pH measurements

Electrolytes

Strong electrolytes: completely ionized
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$ $\mathrm{HCL} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$ $\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

Weak electrolytes: partially ionized

Examples:

$\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$ $\mathrm{NH}_{4} \mathrm{OH} \longleftrightarrow \mathrm{NH}_{4}{ }^{+} \mathrm{OH}^{-}$

Ionic product of water

- Water has the ability to break up a substance into ions.
- The water molecules themselves can also break up into $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$ions although only to a very small extent (very low concentration of dissociated substance). $\mathrm{H} 2 \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$

Ionic product of water

- The concentration of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$is very small and found that it equals 1×10^{-14} $\mathrm{mol}^{2} / \mathrm{dm}^{6}$ at $25^{\circ} \mathrm{C}$.
- The water is considered to be neutral so the concentration of $\left[\mathrm{H}^{+}\right]$is equal to[OH^{-}].
- So the conc. of $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{~mole} / \mathrm{dm}^{3}$ and the conc. of $\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{~mole} / \mathrm{dm}^{3}$
- $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{~mole} / \mathrm{dm}^{3}$ in a pure water.

Ionic product of water

- ionic product of pure water K_{w} :
- $\mathrm{Kw}=\left[\mathrm{H}^{+}\right] *\left[\mathrm{OH}^{-}\right]=\left[10^{-7}\right] *\left[10^{-7}\right]=10^{-14}$
- $-\log \left(\mathrm{K}_{\mathrm{w}}\right)=-\log \left(\left[\mathrm{H}^{+}\right]^{*}\left[\mathrm{OH}^{-}\right]\right)$
- $-\log \left(\mathrm{K}_{\mathrm{w}}\right)=-\log \left[\mathrm{H}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]$
- $\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$
- $-\log \left(10^{-14}\right)=-\log \left[10^{-7}\right]-\log \left[10^{-7}\right]$
- $14=7+7$

Acid Solutions

- An acid when added to water will donate H^{+} ions to the water.
- This means that the $\left[\mathrm{H}^{+}\right]$of the water will increase.
- The $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$will no longer be equal.
- Although the $\left[\mathrm{H}^{+}\right]$has increased K_{w} always remains the same at $10^{-14} \mathrm{~mol}^{2} / \mathrm{dm}^{6}$. Therefore the $\left[\mathrm{OH}^{-}\right]$will decrease.

Acid Solutions

- In any acid solution the $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]>10^{-7} \text { mole } / \mathrm{dm}^{3}} \\
\mathrm{pH}<7 \\
{\left[\mathrm{OH}^{-}\right]<10^{-7} \text { mole } / \mathrm{dm}^{3}} \\
\mathrm{pOH}>7
\end{gathered}
$$

Alkaline Solutions

- A base when added to water will donate OH^{-} ions to the water.
- This means that the $\left[\mathrm{OH}^{-}\right]$will increase.
- the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$will no longer be equal.

Alkaline Solutions

- In any basic solution the $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]<10^{-7} \mathrm{~mole} / \mathrm{dm}^{3}} \\
\mathrm{pH}>7 \\
{\left[\mathrm{OH}^{-}\right]>10^{-7} \text { mole } / \mathrm{dm}^{3}} \\
\mathrm{pOH}<7
\end{gathered}
$$

Neutral Solutions

- $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{~mole} / \mathrm{dm}^{3}$
- $\mathrm{pH}=7$
- $\left[\mathrm{OH}^{-}\right]=10^{-7}$ mole $/ \mathrm{dm}^{3}$
- $\mathrm{pOH}=\mathrm{pH}=7$

[H+]scale

Acid (acidic range) Neutral (basic range)Base

pH scale:

Acid Neutral Base

- As the pH decreases, the acidity increases and $\left[\mathrm{H}^{+}\right]$ions increases.
- Example(1) :
- Calculate the pH of $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$?
- Solution:
- $\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
- 0.1 M 0.1M 2*0.1
- $\mathrm{pOH}=-\log \left(\mathrm{OH}^{-}\right)$
- $\mathrm{pOH}=-\log (0.2)=0.69$
- $\mathrm{pH}=14-\mathrm{pOH}=14-0.69=13.31$
- $\mathrm{pH}=13.3$
- Example(2):
- Calculate the pH of $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$?
- Solution:
- Molarity = Normality / valency
- Molarity $=0.2 / 2=0.1 \mathrm{M}$
- $\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$
- $0.1 \mathrm{M} \quad 2^{*} 0.1 \mathrm{M} 0.1 \mathrm{M}$
- $\mathrm{pH}=-\log \left(\mathrm{H}^{+}\right)$
- $\mathrm{pH}=-1$ * $\log (0.2)=0.7$
- $\mathrm{pH}=0.7$

Buffer solution

- Definition: It's a solution that resists the change in pH when a small amount of strong acid or strong base is added.
- Buffer solution regulates the change in pH .
- Buffer solution classified into acidic and basic buffer solution.

Acidic buffer solution

- Its $\mathrm{pH}<7$ and consists of weak acid and its salt.
- Example :
- Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ + sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$

Basic buffer solution

- Its $\mathrm{pH}>7$ and consists of weak base and its salt.
- Example :
- Ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)+$ ammonium chloride ($\mathrm{NH}_{4} \mathrm{Cl}$)

pH measurement

- Definition: The term used to measure the acidity of the solution.
- Examples:

1. Litmus paper.
2. pH paper.
3. Indicators.
4. pH meter.

1- litmus paper

Red litmus paper with a drop of base here

Blue litmus paper with a drop of acid here

2- pH paper

3- pH indicators

4- pH meter

Thank you ©

