Concentration units

Definition of concentration:

- The amount of substance that present in an unit volume of the solution.
- concentration $=\frac{\text { Amount of solute }}{\text { Volume of solution }}$
- Solution = Solute + Solvent

Concentration

Concentration

Concentration

Concentrated Solution
Dilute Solution

Concentration units

1- Gram per liter (g/l)

2- Milligram per liter (mg/l)

3- Molarity (mole/l)

4- Normality (${ }^{\text {eauiv./I) }}$

1- Gram per liter (g/I):

- Definition: number of grams of solute dissolved in 1 liter of solution.
- Conc. $(\mathrm{g} / \mathrm{I})=\frac{\text { No. of grams of solute }}{\text { Volume of solution in liter }}$

Gram per liter (g/l)

- Example (1): calculate the concentration(g / l) of 0.001 Kg of NaCl dissolved in 2 liter of water?
- Solution:
- Conc. $(\mathrm{g} / \mathrm{I})=\frac{\text { No. of grams of solute }(\mathrm{NaCl})}{\text { Volume of solution in liter }}$
- wt. of $\mathrm{NaCl}=0.001 \mathrm{Kg} * 1000=1 \mathrm{gram}$
- Vol.= 2 liter
- Conc. (g/l) $=(1 / 2)=0.5 \mathrm{~g} / \mathrm{l}$

2- Milligram per liter (mg/l)

- Definition: number of milligrams of solute dissolved in 1 liter of solution.
- Conc. $(\mathrm{mg} / \mathrm{I})=\frac{\text { No. of milligrams of solute }}{\text { Volume of solution in liter }}$

Milligram per liter (mg/l)

- Example (2): calculate the concentration (mg / l) of 0.001 Kg of NaCl dissolved in 2 liter of water?
- Solution: No. of milligrams of solute
- Conc. $(\mathrm{g} / \mathrm{I})=\frac{\text { Volume of solution in liter }}{\text { V }}$
- wt. of $\mathrm{NaCl}=0.001 \mathrm{Kg} * 10^{6}=1000 \mathrm{mg}$
- Vol. $=2$ liter
- Conc.(g/l) $=(1000 / 2)=500 \mathrm{mg} / \mathrm{l}$

3- Molarity (mole/I)

- Definition: number of moles of solute dissolved in 1 liter of solution.

No. of moles of solute

- Conc. = Volume of solution in liter
- No. of moles $=\frac{\text { weight of solute in gram }}{\text { Molecular weight of solute }}$

Molarity (mole/I)

- Example(3) : Calculate the molarity (M) of 2 gram weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in $40 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
- Given that :
- At.wt of (H)=1 amu
- At.wt of $(\mathrm{S})=32 \mathrm{amu}$
- At.wt of (O)= 16 amu

Molarity (mole/I)

- Solution:
- M.wt of $\mathrm{H}_{2} \mathrm{SO}_{4}=\left(2^{*} \mathrm{H}\right)+\left(1^{*} \mathrm{~S}\right)+\left(4^{*} \mathrm{O}\right)$
- M.wt of $\mathrm{H}_{2} \mathrm{SO}_{4}=\left(2^{*} 1\right)+\left(1^{*} 32\right)+\left(4^{*} 16\right)=98 \mathrm{amu}$
- No. of moles $=\frac{\text { weight of solute in gram }}{\text { Molecular weight of solute }}$
- No. of moles $=(2 / 98)=0.2$ mole

Molarity (mole/I)

No. of moles of solute

- Conc. $(M)=\frac{\text { Volume of solution in liter }}{}$
- Vol. $=40 \mathrm{ml}^{*} 10^{-3}=0.04$ liter
- Conc. $(M)=(0.2 / 0.04)=5$ moles/liter

4- Normality (gequiv./I)

- Definition: number of gram equivalent of solute dissolved in 1 liter of solution.
- Conc. $=\frac{\text { No. of grams equivalent of solute }}{\text { Volume of solution in liter }}$ weight of solute in gram
- No. of grams equivalent $=$

Equivalent weight of solute

4- Normality (gequiv./I)

M.wt of the solute

- Equivalent weight =

Valency

- Valency???????!!!!!!!!!!!!!!

Valency

1. Valency of Acid: (maximum number of hydrogen ion $\left(\mathrm{H}^{+}\right)$present in the acid).

- Examples:

1. Hydrochloric acid : $\mathrm{HCl}=\mathrm{H}_{1} \mathrm{Cl}$, valency $=1$
2. Sulfuric acid: $\mathrm{H}_{2} \mathrm{SO}_{4}$, Valency $=2$
3. Phosphoric acid: $\mathrm{H}_{3} \mathrm{PO}$, Valency $=3$
4. Acetic acid : $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}_{1}$, Valency $=1$

Valency

2. Valency of Base: (maximum number of hydroxide ions $\left(\mathrm{OH}^{-}\right)$present in the base).

- Examples:

1. Sodium hydroxide : $\mathrm{NaOH}=\mathrm{Na}(\mathrm{OH})_{1}$, valency $=1$
2. Calcium hydroxide : $\mathrm{Ca}(\mathrm{OH})_{2}$, Valency $=2$
3. Magnesium hydroxide : $\mathrm{Mg}(\mathrm{OH})_{2}$, Valency $=2$
4. Aluminium hydroxide $: \mathrm{Al}(\mathrm{OH})_{3}$, Valency $=3$

Valency

3. Valency of salt : the maximum number of electrons lost or gained to form a salt (ionic bond).

- Examples:

1. Sodium chloride : $\mathrm{NaCl}, \mathrm{Na}^{+1} \mathrm{Cl}^{-1}$, Valency $=1$
2. Calcium chloride : $\mathrm{CaCl}_{2}, \mathrm{Ca}^{+2} \mathrm{Cl}_{2}{ }^{(-2)}$, Valency $=2$
3. Calcium sulfate : $\mathrm{CaSO}_{4}, \mathrm{Ca}^{+2} \mathrm{SO}_{4}^{-2}$, Valency $=2$
4. Aluminum chloride : $\mathrm{AlCl}_{3}, \mathrm{Al}^{+3} \mathrm{Cl}_{3}{ }^{-3}$, Valency $=3$
5. Tri sodium phosphate : $\mathrm{Na}_{3} \mathrm{PO}_{4}, \mathrm{Na}_{3}{ }^{(+3)} \mathrm{PO}_{4}{ }^{-3}$, Valency $=3$

What is the relation between the Molarity (M) \& Normality (N)?

- $\mathrm{N}=($ no. of gram equivalent / Volume)

- $\mathrm{N}=\mathrm{M}$ * Valency
- Normality = Molarity * valency

Normality (N)

- Example(4) : Calculate the normality of 2 g of CaCl_{2} dissolved in $200 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
- Given that :
- At.wt of (Ca)= 40 amu
- At.wt of $(\mathrm{Cl})=35.5 \mathrm{amu}$

Normality (N)

- Solution:
- $N=M$ * valency

No. of moles of solute

- $M=\frac{\text { Volume of solution in liter }}{\text { Vol }}$
- No. of moles of solute = (wt. of solute/ M.wt)
- $\mathrm{M}=\frac{\text { Wt. of solute }}{\text { M.wt of solute }} * \frac{1}{\text { Volume in liter }}$

Normality (N)

- $N=\frac{\text { Wt. of solute }}{\text { M.wt of solute }} * \frac{\text { Valency }}{\text { Volume in liter }}$
- $\mathrm{N}=\frac{2}{111} * \frac{2}{200 * 10^{-3}}$
- Normality $=0.18 \mathrm{~g}_{\text {equiv. }}$ /liter

Homework

- If a 0.2 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved in 100 ml of H 2 O find the concentration in units:

1. g / l
2. Mg / l
3. Molarity
4. Normality

- Given that : At.wt of $(\mathrm{Ca})=40$, At.wt of $(\mathrm{O})=16$, At.wt of (H)=1 amu

Thank you

