

Arab Academy for Science and Technology & Maritime Transport College of Engineering and Technology

Department of Basic and Applied Sciences

- Rules of differentiation

 Trigonometric functions and their derivatives
- Inverse trigonometric functions and their derivatives
- Logarithmic function and its derivative
- Exponential function and its derivative
- Derivatives of Hyperbolic and inverse Hyperbolic functions

- Parametric function and its derivative
- Implicit function and its derivative
- L'Hôpital's rule (The limit of a function)

- Maclaurin's expansions
- Partial differentiation
- Curve sketching
- Physical application (velocity and acceleration)
- -Conic sections (Parabola Ellipse Hyperbola)
- Software application

Arab Academy for Science and Technology College of Engineering and Technology Department of Basic and Applied Sciences

Syllabus for Mathematics 1 (BA123) Text Book: Calculus, Sherman K. Stein & Anthony Barcellos Program title: All Programs

Coordinator: Prof. Nasser El-Maghraby (R. 124)

Week	Topic	Ex. In Class	Assignment
1	Rate of change and rules of differentiation	Sheet 1	
2	Trigonometric functions and their derivatives	Sheet 2	
3	Inverse trigonometric functions and their derivatives	Sheet 3	
4	Logarithmic function and its derivative	Sheet 4	Sheet 1- Sheet 2
5	Exponential function and its derivative	Sheet 5	
6	Derivatives of Hyperbolic and inverse Hyperbolic functions	Sheet 6	Sheet 4- Sheet 5
7	Parametric differentiation and Implicit differentiation	Sheet 7	
8	The limit of a function, L'Hôpital's rule	Sheet 8	Sheet 6– Sheet 7
9	Partial differentiation	Sheet 9	
10	Maclaurin's Expansions	Sheet 10	
11	Curve Sketching: Critical Points, Maximum And Minimum Points, Inflection Points.	Sheet 11	Sheet 9–Sheet 10
12	Curve sketching: rational functions: Asymptotes, Vertical and Horizontal, Symmetry, Points of Discontinuity, Local Extrema and Inflection Points, Intercepts Physical Application: Velocity And Acceleration	Sheet 11	
13	Conic section : Parabola Equation, Vertex, Focus, Directrix, Eccentricity, Graph	Sheet 12	
14	Conic section : Ellipse Equation, Axes, Foci, Directrices, Eccentricity, Graph.	Sheet 12	Sheet 11– Sheet 12
15	Conic section : Hyperbola Equation, Axes, Foci, Directrices, Eccentricity, Graph	Sheet 12	

Sheet 1: Basic Differentiation Rules

$$y = y(x)$$

$$y'=dy/dx=y'(x)$$

1.
$$y = k$$

1. y = k ,k: constant

$$y'=0$$

$$2. \quad v = x^k$$

2. $y = x^k$, k is constant

$$y' = kx^{k-1}$$

3.
$$y = f(x) \pm g(x)$$

$$y' = f'(x) \pm g'(x)$$

4.
$$y = kf(x)$$
, k is constant $y' = kf'(x)$

$$y' = \mathbf{k} f'(x)$$

5.
$$y = f(x)g(x)$$

$$y'=f(x)g'(x)+f'(x)g(x)$$

6.
$$v = [f(x)]^k$$

6.
$$y = [f(x)]^k$$
, k is constant $y' = k [f(x)]^{k-1} f'(x)$

7.
$$y = f(x)/g(x)$$

$$y' = [f'(x)g(x) - f(x)g'(x)]/g^{2}(x)$$

Lecture Examples

a. Find dy/dx for each of the following

1)
$$y = x^4 - 3x^{-2} + 15x + 10$$

$$y = (\sqrt{x} - 1)^7$$

3)
$$y = \frac{1}{(x^6 - 2)^5}$$

4)
$$y = (x^3 - 1)^5 (2 + 3x^{-4})^7$$

5)
$$y = \frac{x^3 - 1}{x^3 + 1}$$

6)
$$y = \left(\frac{x^2 - 3}{x^{-4} + 2}\right)^{4/3}$$

b. Find d^2y/dx^2 for each of the following

1)
$$y = x^7 - \frac{2}{x^3} + x^{-5} + 16x + 5$$

2)
$$y = (2-x^3)^8$$

c. If
$$y = (x + \sqrt{x^2 - 1})^4$$
, Show that $y' = \frac{4y}{\sqrt{x^2 - 1}}$

2

Classroom Exercises

d. Find dy/dx for each of the following

1)
$$y = \frac{3}{x} - \frac{4}{x^2} + 6x^5 + 7$$

$$3) y = \left(\frac{1 - x^4}{1 + x^4}\right)^{3/2}$$

5)
$$y = \sqrt{\frac{x-1}{x+1}}$$

e. Find d^2y/dx^2 for each of the following

1)
$$y = (x^3 - 1)^6$$

2)
$$y = (x^4 - 1)^6$$

4)
$$y = \sqrt{x^3 - 1} (1 - 3x)^5$$

6)
$$y = \left(1 - \frac{1}{\sqrt{x}}\right)^{-4/3}$$

$$\mathbf{z}$$
) $y = \frac{x^2 - 1}{x^2 + 1}$

Homework

f. Find dy/dx for each of the following

1)
$$y = \sqrt{x^5 - 4}$$

3)
$$y = (x^2 + 4)^6 (1 - 2x)^7$$

5)
$$y = (\sqrt{1+x^2})^5 \sqrt[3]{x^4-1}$$

g. Find d^2y/dx^2 for each of the following

1)
$$y = (x^{3/2} - 1)^4$$

4)
$$y = \sqrt{x} (1 - \sqrt{x})^6$$

6) $y = \left(\frac{x^2 - 4}{x^2 + 2}\right)^{7/2}$

 $2) v = x^{-3} (1 + x^4)^5$

$$2) y = \frac{x^2 - 1}{\sqrt{x + 1}}$$

Sheet 2: Trigonometric Functions and their Derivatives

$$\cos^2 u + \sin^2 u = 1$$

$$1 + \tan^2 u = \sec^2 u$$

$$y = \cos u \longrightarrow y' = -u' \sin u$$

$$\cot^2 u + 1 = \csc^2 u$$

$$y = \sin u \longrightarrow y' = u' \cos u$$

$$\sin 2u = 2 \sin u \cos u$$

$$y = \tan u \rightarrow y' = u' \sec^2 u$$

$$\cos 2 u = \cos^2 u - \sin^2 u$$

$$y = \cot u$$
 $y' = -u' \csc^2 u$

$$= 2 \cos^2 u - 1$$

$$y = \sec u \longrightarrow y' = u' \sec u \tan u$$

$$= 1 - 2 \sin^2 u$$

$$y = \csc u \rightarrow y' = -u' \csc u \cot u$$

Lecture Examples

a. Find dy/dx for each of the following

1)
$$y = \sin x^3$$

2)
$$y = (1 + \cos^3 x) \cot^2 2x$$

3)
$$y = x^3 \cos x^2 - 2 \cot x^{-3}$$

$$4)y = \frac{x \sin 2x}{1 - \cos^2 3x}$$

5)
$$y = \sec^3 \sqrt{4x^2 + 1}$$

$$6)y = \frac{\sin(x-1)}{x-1}$$

b. Find d^2y/dx^2 for each of the following

1)
$$y = (1 - \cos^2 x)^{-3/2}$$

$$\mathbf{z}_{1}y = x \sec x$$

c. If $y = a \sin ct + b \cos ct$, where a,b and c are constants

prove that $y'' = -c^2y$

Classroom Exercises

d. Find dy/dx for each of the following

1)
$$y = \tan^2(\cos^3 x^2)$$

2)
$$v = \sqrt{x^2 + 1} \cos^3 \sqrt{x^2 - 1}$$

3)
$$v = x^2 \sec^3 x - 4 \cot^2 x^3$$

4)
$$y = \frac{1 - \sin 2x}{1 + \cos 2x}$$

5)
$$y = \sqrt{\tan^2 x + x \cos^3 x}$$

$$6) y = \sqrt{x - 1} \sin \sqrt{x - 1}$$

e. Find d^2y/dx^2 for each of the following

$$1) y = x^4(\cos 2x)$$

$$2) y = \frac{\sin x}{x}$$

Homework

f. Find dy/dx for each of the following

1)
$$y = \sec^3 \sqrt{\cos x}$$

$$2) y = \cot(\sqrt{x} \tan \sqrt{x})$$

3)
$$y = x^{3/2} \cot x^3$$

4)
$$y = \csc^4 \sqrt{x^2 - 1}$$

5)
$$y = (1 - \sin \sqrt{x})^3 \cos \sqrt{x}$$

6)
$$y = \sqrt{x} \csc \sqrt{x}$$

g. Find d^2y/dx^2 for each of the following

$$1) y = x \tan x^3$$

$$2) y = \sin^3 x$$

Sheet 3: Inverse Trigonometric Functions and their Derivatives

$$y = \sin^{-1} u \to y' = \frac{u'}{\sqrt{1 - u^2}}$$
 $y = \cos^{-1} u \to y' = \frac{-u'}{\sqrt{1 - u^2}}$

$$y = \cos^{-1} u \to y' = \frac{-u'}{\sqrt{1 - u^2}}$$

$$y = \tan^{-1} u \rightarrow y' = \frac{u'}{1+u^2}$$
 $y = \cot^{-1} u \rightarrow y' = \frac{-u'}{1+u^2}$

$$y = \cot^{-1} u \to y' = \frac{-u'}{1+u^2}$$

$$y = \sec^{-1} u \to y' = \frac{u'}{|u|\sqrt{u^2}}$$

$$y = \sec^{-1}u \rightarrow y' = \frac{u'}{|u|\sqrt{u^2 - 1}}$$
 $y = \csc^{-1}u \rightarrow y' = \frac{-u'}{|u|\sqrt{u^2 - 1}}$

Lecture Examples

a. Find dy/dx for each of the following

1)
$$y = \cos^{-1} \sqrt{x}$$

2)
$$y = (x^2 + 4) \cos ec^{-1} 2x$$

3)
$$y = x^3 (1 - \sec^{-1} x)$$

4)
$$y = x^3 \sin^{-1} \sqrt{x} - 2 \cot^{-1} x^2$$

5)
$$y = \tan^{-1} \left(\frac{x-1}{x+1} \right)$$

6)
$$y = \frac{1 - \sin^{-1} x}{\cos^{-1} x}$$

5

Prove that $y' = \frac{-(y^2+1)}{\sqrt{1-(y^2+1)}}$ b. If $y = \tan(\cos^{-1}x)$,

Classroom Exercises

c. Find dy/dx for each of the following

1)
$$y = \sqrt{x} \tan^{-1} \sqrt{x}$$

2)
$$y = \cot^{-1} \left(\frac{\cos 3x}{1 + \sin 3x} \right)$$

3)
$$y = x^3 \sec^{-1} x^2$$

4)
$$y = \frac{\cos^{-1} x}{1 - \sin^{-1} x}$$

5)
$$y = \sqrt{x^2 - 1} \sin^{-1} x - x \cos^{-1} x$$

6)
$$y = \tan^{-1}(\cos x) + \cot^{-1}(\sin x)$$

d. If $y = \cos(2\sin^{-1}x)$, prove that $(1-x^2)(y')^2 = 4(1-y^2)$

Homework

e. Find dy/dx for each of the following

1)
$$y = \sin^{-1} x^3$$

2)
$$y = \cot^{-1}(\cos 2x)$$

3)
$$y = \cot^{-1}\left(\frac{x-4}{x+4}\right)$$

4)
$$y = \frac{\tan^{-1} x}{1 - \cos^{-1} \sqrt{x}}$$

5)
$$y = x^2 \cos ec^{-1} \sqrt{x} - 3x \sin^{-1} x$$
 6) $y = \sqrt[3]{x} \sec^{-1} \left(\frac{x}{4}\right)$

6)
$$y = \sqrt[3]{x} \sec^{-1} \left(\frac{x}{4} \right)$$

f. Prove that $\frac{d}{dx} \left(\tan^{-1} \left(\frac{x-1}{x+1} \right) \right) = \frac{d}{dx} \left(\tan^{-1} (x) \right)$

Sheet 4: Logarithmic Function and Its Derivatives

 $\ln b = a \Leftrightarrow b = e^a$, $e = 2.71828 \dots, b \ge 0$

1.
$$ln(1) = 0$$
, $ln(0) = -\infty$, $ln(e) = 1$

2.
$$ln(ab) = ln a + ln b$$

3.
$$ln(a^n) = n ln a$$

$$y = \ln u \rightarrow y' = \frac{u'}{u}$$

4.
$$\ln (e^n) = n$$

5.
$$\ln (a/b) = \ln a - \ln b$$

Lecture Examples

a. Find dy/dx for each of the following

$$1) \quad y = x^3 \ln x$$

2)
$$y = \ln(x^{-4}(x^5 - 2)^6)$$

3)
$$y^x = x^y$$

4)
$$y = \ln \left[\frac{x^3 (1-x^2)^4}{\sin x (x-1)^5} \right]^{7/2}$$

5)
$$y = \sin x^2 - 3x \cos x - x^x$$

6)
$$(\sin x)^{\cos y} = (\sin y)^{\cos x}$$

b. If $y = \ln(\sec x + \tan x)$, Prove that $y'' = \sec x \tan x$.

Classroom Exercises

c. Find dy/dx for each of the following

1)
$$y = (\ln x)^3$$

2)
$$y = \ln\left(\frac{x^3 - 1}{x^2 + 1}\right)$$

3)
$$y = \sqrt[4]{\frac{(1-x)^3 \tan^{-1} x}{x^x \sec x^3}}$$

4)
$$y^{5/2} = x^{\ln x}$$

5)
$$y = \frac{x^{x} (2 - \sin x)^{x^{2}}}{x^{\cos x} (1 - 2\ln x)^{5}}$$

$$6) y = x \cos \sqrt{x} - x^{\sec x}$$

d. If $y = \cos(\ln x) + \sin(\ln x)$ **prove that** $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$

Homework

e. Find dy/dx for each of the following

1)
$$y = \ln(1 - \ln x)$$

2)
$$y = \ln \left[\frac{(1-x^2)^5 (2-\sin^{-1} x)}{(1-\ln x)^2 (3-\cos x)} \right]$$

3)
$$y = \frac{(x-1)^3 (1-\sin x)^4}{x^x (2-\cos x)^2}$$

4)
$$\sqrt{y} = \frac{x^5 \tan^{-1} x}{(1+x)\sqrt[3]{x}}$$

$$5) y = x^{\sin x}$$

$$6) y = (\ln(\sin x))^{\cos x}$$

Sheet 5: Exponential Function and Its Derivative

1.
$$e^a e^b = e^{a+b}$$

$$2 e^a / e^b = e^{a-b}$$

$$3. (e^a)^b = e^{ab}$$

$$y = e^u \rightarrow y' = u'e^u$$

4.
$$e^{\ln a} = a$$

Lecture Examples

a. Find dy/dx for each of the following

1)
$$y = e^{\sin^{-1}x}$$

$$2) y = e^{\tan^{-1}\sin x}$$

$$y = \cos^3 e^{x^2}$$

4)
$$y = \cos^{-1}(1 - e^{-x})$$

5.
$$y = \cos ec^{-1}e^x - x^4e^{\cot x}$$

6.
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

b. If
$$y = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$$
, show that $y' = \frac{8}{(e^{2x} + e^{-2x})^2}$.

$$y' = \frac{8}{\left(e^{2x} + e^{-2x}\right)^2}.$$

c. If $y = \tan^{-1} \ln e^{\tan \sqrt{x}}$, show that yy' = 1/2

$$yy' = 1/2$$

Classroom Exercises

d. Find dy/dx for each of the following

$$_{1)} y = x^{3} e^{x^{5} - 3}$$

2)
$$y = e^{\ln \sin^{-1}(\sin x3)}$$

$$_{3)} y = \sqrt{e^{\cos^{-1}x}}$$

4)
$$y = \ln \left[\frac{e^{x^2} \sin x^3}{(1 - e^x)(2 - x)} \right]^6$$

e. If $y = \ln(\cos x)$, show that $y'' + e^{-2y} = 0$

f. Find d^2y/dx^2 for each of the following

$$1) y = e^{\sin x}$$

2)
$$y = \cos e^{3x}$$

8

Homework

g. Find dy/dx for each of the following

1)
$$y = e^{x^3}$$

$$\mathbf{2})y = e^{\cos^{-1}(\sin x)}$$

3)
$$y = \ln \left[\frac{1 + e^{2x}}{(1 - e^{-2x})^3} \right]$$

4)
$$y = x^5 \sec e^{-x}$$

h. If $y = ae^{-2x} + be^{3x}$ where a and b are constant

Show that

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0.$$

i. Find d^2y/dx^2 for each of the following

1)
$$y = e^{-4x}$$

2)
$$y = \ln(e^{2x} - 4)$$

Sheet 6: Derivatives of Hyperbolic Functions and Their Inverse

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$cosh x = \frac{e^{x} + e^{-x}}{2}$$
 $tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

$$\cos \operatorname{ech} x = \frac{2}{e^x - e^{-x}}$$

$$\operatorname{sech} x = \frac{2}{a^x + a^{-x}}$$

$$\operatorname{sech} x = \frac{2}{e^{x} + e^{-x}} \qquad \operatorname{coth} x = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

$$\cosh^2 u - \sinh^2 u = 1$$

$$1 - \tanh^2 u = \sec h^2 u$$

$$\coth^2 u - 1 = \operatorname{cosech}^2 u$$

$$\cosh 2u = \cosh^2 u + \sinh^2 u$$

$$tan2u = 2 tanh u/(1+tanh^2 u)$$

 $\sinh 2u = 2\sinh u \cosh u$

 $y = \sinh u \rightarrow y' = u' \cosh u$

$$v = \cosh u \mapsto \sinh u$$

$$y = \tanh u \rightarrow y' = u' \sec h^2 u$$

$$y = \coth u \rightarrow y' = -u' \csc^2 u$$

$$y = \operatorname{sech} u \mapsto u \operatorname{'sech} u \tanh u$$

$$y = \operatorname{cosech} u \rightarrow y' = -u' \operatorname{cosech} u \operatorname{coth} u$$

$$y = \sinh^{-1} u \to y' = \frac{u'}{\sqrt{u^2 + 1}}$$

$$y = \cosh^{-1} u \to y' = \frac{u'}{\sqrt{u^2 - 1}}$$

$$y = \tanh^{-1} u \to y' = \frac{u'}{1 - u^2}, |u| \prec$$

Lecture Examples

a. Find dy/dx for each of the following

1)
$$y = x^4 \cosh^2 x^3$$

$$2) \quad y = \tanh(x \ln x)$$

3)
$$y = e^{\cosh^{-1}x^2}$$

4)
$$y = (\sin^{-1} \sqrt{x})(1 - \cosh^{-1} x^2)$$

5)
$$y = \sqrt[5]{x^3} \tanh^{-1} x^2$$

6)
$$y = \ln \left[\frac{(x+1)^2 e^{\cos e c h x}}{\sqrt{x^3 - 1}} \right]$$

b. Show that $\cosh^{-1} x = \ln(x \pm \sqrt{x^2 - 1})$

Classroom Exercises

c. Find dy/dx for each of the following

1)
$$y = \sinh x^3$$

2)
$$y = \tanh^{-1}(\sec h2x)$$

1)
$$y = \sinh x^3$$

2) $y = \tanh^{-1}(\sec h2x)$
3) $y = \sin(\cosh^{-1}\sqrt{x^2+1})$
4) $y = \sqrt{\cosh^{-1}(e^{-x/2})}$

4)
$$y = \sqrt{\cosh^{-1}(e^{-x/2})}$$

d. Show that

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

e. Solve the following equations

1.
$$e^{\cosh^{-1}x} = 2$$

$$2. \quad \ln\left(\frac{1+\tanh x}{1-\tanh x}\right) = 5$$

Homework

f. Find dy/dx for each of the following

$$1. \quad y = x^2 \coth^3 \sqrt{x}$$

2.
$$y = xe^{\sinh^{-1}x}$$

3.
$$y = (1 - \ln \sec x) \cosh^{-1} \sqrt{x}$$

4.
$$y = \ln \sqrt{\tanh 3x}$$

5.
$$y = \sinh^{-1}(\sin 2x)$$

$$6. \quad y = \tanh^{-1} \sqrt{\sec x}$$

f. Show that

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x}$$

Sheet 7: Parametric and Implicit Differentiation

Lecture Examples

- a. Find dy/dx for each of the following
- 1) $y = t \ln t$, $y = \frac{\ln t}{t}$
- 2) $x = e^t \cosh t$, $y = e^t \sinh t$
- b. Find d^2y/dx^2 for each of the following
- $1) \quad x = \cos ect \quad , \quad y = \cos 2t$
- 2) $x = \sqrt{1-t^2}$, $y = \sin^{-1} t$
- **c.** If $x = \cos \frac{t}{1+t}$, $y = \sin \frac{t}{1+t}$, show that $y^3y'' + 1 = 0$
- **d.** If $x = \frac{t+1}{t-1}$, $y = \left(\frac{t-1}{t+1}\right)^5$, show that $y'' = 30x^{-7}$
- e. Find dy/dx for each of the following
- 1) $x^3 3x^2y^4 + 7y^2 = 10$ 2) $x + \cos^{-1} y = xy$
- 3) $\sin^{-1} x + \tan(xy) = 5$ 4) $y = e^{-x} + e^{y}$

11

Classroom Exercises

- f. Find dy/dx for each of the following
- 1) $x = \frac{3t}{1+t^3}$, $y = \frac{3t}{1+t^3}$

- 2) $x = \sqrt{1 \sin \theta}$, $y = \sqrt{1 + \cos \theta}$
- g. Find d^2y/dx^2 for each of the following
- 1) $x = \cos \theta + \theta \sin \theta$, $y = \sin \theta \theta \cos \theta$ 2) $x = \sqrt{t^4 1}$, $y = \sec^{-1} t^2$

h. If $x = \tan \frac{t-1}{1+t}$, $y = \sec \frac{t-1}{1+t}$, show that $y'' = y^{-3}$.

i. Find dy/dx for each of the following

1)
$$x^{-2}y^5 - 2xy^2 + 7x = 12$$

2)
$$x + y^2 = e^{x/y}$$

3)
$$\ln y = x + e^y$$

4)
$$y^2 = \sin^3 2x + \cos^3 2y$$

$$5) \quad x^{1+y} + y^{1+x} = 1$$

Homework

j. If $x = \tan t - t$, $y = \tan^3 t$, Find y".

k. If $x = t + \frac{1}{t}$, $y = t^2 + \frac{1}{t^2}$, Show that y'' = 2.

1. If $x = \frac{t-1}{t+1}$, $y = \frac{t+1}{t-1}$, Show that $y'' = 2y^3$.

m. Find dy/dx for each of the following

1)
$$y^4 - 4x^3y^2 + 6x^2 = 7$$

2)
$$\tan^{-1} y = x^2 + y^2$$

3)
$$y = e^{(x+y)^3}$$

$$4) \quad \cosh^{-1}\sec y = xy^3$$

Sheet 8: L'Hôpital's Rule

Lecture Examples

$$1) \quad \lim_{x \to \pi/2} \frac{2\cos x}{2x - \pi}$$

3)
$$\lim_{x\to 0} \frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{x}$$

5)
$$\lim_{x \to 0} \frac{x \cos x + \tan 2x}{x \sec x + \sin 4x}$$

7)
$$\lim_{x\to\infty} \left(\frac{x+3}{x-1}\right)^{x}$$

$$\lim_{x\to 0} \frac{1-\cosh x}{x^2}$$

4)
$$\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2}$$

6)
$$\lim_{\phi \to 0} (\cos \operatorname{ec} \phi - \cot \phi)$$

8)
$$\lim_{x \to 0} (\cos x)^{1/x^2}$$

Classroom Exercises

1)
$$\lim_{x \to \pi} \frac{1 - \sin(x/2)}{\pi - x}$$

3)
$$\lim_{x \to o} \frac{\tan x + \sec x - 1}{\tan x - \sec x + 1}$$

$$5) \quad \lim_{x \to \pi/2} (\sec x - \tan x)$$

7)
$$\lim_{x \to 0} (\cos x)^{1/x}$$

$$2) \qquad \lim_{x \to 1} \frac{\cot(\pi x/2)}{1 - \sqrt{x}}$$

$$4) \qquad \lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{x^2}$$

$$6) \qquad \lim_{x \to 0} \frac{\sin 4x - x \cos x}{x \sec x - \tan 3x}$$

8)
$$\lim_{x\to\infty} \left(\frac{x}{x+1}\right)^x$$

Homework

$$1) \quad \lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}$$

3)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}$$

$$5) \quad \lim_{x \to 0} \frac{\sinh x}{x}$$

7)
$$\lim_{x \to 0} (1 + \sin x)^{1/x}$$

2)
$$\lim_{x \to 1} \frac{\sin(x^3 - 1)}{x - 1}$$

$$4) \quad \lim_{x\to 0} \frac{\sin 3x}{1-\cos 4x}$$

$$6) \quad \lim_{x \to 0} \frac{\tanh x}{x}$$

8)
$$\lim_{x\to\infty} \left(\frac{x}{x+2}\right)^{x-2}$$

Sheet 9: Partial Differentiation

Lecture Examples

a. Find the first partial derivatives for each of the following

1)
$$z = (x^2 - y)\sin x^3$$

$$z = (\sin 2y)^x$$

b. If $z = \tan^{-1} \frac{y}{x}$ show that

1)
$$x \frac{\partial z}{\partial y} - y \frac{\partial z}{\partial x} = 1$$

$$2) \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 0$$

c. If
$$z = f(x^2 + y^2)$$
 show that $x \frac{\partial z}{\partial y} - y \frac{\partial z}{\partial x} = 0$

Classroom Exercises

d. Find the first partial derivatives for each of the following

1)
$$z = y^2(x^4 - 1)^5 + 6y^2x$$

$$2) z = x^2 \sin \sqrt{x} + y \cos(xy)$$

$$3) z = \tan^{-1} \frac{y}{x}$$

4)
$$z = e^{x/y} \tanh^{-1}(x^2 + y^2)$$

e. If
$$z = \cot^{-1} \frac{y}{x}$$
 show that $\frac{\partial^2 z}{\partial y^2} + \frac{\partial^2 z}{\partial y^2} = 0$

f. If
$$z = \tan^{-1} \frac{x-1}{y-1}$$
 show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$

Homework

g. Find the first partial derivatives for each of the following

1)
$$z = x^3 - 3x^2y^4 + y^2$$

$$2) z = (x+y)\sin(x-y)$$

$$3) z = e^{\frac{y}{x}} \ln \frac{x}{y}$$

4)
$$z = (1 + \sin y)^{1 + \cos x}$$

h. If
$$z = \ln(x^2 + y^2)$$
 show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$

i. If
$$z = \cot^{-1} \frac{x}{y}$$
, show that

1)
$$y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = -1$$
 and

$$2) \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

Sheet 10: Maclaurin's Expansion

Maclaurin's Expansion:

$$f(x) = f(0) + f'(0)\frac{x}{1!} + f''(0)\frac{x^2}{2!} + f'''(0)\frac{x^3}{3!} + f^{(n)}(0)\frac{(x)^n}{n!} + \cdots$$

Lecture Examples

a. Find Maclaurin's Expansion of each of the following:

- (1) $f(x) = \sin 2x$
- (2) $f(x) = \ln(2+3x)$, Find approximate value to $\ln(2.3)$.

14

b. Using Maclaurin's Expansion, show that

(1)
$$e^{-x} \cos x = 1 - x + \frac{1}{3}x^3 - \frac{1}{6}x^4 + \cdots$$

(2)
$$\frac{\cos x}{\sqrt{1+x}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + \cdots$$

Classroom Exercises

c. Find Maclaurin's Expansion for each of the following

$$1) \quad f(x) = \cos 3x$$

2)
$$f(x) = \frac{1}{\sqrt{1+x}}$$

3)
$$f(x) = e^{-3x}$$

d. Using Maclaurin's Expansion show that:

1)
$$e^x \sin x = x + x^2 + \frac{x^3}{3} - \frac{x^5}{30} + \cdots$$

1)
$$e^x \sin x = x + x^2 + \frac{x^3}{3} - \frac{x^5}{30} + \cdots$$
 2) $\frac{e^x}{1 - x} = 1 + 2x + \frac{5}{2}x^2 + \frac{8}{3}x^3 + \cdots$

Homework

e. Find Maclaurin's Expansion for each of the following

1)
$$f(x) = \frac{1}{x+1}$$

$$2) \quad f(x) = \cos 3x$$

15

f. Using Maclaurin's Expansion, show that

(1)
$$\frac{e^{-x}}{1-x} = 1 + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

(2)
$$\sinh x + \cosh x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$$

Sheet 11: Differentiation applications

Graphing Rational Functions

- 1. Find the domain of the rational function.
- 2. Find the vertical asymptote(s) of the rational function.
- 3. Find the horizontal asymptote of the rational function.
- 4. Determine the symmetry of the rational function.
- 5. Find the intercepts of the rational function.
- 6. Graph the rational function.
- 1. The **domain** is the set of all **input values** to which the rule applies. These are called your **independent variables**. These are the values that correspond to the first components of the ordered pairs it is associated with.

2. Vertical Asymptote

Let $f(x) = \frac{P(x)}{Q(x)}$ be written in lowest terms and P and Q are polynomial functions.

If $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a$, then the vertical line x = a is a vertical asymptote.

The line x = a is a vertical asymptote of the graph of f(x) if and only if the denominator Q(a) = 0 and the numerator $P(a) \neq 0$.

You can have zero or many vertical asymptotes. It will be x = whatever number(s) cause the denominator to be zero after you have simplified the function.

3. Horizontal Asymptote

Let $f(x) = \frac{P(x)}{Q(x)}$ be written in lowest terms and P and Q are polynomial functions and $Q(x) \neq 0$.

If $f(x) \to a$ as $x \to \infty$ or $x \to -\infty$, then the horizontal line y = a is a horizontal asymptote.

If there is a horizontal asymptote, it will fit into one of the two following cases:

Case I

If the degree of P(x) < the degree of Q(x), then there is a horizontal asymptote at y = 0 (x-axis).

Case II

If the degree of P(x) = the degree of Q(x), then there is a horizontal asymptote at

$$y = \frac{leading conflictent of P(x)}{leading conflictent of Q(x)}$$

In other words, it would be the ratio between the leading coefficient of the numerator and the leading coefficient of the denominator.

4. Determine the symmetry

The graph is **symmetric about the** *y***-axis** if the function is **even**.

The graph is **symmetric about the origin** if the function is **odd**.

5. Find any intercepts that exist.

The **x-intercept** is where the graph crosses the x-axis. You can find this by **setting** y = 0 and solving for x.

The **y-intercept** is where the graph crosses the y-axis. You can find this by **setting** x = 0 and solving for y.

6. Draw curves through the points, approaching the asymptotes.

Note that your graph can cross over a horizontal, but it can NEVER cross over a vertical asymptote.

Solved example

1)
$$y = f(x) = \frac{x-1}{x^2}$$

Domain:

Our restriction here is that the denominator of a fraction can never be equal to 0. So to find our domain, we want to set the denominator equal to 0 and restrict those values.

let $x^2 = 0$, then x = 0, hence the domain will be $(-\infty,0) \cup (0,\infty)$ i.e. Our domain is all real numbers except zero

Intercepts:

y-intercept \Rightarrow to find the y-intercept, we let x = 0 and solve for $y \Rightarrow$ no y-intercept. **x-intercept** \Rightarrow to find the x-intercept, we let y = 0 and solve for $x \Rightarrow 0 = \frac{x-1}{x^2} \Rightarrow x-1 = 0 \Rightarrow x = 1$ (x-intercept).

Symmetry:

note: $f(-x) = f(x) \Rightarrow$ symmetry about the y-axis \Rightarrow i.e. even function $f(-x) = -f(x) \Rightarrow$ symmetry about the origin \Rightarrow i.e. odd function

$$f(x) = \frac{x-1}{x^2}$$
, $f(-x) = \frac{-x-1}{x^2}$, So $f(-x) \neq f(x)$ and $f(-x) \neq -f(x) \Rightarrow$ no symmetry.

Asymptotes:

1. Vertical Asymptote: $\frac{\text{Not }0}{0}$, $y = \frac{x-1}{x^2}$, then $\frac{-1}{0} \implies x = 0$ is a vertical Asymptote.

2. Horizontal Asymptote: $\lim_{x \to \pm \infty} \frac{x-1}{x^2} = 0 \implies y = 0$ is a horizontal Asymptote.

Increasing and decreasing intervals:

18

Increasing intervals: (0,2), decreasing intervals: $(-\infty,0)$, $(2,\infty)$

Local maximum: at x = 2, $y = \frac{1}{4} \implies (2, \frac{1}{4})$ is a local maximum

Local minimum: since x = 0 is outside the domain, hence no local minimum.

Inflection points: $f'(x) = \frac{2-x}{x^3}$, $f''(x) = \frac{2(x-3)}{x^4}$

again the function is undefined at x = 0, hence the inflection point is $(3, \frac{2}{9})$

Graph:

Domain: let x + 4 = 0, then x = -4, hence the domain will be $(-\infty, -4) \cup (-4, \infty)$

y-intercept :
$$y = \frac{0}{0+4} = 0$$

x-intercept:
$$0 = \frac{x}{x+4} \Rightarrow x = 0$$

Therefore the function crosses the x-axis and y-axis at the origin (0,0)

Symmetry:

$$f(-x) = \frac{-x}{-x+4}$$
. So $f(-x) \neq f(x)$ and $f(-x) \neq -f(x) \implies$ no symmetry.

Asymptotes:

- 1. Vertical Asymptote: $f(-4) = \frac{-4}{0} \implies x = -4$ is a vertical Asymptote.
- 2. Horizontal Asymptote: $\lim_{x \to \pm \infty} \frac{x}{x+4} = \frac{\text{leading coeff of } x}{\text{leading coeff of } (x+4)} = \frac{1}{1} = 1$, or

$$\lim_{x \to \pm \infty} \frac{x}{x+4} = \frac{\frac{x}{x}}{\frac{x}{x} + \frac{4}{x}} = \lim_{x \to \pm \infty} \frac{1}{1 + \frac{4}{x}} = 1$$
. Hence, y = 1 is a horizontal Asymptote.

Increasing and decreasing intervals:

$$f(x) = \frac{x}{x+4}$$
, $f'(x) = \frac{4}{(x+4)^2}$, for $f'(x) = 0 \Rightarrow f'(x)$ is undefined

i.e. no solution and no critical points. Hence no local max. and local min exist.

Then let $(x+4)^2 = 0 \implies x = -4$.

Inflection points: $f'(x) = \frac{4}{(x+4)^2}$, $f''(x) = \frac{-8}{(x+4)^3}$. Again for $f''(x) = 0 \Rightarrow f''(x)$ is undefined. Then let $(x+4)^3 = 0 \Rightarrow x = -4$.

In order to check whether the curve crosses the horizontal Asymptote y = 1,

let $\frac{x}{x+4} = 1 \implies x = x+4 \implies$ no solution \implies never crosses line y = 1.

Graph:

The equation of motion of any particle is given by:

The displacement of the particle:

$$s = s(t)$$

then, its velocity is given by:

$$v = \frac{ds}{dt}$$

and its acceleration is given by:

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

Lecture Examples

i) In each of the following curves, 1) $y = x^2 - 4x + 3$

1)
$$y = x^2 - 4x + 3$$

2)
$$y = -2 x^2 + 12 x + 7$$

Find,

- a. The critical point.
- b. The intervals in which the curve is increasing and decreasing.
- c. The local maximum and minimum points.
- d. Sketch the curve.

ii) In each of the following curves,

1)
$$y = x^3 - 6x^2 + 10$$

2)
$$y = (x^2 - 9)^2$$

Find,

- a. The critical points.
- b. The intervals in which the curve is increasing and decreasing.
- c. The local maximum and minimum points.
- d. The inflection point.
- e. The concavity of the curve.
- f. Sketch the curve
- iii) In each of the following curves,

$$1) \qquad y = \frac{5x}{x^2 + 1}$$

2)
$$y = \frac{x}{x - 2}$$

- 1. Find the domain of the rational function.
- 2. Find the vertical asymptote(s) of the rational function.
- 3. Find the horizontal asymptote of the rational function.
- 4. Determine the symmetry of the rational function.
- 5. Find the intercepts of the rational function.
- 6. The critical points.
- 7. The intervals in which the curve is increasing and decreasing.
- 8. The local maximum and minimum points.
- 9. The inflection point.
- 10. The concavity of the curve.
- 11. Graph the rational function.
- iv) Find the velocity and the acceleration for each of the following

1)
$$s(t) = t^3 - 6t^2 + 7$$

2)
$$s(t) = t^3 e^{t^4 - 1}$$

Classroom Exercises

i) In each of the following curves,

1)
$$y = 2x^2 - 8x + 10$$

2)
$$y = -3 x^2 - 12 x$$

Find,

- a. The critical point.
- b. The intervals in which the curve is increasing and decreasing.
- c. The local maximum and minimum points.
- d. Sketch the curve.

ii) In each of the following curves,

1)
$$y = 6x^2 - x^3$$

2)
$$y = x^3 - 3x^2 - 9x$$

Find,

- a. The critical points.
- b. The intervals in which the curve is increasing and decreasing.
- c. The local maximum and minimum points.
- d. The inflection point.
- e. The concavity of the curve.
- f. Sketch the curve.
- iii) In each of the following curves,

$$1) \quad y = \frac{7x}{x^2 + 3}$$

2)
$$y = \frac{x+1}{x-3}$$

- 1. Find the domain of the rational function.
- 2. Find the vertical asymptote(s) of the rational function.
- 3. Find the horizontal asymptote of the rational function.
- 4. Determine the symmetry of the rational function.
- 5. Find the intercepts of the rational function.
- 6. The critical points.
- 7. The intervals in which the curve is increasing and decreasing.
- 8. The local maximum and minimum points.
- 9. The inflection point.
- 10. The concavity of the curve.
- 11. Graph the rational function.
- iv) Find the velocity and the acceleration for each of the following

$$1) s(t) = \sin 5t - \cos 5t$$

2)
$$s(t) = t^6 (1 - \ln t)^4$$

Homework

i) In each of the following curves,

1)
$$y = 12x - 3x^2$$

2)
$$y = 3 x^2 - 6 x$$

find

- a. The critical point.
- b. The intervals in which the curve is increasing and decreasing.
- c. The local maximum and minimum points.
- d. Sketch the curve.

ii) In each of the following curves,
1)
$$y = 2x^3 - 12x^2 + 18 x$$

1)
$$y = 2x^3 - 12x^2 + 18x$$

find

2)
$$y = x^3 - 9x^2 + 8$$

- The critical points. a.
- The intervals in which the curve is increasing and decreasing. b.
- The local maximum and minimum points. c.
- The inflection point. d.
- The concavity of the curve. e.
- Sketch the curve. f.

Find the velocity and the acceleration for each of the following iii)

$$1) s(t) = t \sinh 3t + \cosh 3t$$

2)
$$s(t) = \frac{1 - e^{2t}}{e^{2t} - e^{2t}}$$

Sheet 13: Conic Sections

The Parabola

$$(y - y_0)^2 = 4 c(x - x_0)$$
vertex
$$(x_0, y_0)$$
focus
$$(x_0 + c, y_0)$$
axis
$$y = y_0$$
directrix
$$x = x_0 - c$$

$$(x-x_0)^2 = 4c(y-y_0)$$
vertex
$$(x_0,y_0)$$
focus
$$(x_0,y_0+c)$$
axis
$$x = x_0$$
directrix
$$y = y_0-c$$

The Ellipse

General form
$$\frac{(x-x_0)^2}{b^2} + \frac{(y-y_0)^2}{a^2} = 1$$

 $a > b$

Center
$$(x_0, y_0)$$
, $c^2 = a^2 - b^2$,

major axis = 2a, minor axis = 2b,

Vertices $(x_0, y_0 \pm a)$

Convertices ($\pm b + x_0, y_0$)

Foci $(x_0, y_0 \pm c)$

Directrix $y = \pm a^2/c$

General form
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

 $a > b$

Center
$$(x_0, y_0)$$
, $c^2 = a^2 - b^2$

major axis = 2a, minor axis = 2b,

Vertices $(\pm a + x_0, y_0)$

Convertices $(x_0, \pm b + y_0)$

Foci $(\pm c + x_0, y_0)$

Directrix $x = \pm a^2/c$

The Hyperbola

Horizontal Transverse Axis

General form
$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

Center
$$(x_0, y_0)$$
, $c^2 = a^2 + b^2$,

Transverse axis = 2a, Conjugate axis = 2b,

Vertices $(\pm a + x_0, y_0)$

Convertices $(x_0, \pm b + y_0)$

Foci $(\pm c + x_0, y_0)$

Directrix $y = \pm a^2/c$

General form
$$\frac{(y-y_0)^2}{a^2} - \frac{(x-x_0)^2}{b^2} = 1$$

Center
$$(x_0, y_0)$$
, $c^2 = a^2 + b^2$

Transverse axis = 2a, Conjugate axis = 2b,

Vertices $(x_0, y_0 \pm a)$

Convertices ($\pm b + x_0, y_0$)

Foci $(x_0, y_0 \pm c)$

Directrix $x = \pm a^2/c$

Lecture Examples

a. Discuss and sketch the following curves:

1)
$$x^2 + 2x - 4y - 3 = 0$$

$$2y^2 - 4x - 4y - 14 = 0$$

3)
$$4x^2 + 9y^2 + 24x = 0$$

3)
$$4x^2 + 9y^2 + 24x = 0$$
 4) $2x^2 + 9y^2 + 8x - 72y + 134 = 0$

$$9x^2 - 16y^2 - 36x - 32y = 124$$

6)
$$16x^2 - 64x - 4y^2 - 8y - 4 = 0$$

Classroom Exercises

b. Discuss and sketch the following curves:

1)
$$x^2 + 10x + 4y + 13 = 0$$

2)
$$v^2 - 4x - 4v + 12 = 0$$

3)
$$x^2 + 4y^2 - 2x - 3 = 0$$

1)
$$x^2 + 10x + 4y + 13 = 0$$
 2) $y^2 - 4x - 4y + 12 = 0$
3) $x^2 + 4y^2 - 2x - 3 = 0$ 4) $25x^2 + 16y^2 + 100x - 32y - 284 = 0$

5)
$$9x^2 - 4y^2 - 72x + 8y + 176 = 0$$

6) $-3x^2 + 12x + 2y^2 - 4y = -8$

$$6) -3x^2 + 12x + 2y^2 - 4y = -8$$

Homework

c. Discuss and sketch the following curves:

1)
$$x^2 - 16y - 6x + 9 = 0$$

$$2) \quad y^2 + 6x + 8x - 15 = 0$$

3)
$$16x^2 + 4y^2 - 64x + 8y + 4 = 0$$

1)
$$x^2 - 16y - 6x + 9 = 0$$

2) $y^2 + 6x + 8x - 15 = 0$
3) $16x^2 + 4y^2 - 64x + 8y + 4 = 0$
4) $9x^2 + 16y^2 - 36x + 32y = 92$