Arab Academy for Science, Technology & Maritime Transport

College of Engineering & Technology

Final Examination Paper

Department	Basic & Applied Science	Date	02/06/2012
Lecturer	Mathematics Group	Marks	40
Course Title	Mathematics 1	Time Allowed	2 hours
Course Code	BA123	Start Time	09:00-11:00

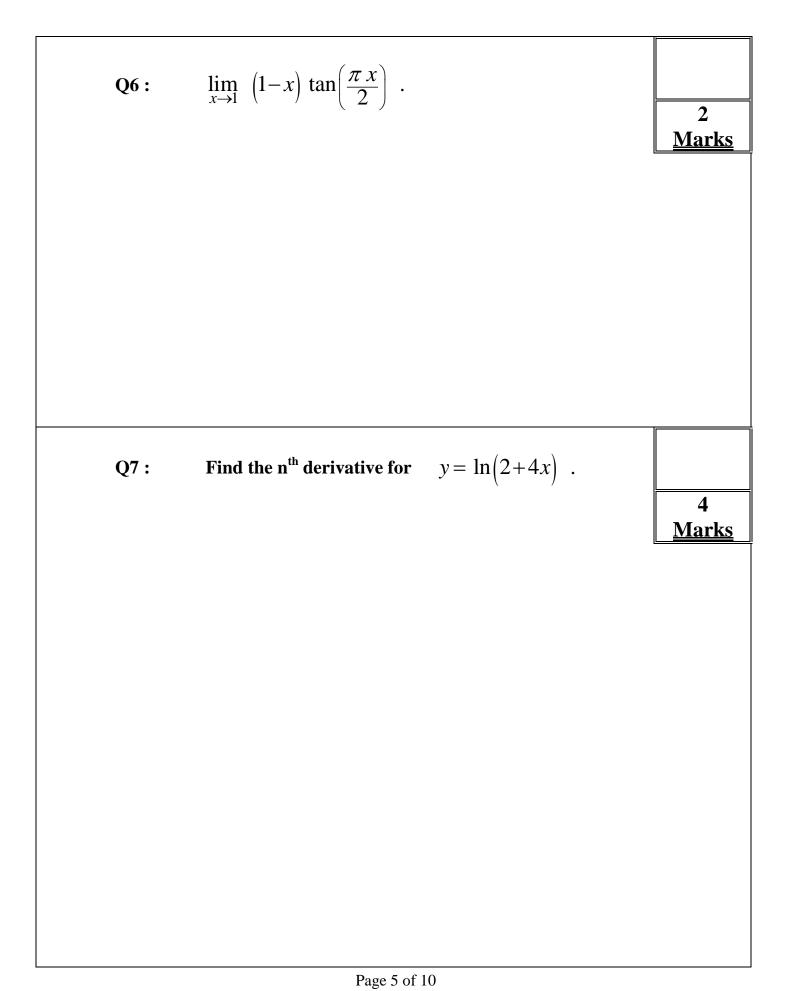
Find $\frac{dy}{dx}$ for each of the following functions (From Q1 to Q3):

Q1:
$$y = x^2 \ cosec^{-1}\sqrt{x} - sin^4x$$
.

3 <u>Marks</u>

Q2:
$$y = \sqrt[5]{\left(\frac{x^x \tanh^2 x}{\cosh^{-1} x (2-3x)}\right)}.$$

3 <u>Marks</u>


Q3:
$$x^3 - 4y^2x^5 + 5y^4 = 12$$
.

3 <u>Marks</u>

Q4: If
$$x = \cos\left(\frac{t}{1+t}\right)$$
 and $y = \sin\left(\frac{t}{1+t}\right)$, Show that $y'' = \frac{-1}{y^3}$.

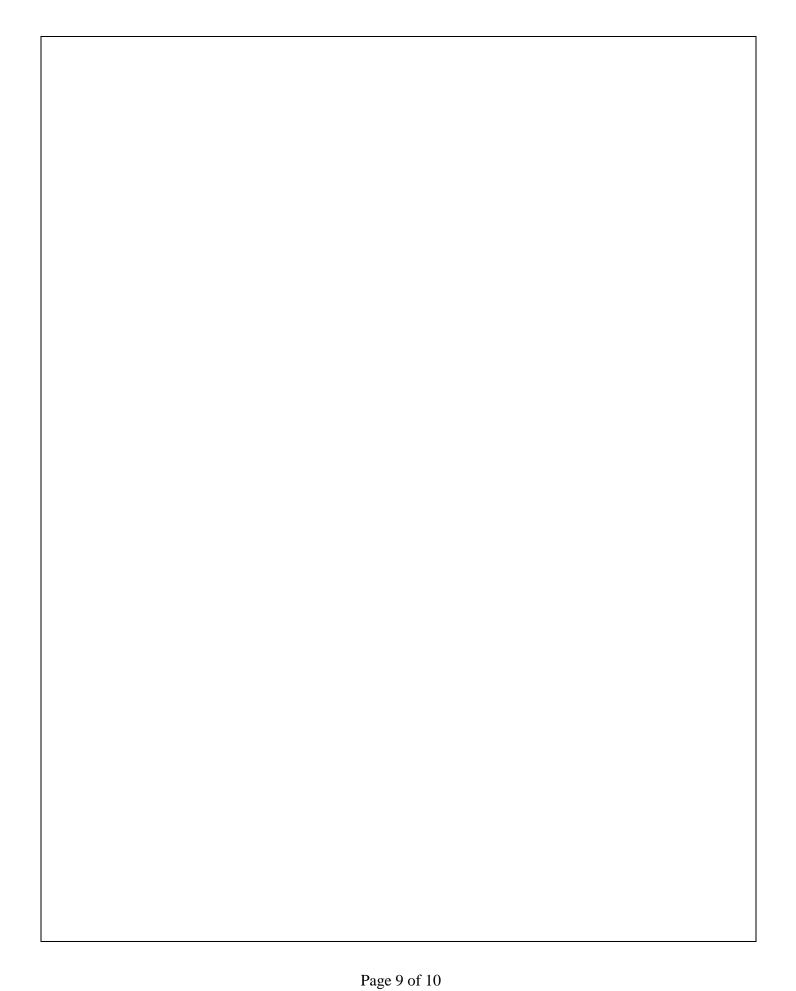
3 <u>Marks</u>

<u>F</u>	Evaluate the following limits (From Q5 to Q6):				
(25 :	$\lim_{x \to 0} \left(\cos x \right)^{1/x^2} .$			
				Ì	4 <u>Marks</u>

		1
Q8:	Using Maclaurin's expansion, Show that	
	$e^x \cos x = 1 + x - \frac{1}{3}x^3 - \frac{1}{6}x^4 + \cdots$	4 <u>Marks</u>

Q9: If $z = ln(x^2 + y^2)$, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

5


Marks

Q10: For the curve $y = x^3 + 3x^2 + 4$

- 5
- <u>Marks</u>

- (a) Find the critical points.
- (b) Find the intervals in which the curve is increasing and decreasing.
- (c) Find the local maximum and minimum points.
- (d) Find the inflection point.
- (e) Find the concavity of the curve.
- (f) Sketch the curve.

The next page is empty to complete this question

(Q11 :	Discuss and sketch the curve	$x^2 + 2x - 4y - 7 = 0 .$	
•				4 <u>Marks</u>