pH measurements

 $NaOH \rightarrow Na^+ + OH^-$

Ionic product of water

- Water has the ability to break up a substance into ions.
- The water molecules themselves can also break up into [H⁺] and [OH⁻] ions although only to a very small extent (very low concentration of dissociated substance).

 $H2O \leftrightarrow H^++OH^-$

Ionic product of water

- The concentration of [H⁺] and [OH⁻] is very small and found that it equals 1 x 10⁻¹⁴ mol²/dm⁶ at 25°C.
- The water is considered to be neutral so the concentration of [H⁺] is equal to[OH⁻].
- So the conc. of [H⁺] = 10⁻⁷ mole/dm³ and the conc. of [OH⁻] = 10⁻⁷ mole/dm³
- $[H^+] = [OH^-] = 10^{-7} \text{ mole/dm}^3 \text{ in a pure water.}$

Ionic product of water

- ionic product of pure water K_w:
- Kw = [H⁺] * [OH⁻] = [10⁻⁷] * [10⁻⁷] = 10⁻¹⁴
- -Log(K_w) = -Log([H⁺]*[OH⁻])
- $-Log(K_w) = -Log[H^+] Log[OH^-]$
- $pK_w = pH + pOH$
- $-Log(10^{-14}) = -Log[10^{-7}] Log[10^{-7}]$
- 14 = 7 + 7

Acid Solutions

- An acid when added to water will donate H⁺ ions to the water.
- This means that the [H⁺] of the water will increase.
- The [H⁺] and [OH⁻] will no longer be equal.
- Although the [H⁺] has increased K_w always remains the same at 10⁻¹⁴ mol²/dm⁶. Therefore the [OH⁻] will decrease.

Acid Solutions

 In any acid solution the [H⁺] > [OH⁻] [H⁺] > 10⁻⁷ mole/dm³
pH < 7
[OH⁻] < 10⁻⁷ mole/dm³
pOH > 7

Alkaline Solutions

- A base when added to water will donate OH⁻ ions to the water.
- This means that the [OH⁻] will increase.
- the [H⁺] and [OH⁻] will no longer be equal.

Alkaline Solutions

In any basic solution the [H⁺] < [OH⁻]
[H⁺] < 10⁻⁷ mole/dm³
pH > 7
[OH⁻] > 10⁻⁷ mole/dm³
pOH < 7

Neutral Solutions

- [H⁺] = [OH⁻]
- $[H^+] = 10^{-7} \text{ mole/dm}^3$
- pH = 7
- $[OH^{-}] = 10^{-7} \text{ mole/dm}^{3}$
- pOH = pH = 7

[H+]scale

10⁻⁰-----10⁻⁷-----10⁻¹⁴ Acid (acidic range) Neutral (basic range)Base

pH scale:

 As the pH decreases, the acidity increases and [H⁺]ions increases.

- Example(1) :
- Calculate the pH of 0.1M Ca(OH)₂?
- Solution:
- $Ca(OH)_2 \longrightarrow Ca^{2+} + 2OH^{-}$
- 0.1 M 0.1 M 2*0.1
- $pOH = -Log(OH^{-})$
- pOH = -Log(0.2) = 0.69
- pH = 14 pOH = 14 0.69 = 13.31
- pH = 13.3

• Example(2):

- Calculate the pH of 0.2N H₂SO₄?
- Solution:
- Molarity = Normality / valency
- Molarity = 0.2/2 = 0.1 M
- $H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$
- 0.1 M 2*0.1M 0.1M
- pH = -Log(H⁺)
- pH = -1 * Log(0.2) = 0.7
- pH = 0.7

Buffer solution

- **Definition:** It's a solution that resists the change in pH when a small amount of strong acid or strong base is added.
- Buffer solution regulates the change in pH.
- Buffer solution classified into acidic and basic buffer solution.

Acidic buffer solution

- Its pH<7 and consists of weak acid and its salt.
- Example :
 - Acetic acid (CH₃COOH) + sodium acetate (CH₃COONa)

Basic buffer solution

- Its pH>7 and consists of weak base and its salt.
- Example :
 - Ammonium hydroxide (NH₄OH) + ammonium chloride (NH₄Cl)

pH measurement

• **Definition:** The term used to measure the acidity of the solution.

• Examples:

- 1. Litmus paper.
- 2. pH paper.
- 3. Indicators.
- 4. pH meter.

1-litmus paper

2- pH paper

3- pH indicators

4- pH meter

