Concentration units

Definition of concentration:

• The amount of substance that present in an unit volume of the solution.

• concentration =
$$\frac{\text{Amount of solute}}{\text{Volume of solution}}$$

Solution = Solute + Solvent

Concentration

Concentration

Concentration

Concentrated Solution

Dilute Solution

Concentration units

1- Gram per liter (g/l)

2- Milligram per liter (mg/l)

3- Molarity (mole/l)

4- Normality (gequiv./I)

1- Gram per liter (g/l):

• **Definition**: number of grams of solute dissolved in 1 liter of solution.

• Conc.(g/l) =
$$\frac{\text{No. of grams of solute}}{\text{Volume of solution in liter}}$$

Gram per liter (g/l)

- Example (1): calculate the concentration(g/l) of 0.001 Kg of NaCl dissolved in 2 liter of water?
- Solution:

- Conc.(g/l) =
$$\frac{\text{No. of grams of solute (NaCl)}}{\text{Volume of solution in liter}}$$

- wt. of NaCl = 0.001 Kg * 1000 = 1 gram
- Vol.= 2 liter
- Conc.(g/I) = (1/2) = 0.5 g/I

2- Milligram per liter (mg/l)

• **Definition:** number of milligrams of solute dissolved in 1 liter of solution.

• Conc.(mg/l) =
$$\frac{\text{No. of milligrams of solute}}{\text{Volume of solution in liter}}$$

Milligram per liter (mg/l)

- Example (2): calculate the concentration (mg/l) of 0.001 Kg of NaCl dissolved in 2 liter of water?
- Solution: No. of milligrams of solute
- Conc.(g/l) = -----

Volume of solution in liter

- wt. of NaCl = 0.001 Kg * 10^6 = 1000 mg
- Vol.= 2 liter
- Conc.(g/l) = (1000/2) = 500 mg/l

3- Molarity (mole/l)

• **Definition:** number of moles of solute dissolved in 1 liter of solution.

Molarity (mole/l)

Example(3): Calculate the molarity (M) of 2 gram weight of H₂SO₄ dissolved in 40 ml H₂O.

Given that:

- At.wt of (H)= 1 amu
- At.wt of (S)= 32 amu
- At.wt of (O)= 16 amu

Molarity (mole/l)

- Solution:
- M.wt of $H_2SO_4 = (2*H)+(1*S)+(4*O)$
- M.wt of $H_2SO_4 = (2*1)+(1*32)+(4*16)=98$ amu
- No. of moles = weight of solute in gram
 Molecular weight of solute
- No. of moles = (2/98) = 0.2 mole

Molarity (mole/l)

• Vol. = $40 \text{ ml} * 10^{-3} = 0.04 \text{ liter}$

• Conc. (M) = (0.2/0.04) = 5 moles/liter

4- Normality (gequiv./I)

• **Definition:** number of gram equivalent of solute dissolved in 1 liter of solution.

4- Normality (gequiv./I)

Valency

1. Valency of Acid: (maximum number of hydrogen ion (H⁺) present in the acid).

Examples:

- Hydrochloric acid: HCl = H₁Cl, valency = 1
- 2. Sulfuric acid: H₂SO₄, Valency = 2
- 3. Phosphoric acid: H₃PO₄, Valency = 3
- 4. Acetic acid: CH₃COOH, CH₃COOH₁, Valency = 1

Valency

- 2. Valency of Base: (maximum number of hydroxide ions (OH⁻) present in the base).
- Examples:
 - 1. Sodium hydroxide: NaOH = Na(OH)₁, valency = 1
 - 2. Calcium hydroxide : Ca(OH)₂, Valency = 2
 - 3. Magnesium hydroxide : Mg(OH)₂, Valency = 2
 - 4. Aluminium hydroxide : Al(OH)₃ , Valency = 3

Valency

3. Valency of salt: the maximum number of electrons lost or gained to form a salt (ionic bond).

• Examples :

- 1. Sodium chloride: NaCl, Na⁺¹ Cl⁻¹, Valency = 1
- 2. Calcium chloride : CaCl₂, Ca⁺² Cl₂ (-2), Valency = 2
- 3. Calcium sulfate: CaSO₄, Ca⁺² SO₄-2, Valency = 2
- 4. Aluminum chloride: AlCl₃, Al⁺³ Cl₃⁻³, Valency = 3
- 5. Tri sodium phosphate : Na_3PO_4 , $Na_3^{(+3)}PO_4^{-3}$, Valency= 3

What is the relation between the Molarity (M) & Normality (N)?

N = (no. of gram equivalent / Volume)

- N = M * Valency
- Normality = Molarity * valency

Normality (N)

- Example(4): Calculate the normality of 2g of CaCl₂ dissolved in 200 ml H₂O
- Given that:
 - At.wt of (Ca)= 40 amu
 - At.wt of (CI)= 35.5 amu

Normality (N)

- Solution:
- N = M * valency

No. of moles of solute = (wt. of solute/ M.wt)

Normality (N)

• N =
$$\frac{\text{Wt. of solute}}{\text{M.wt of solute}}$$
 * $\frac{\text{Valency}}{\text{Volume in liter}}$

•
$$N = \frac{2}{111} * \frac{2}{200 * 10^{-3}}$$

• Normality = 0.18 g_{equiv.}/liter

Homework

- If a 0.2 g of Ca(OH)₂ is dissolved in 100 ml of H2O find the concentration in units:
 - 1. g/l
 - 2. Mg/l
 - 3. Molarity
 - 4. Normality
- Given that: At.wt of (Ca)=40, At.wt of (O)=16,
 At.wt of (H)=1 amu

Thank you