College of Engineering & Technology

Final Examination Paper

Department	Basic & Applied Science	Date	15/01/2011
Lecturer	Mathematics Group	Marks	40
Course Title	Mathematics 1	Time Allowed	2 hours
Course Code	BA123	Start Time	09:00-11:00

Find
$$\frac{d y}{d x}$$
 for each of the following functions (From Q1 to Q3):
Q1. $y = \left(\frac{2x^2-5}{3x^2+5}\right)^{\frac{7}{2}}$.

Q2.
$$y = x^3 \sin^{-1}(\sqrt{x}) - 2 \cot^{-1}(x^2)$$

Q3.
$$y = \sqrt[4]{\frac{(1-x)^3 \tanh^{-1}(x)}{x^x \sec(x^3)}}$$

Q4. If $x = t + \frac{1}{t}$ and $y = t^2 + \frac{1}{t^2}$, Show that y'' = 2.

Evaluate the following limits (From Q5 to Q6):

Q5. $\lim_{x \to 0} (1 + \sin(5x))^{1/x}$.

Q6. $\lim_{x\to\pi}\frac{1-\sin(x/2)}{\pi-x}$.

- Q7. Find the nth derivative for $y = \frac{2x+1}{x-1}$.
- **Q8.** Using Maclaurin's expansion, Show that $\frac{e^{-x}}{1-x} = 1 + \frac{x^2}{2} + \frac{x^3}{3} + \frac{3x^4}{8} + \cdots$

Q9. If
$$z = \ln(x^2 + y^2)$$
, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

Q10. For the curve $y = x^3 - 6x^2 + 10$, find

- (a) The critical points.
- (b) The intervals in which the curve is increasing and decreasing.
- (c) The local maximum and minimum points.
- (d) The inflection point.
- (e) The concavity of the curve.

Finally, sketch the curve.

Q11. Discuss and sketch the curve $y^2 - 4x - 4y + 12 = 0$.