
Chapter 23

Electric Fields



Electricity and Magnetism, 

Some History

 Many applications

 Macroscopic and microscopic

 Chinese

 Documents suggest that magnetism was observed as early 

as 2000 BC

 Greeks

 Electrical and magnetic phenomena as early as 700 BC

 Experiments with amber and magnetite



Electricity and Magnetism,  

Some History, 2

 1600

 William Gilbert showed electrification effects were 

not confined to just amber

 The electrification effects were a general 

phenomena

 1785

 Charles Coulomb confirmed inverse square law 

form for electric forces



Electricity and Magnetism,  

Some History, 3

 1819

 Hans Oersted found a compass needle deflected 
when near a wire carrying an electric current

 1831

 Michael Faraday and Joseph Henry showed that 
when a wire is moved near a magnet, an electric 
current is produced in the wire



Electricity and Magnetism,  

Some History, 4

 1873

 James Clerk Maxwell used observations and 
other experimental facts as a basis for formulating 
the laws of electromagnetism

 Unified electricity and magnetism

 1888

 Heinrich Hertz verified Maxwell’s predictions

 He produced electromagnetic waves



Electric Charges

 There are two kinds of electric charges

 Called positive and negative

 Negative charges are the type possessed by electrons

 Positive charges are the type possessed by protons

 Charges of the same sign repel one another 
and charges with opposite signs attract one 
another



Electric Charges, 2

 The rubber rod is 

negatively charged

 The glass rod is 

positively charged

 The two rods will attract



Electric Charges, 3

 The rubber rod is 

negatively charged

 The second rubber rod 

is also negatively 

charged

 The two rods will repel



More About Electric Charges

 Electric charge is always conserved in an 

isolated system

 For example, charge is not created in the process 

of rubbing two objects together

 The electrification is due to a transfer of charge 

from one object to another



Conservation of Electric 

Charges

 A glass rod is rubbed with 

silk

 Electrons are transferred 

from the glass to the silk

 Each electron adds a 

negative charge to the silk

 An equal positive charge is 

left on the rod



Quantization of Electric 

Charges

 The electric charge, q, is said to be quantized

 q is the standard symbol used for charge as a variable

 Electric charge exists as discrete packets

 q = Ne

 N is an integer

 e is the fundamental unit of charge

 |e| = 1.6 x 10-19 C

 Electron: q = -e

 Proton: q = +e



Conductors

 Electrical conductors are materials in which some of 
the electrons are free electrons 
 Free electrons are not bound to the atoms

 These electrons can move relatively freely through the 
material

 Examples of good conductors include copper, aluminum 
and silver

 When a good conductor is charged in a small region, the 
charge readily distributes itself over the entire surface of 
the material



Insulators

 Electrical insulators are materials in which all of the 

electrons are bound to atoms 

 These electrons can not move relatively freely through the 

material

 Examples of good insulators include glass, rubber and 

wood

 When a good insulator is charged in a small region, the 

charge is unable to move to other regions of the material



Semiconductors

 The electrical properties of semiconductors 

are somewhere between those of insulators 

and conductors

 Examples of semiconductor materials include 

silicon and germanium



Charging by Induction

 Charging by induction 

requires no contact with 

the object inducing the 

charge

 Assume we start with a 

neutral metallic sphere 

 The sphere has the 

same number of positive 

and negative charges



Charging by Induction, 2

 A charged rubber rod is 

placed near the sphere

 It does not touch the 

sphere

 The electrons in the 

neutral sphere are 

redistributed



Charging by Induction, 3

 The sphere is grounded

 Some electrons can 

leave the sphere 

through the ground wire



Charging by Induction, 4

 The ground wire is 

removed

 There will now be more 

positive charges

 The charges are not 

uniformly distributed

 The positive charge has 

been induced in the 

sphere



Charging by Induction, 5

 The rod is removed

 The electrons 

remaining on the 

sphere redistribute 

themselves

 There is still a net 

positive charge on the 

sphere

 The charge is now 

uniformly distributed



Charge Rearrangement in  

Insulators

 A process similar to 

induction can take 

place in insulators

 The charges within the 

molecules of the 

material are rearranged



Charles Coulomb

 1736 – 1806

 French physicist

 Major contributions 
were in areas of 
electrostatics and 
magnetism

 Also investigated in 
areas of
 Strengths of materials

 Structural mechanics

 Ergonomics



Coulomb’s Law

 Charles Coulomb measured 

the magnitudes of electric 

forces between two small 

charged spheres

 He found the force 

depended on the charges 

and the distance between 

them



Point Charge

 The term point charge refers to a particle of 

zero size that carries an electric charge

 The electrical behavior of electrons and protons is 

well described by modeling them as point charges



Coulomb’s Law, 2

 The electrical force between two stationary point 

charges is given by Coulomb’s Law

 The force is inversely proportional to the square of 

the separation r between the charges and directed 

along the line joining them

 The force is proportional to the product of the 

charges, q1 and q2, on the two particles



Coulomb’s Law, 3

 The force is attractive if the charges are of 

opposite sign

 The force is repulsive if the charges are of 

like sign

 The force is a conservative force



Coulomb’s Law, Equation

 Mathematically,

 The SI unit of charge is the coulomb (C)

 ke is called the Coulomb constant

 ke = 8.9876 x 109 N.m2/C2 = 1/(4πeo)

 eo is the permittivity of free space

 eo = 8.8542 x 10-12 C2 / N.m2

 1 2
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Coulomb's Law, Notes

 Remember the charges need to be in coulombs

 e is the smallest unit of charge

 except quarks

 e = 1.6 x 10-19 C

 So 1 C needs 6.24 x 1018 electrons or protons

 Typical charges can be in the µC range

 Remember that force is a vector quantity



Particle Summary



Vector Nature of Electric 

Forces

 In vector form, 

 is a unit vector 
directed from q1 to q2

 The like charges 
produce a repulsive 
force between them

 Use the active figure to 
move the charges and 
observe the force
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PLAY

ACTIVE FIGURE

../../Active_Figures/active_figures/AF_2306.html


Vector Nature of Electrical 

Forces, 2

 Electrical forces obey Newton’s Third Law

 The force on q1 is equal in magnitude and 

opposite in direction to the force on q2



 With like signs for the charges, the product 

q1q2 is positive and the force is repulsive

21 12 F F



Vector Nature of Electrical 

Forces, 3

 Two point charges are 
separated by a 
distance r

 The unlike charges 
produce an attractive 
force between them

 With unlike signs for the 
charges, the product 
q1q2 is negative and the 
force is attractive
 Use the active figure to 

investigate the force for 
different positions PLAY

ACTIVE FIGURE

../../Active_Figures/active_figures/AF_2306.html


A Final Note about Directions

 The sign of the product of q1q2 gives the 

relative direction of the force between q1 and 

q2

 The absolute direction is determined by the 

actual location of the charges



The Superposition Principle

 The resultant force on any one charge equals 

the vector sum of the forces exerted by the 

other individual charges that are present

 Remember to add the forces as vectors

 The resultant force on q1 is the vector sum of 

all the forces exerted on it by other charges:  

1 21 31 41  F F F F



Superposition Principle, 

Example

 The force exerted by q1

on q3 is

 The force exerted by q2

on q3 is

 The resultant force
exerted on q3 is the 

vector sum of     and

13F

23F

13F

23F



Zero Resultant Force, Example

 Where is the resultant 
force equal to zero?
 The magnitudes of the 

individual forces will be 
equal

 Directions will be 
opposite

 Will result in a quadratic

 Choose the root that 
gives the forces in 
opposite directions



Electrical Force with Other 

Forces, Example

 The spheres are in 

equilibrium

 Since they are separated, 

they exert a repulsive force 

on each other

 Charges are like charges

 Proceed as usual with 

equilibrium problems, noting 

one force is an electrical 

force



Electrical Force with Other 

Forces, Example cont.

 The free body diagram 
includes the 
components of the 
tension, the electrical 
force, and the weight

 Solve for |q| 

 You cannot determine 
the sign of q, only that 
they both have same 
sign



Electric Field – Introduction

 The electric force is a field force

 Field forces can act through space

 The effect is produced even with no physical 

contact between objects

 Faraday developed the concept of a field in 

terms of electric fields



Electric Field – Definition 

 An electric field is said to exist in the region 

of space around a charged object

 This charged object is the source charge

 When another charged object, the test 

charge, enters this electric field, an electric 

force acts on it



Electric Field – Definition, cont

 The electric field is defined as the electric 

force on the test charge per unit charge

 The electric field vector, , at a point in space 

is defined as the electric force acting on a 

positive test charge, qo placed at that point 

divided by the test charge: 

E

F

oq


F
E



Electric Field, Notes

 is the field produced by some charge or charge 

distribution, separate from the test charge

 The existence of an electric field is a property of the 

source charge

 The presence of the test charge is not necessary for the 

field to exist

 The test charge serves as a detector of the field

E



Electric Field Notes, Final

 The direction of is 

that of the force on a 

positive test charge

 The SI units of are 

N/C

 We can also say that 

an electric field exists at 

a point if a test charge 

at that point 

experiences an electric 

force

E

E



Relationship Between F and E



 This is valid for a point charge only

 One of zero size

 For larger objects, the field may vary over the size of the 

object

 If q is positive, the force and the field are in the 

same direction

 If q is negative, the force and the field are in 

opposite directions

e qF E



Electric Field, Vector Form

 Remember Coulomb’s law, between the 

source and test charges, can be expressed 

as 

 Then, the electric field will be 
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More About Electric

Field Direction

 a) q is positive, the force is 
directed away from q

 b) The direction of the field 
is also away from the 
positive source charge

 c) q is negative, the force is 
directed toward q

 d) The field is also toward 
the negative source charge

 Use the active figure to 
change the position of point 
P and observe the electric 
field

PLAY

ACTIVE FIGURE

../../Active_Figures/active_figures/AF_2311.html


Superposition with Electric 

Fields

 At any point P, the total electric field due to a 

group of source charges equals the vector 

sum of the electric fields of all the charges

2
ˆi

e i

i i
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k

r
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Superposition Example

 Find the electric field 
due to q1, 

 Find the electric field 
due to q2,  



 Remember, the fields 
add as vectors

 The direction of the 
individual fields is the 
direction of the force on a 
positive test charge

1E

2E

1 2 E E E



Electric Field – Continuous 

Charge Distribution

 The distances between charges in a group of 
charges may be much smaller than the distance 
between the group and a point of interest

 In this situation, the system of charges can be 
modeled as continuous

 The system of closely spaced charges is equivalent 
to a total charge that is continuously distributed 
along some line, over some surface, or throughout 
some volume



Electric Field – Continuous 

Charge Distribution, cont

 Procedure:
 Divide the charge 

distribution into small 
elements, each of which 
contains Δq

 Calculate the electric 
field due to one of these 
elements at point P

 Evaluate the total field by 
summing the 
contributions of all the 
charge elements



Electric Field – Continuous 

Charge Distribution, equations

 For the individual charge elements

 Because the charge distribution is continuous
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Charge Densities

 Volume charge density: when a charge is 
distributed evenly throughout a volume
 ρ ≡ Q / V with units C/m3

 Surface charge density: when a charge is 
distributed evenly over a surface area
 σ ≡ Q / A with units C/m2

 Linear charge density: when a charge is 
distributed along a line
 λ ≡ Q / ℓ with units C/m



Amount of Charge in a Small 

Volume

 If the charge is nonuniformly distributed over 

a volume, surface, or line, the amount of 

charge, dq, is given by

 For the volume: dq = ρ dV

 For the surface: dq = σ dA

 For the length element: dq = λ dℓ



Problem-Solving Strategy

 Conceptualize

 Establish a mental representation of the problem

 Image the electric field produced by the charges 

or charge distribution

 Categorize

 Individual charge?

 Group of individual charges?

 Continuous distribution of charges?



Problem-Solving Strategy, cont

 Analyze
 Units: when using the Coulomb constant, ke, the charges 

must be in C and the distances in m

 Analyzing a group of individual charges: 

 Use the superposition principle, find the fields due to 
the individual charges at the point of interest and then 
add them as vectors to find the resultant field

 Be careful with the manipulation of vector quantities

 Analyzing a continuous charge distribution:
 The vector sums for evaluating the total electric field at 

some point must be replaced with vector integrals

 Divide the charge distribution into infinitesimal pieces, 
calculate the vector sum by integrating over the entire 
charge distribution



Problem Solving Hints, final

 Analyze, cont.

 Symmetry: 

 Take advantage of any symmetry to simplify calculations

 Finalize

 Check to see if the electric field expression is consistent 

with your mental representation

 Check to see if the solution reflects any symmetry present

 Image varying parameters to see if the mathematical result 

changes in a reasonable way



Example – Charged Disk

 The ring has a radius R
and a uniform charge 

density σ

 Choose dq as a ring of 

radius r

 The ring has a surface 

area 2πr dr



Electric Field Lines

 Field lines give us a means of representing the 
electric field pictorially

 The electric field vector     is tangent to the electric 
field line at each point
 The line has a direction that is the same as that of the 

electric field vector

 The number of lines per unit area through a surface 
perpendicular to the lines is proportional to the 
magnitude of the electric field in that region

E



Electric Field Lines, General

 The density of lines through 
surface A is greater than 
through surface B

 The magnitude of the 
electric field is greater on 
surface A than B

 The lines at different 
locations point in different 
directions

 This indicates the field is 
nonuniform



Electric Field Lines, Positive 

Point Charge

 The field lines radiate 

outward in all directions

 In three dimensions, the 

distribution is spherical

 The lines are directed 

away from the source 

charge

 A positive test charge would 

be repelled away from the 

positive source charge



Electric Field Lines, Negative 

Point Charge

 The field lines radiate 

inward in all directions

 The lines are directed 

toward the source charge

 A positive test charge 

would be attracted 

toward the negative 

source charge



Electric Field Lines – Dipole 

 The charges are equal 

and opposite

 The number of field 

lines leaving the 

positive charge equals 

the number of lines 

terminating on the 

negative charge



Electric Field Lines – Like 

Charges

 The charges are equal 
and positive

 The same number of 
lines leave each charge 
since they are equal in 
magnitude

 At a great distance, the 
field is approximately 
equal to that of a single 
charge of 2q



Electric Field Lines, Unequal 

Charges

 The positive charge is twice 
the magnitude of the negative 
charge

 Two lines leave the positive 
charge for each line that 
terminates on the negative 
charge

 At a great distance, the field 
would be approximately the 
same as that due to a single 
charge of +q

 Use the active figure to vary 
the charges and positions and 
observe the resulting electric 
field PLAY

ACTIVE FIGURE

../../Active_Figures/active_figures/AF_2322.html


Electric Field Lines – Rules for 

Drawing

 The lines must begin on a positive charge and 

terminate on a negative charge

 In the case of an excess of one type of charge, some 

lines will begin or end infinitely far away

 The number of lines drawn leaving a positive 

charge or approaching a negative charge is 

proportional to the magnitude of the charge

 No two field lines can cross

 Remember field lines are not material objects, they 

are a pictorial representation used to qualitatively 

describe the electric field



Motion of Charged Particles

 When a charged particle is placed in an 
electric field, it experiences an electrical force

 If this is the only force on the particle, it must 
be the net force

 The net force will cause the particle to 
accelerate according to Newton’s second law



Motion of Particles, cont



 If is uniform, then the acceleration is constant

 If the particle has a positive charge, its acceleration 
is in the direction of the field

 If the particle has a negative charge, its acceleration 
is in the direction opposite the electric field

 Since the acceleration is constant, the kinematic 
equations can be used

e q m F E a

E



Electron in a Uniform Field, 

Example

 The electron is projected 

horizontally into a uniform 

electric field

 The electron undergoes a 

downward acceleration

 It is negative, so the 

acceleration is opposite the 

direction of the field

 Its motion is parabolic 

while between the plates
Use the active figure to 

vary the field and the 

characteristics of the 

particle.
PLAY

ACTIVE FIGURE

../../Active_Figures/active_figures/AF_2324.html

