence that charge is quantized
- Use the active figure to conduct a version of the experiment

Van de Graaff Generator

- Charge is delivered continuously to a high-potential electrode by means of a moving belt of insulating material
- The high-voltage electrode is a hollow metal dome mounted on an insulated column
- Large potentials can be developed by repeated trips of the belt
- Protons accelerated through such large potentials receive enough energy to initiate nuclear reactions

Electrostatic Precipitator

- An application of electrical discharge in gases is the electrostatic precipitator
- It removes particulate matter from combustible gases
- The air to be cleaned enters the duct and moves near the wire
- As the electrons and negative ions created by the discharge are accelerated toward the outer wall by the electric field, the dirt particles become charged
- Most of the dirt particles are negatively charged and are drawn to the walls by the electric field

Application - Xerographic Copiers

- The process of xerography is used for making photocopies
- Uses photoconductive materials
- A photoconductive material is a poor conductor of electricity in the dark but becomes a good electric conductor when exposed to light

The Xerographic Process

Application - Laser Printer

- The steps for producing a document on a laser printer is similar to the steps in the xerographic process
- A computer-directed laser beam is used to illuminate the photoconductor instead of a lens

