Analytical chemistry

Chemical analysis

a) Qualitative analysis
b) Quantitative analysis

Qualitative analysis

Definition: Knowing the of substance present in the solution.(i.e. it's quality).

Examples: (Iron (Fe), Copper (Cu), Calcium, .etc.)

Identification of chemical components is done by:

1) Physically : (Color, Odor, Shape)
2) Chemically : (Components of the sample)

Quantitative analysis

Definition: Knowing quantity of substance present in the solution.

Examples: the quantity of a certain substance in the sample solution ($10 \% \mathrm{Fe}, 3 \% \mathrm{Na}, 5 \% \mathrm{Cl}$, etc.).

1) Traditional method:

Volumetric analysis: Knowing the concentration of the sample, example: (titration method).
2) Modern method:

Instrumental technique: (Spectrophotometric analysis)

Important Definitions

Atom

Atom

- It's the smallest building unit for an element.
- It consists of a nucleus containing combination of neutrons and protons.
- The number of protons determines the identity of the element.
- One of more electrons bound to the nucleus by electrical attraction.
- Examples : Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen(N), Iron (Fe), Sulfur (S), Aluminum (Al),etc.

Atom

Atomic weight (At.wt)

- Its the weight of a single atom.
- Its the summation of number of protons and neutrons.
- It's unit atomic mass unit (a.m.u.)
- It's written under elements in the periodic table
- Examples:

1. At.wt of Hydrogen $(H)=1$ a.m.u.
2. At.wt of Carbon $(C)=12$ a.m.u.
3. At.wt of Oxygen $(O)=16$ a.m.u.
4. At.wt of sodium $(\mathrm{Na})=23$ a.m.u.
5. At.wt of Chloride $(\mathrm{Cl})=35.5$ a.m.u.

PERIODIC TABLE OF THE ELEMENTS
 htp://www:ktf-split/hr/periodni/en/

GROUP

\square Metal $\quad \square$ Semimetal	\square Nonmetal
1 Alkali metal	16 Chalcogens element
2 Alkaline earth metal	17 Halogens element
\square Transition metals	18 Noble gas

(1) Pure Appol. Chem.. 73. No. 4. 667-683 (2001) Relative stomsic mass is shown with five
significan1 guures. Forelemonts havo no stable significant 6gures. For elomonts havo nostablo
nuclices, thie value enclosed in brackets indicates the mass number of the longest-lived istope of the element.
However throo such eloments (Th, Pa, and U)
$\infty \infty$ have a charateristic terrestrial isotopic 6 have a charatteristic terrestrial isotopic
composition, and for these an atomic weight is composition
tabulatiod.

Editor:Aditya Vardhan (afivarennetlinx.com)

LANTHANIDE								Copynght © 1998-2003 EniC (enieptr-splith						
$\begin{gathered} 57138.91 \\ \mathbf{L a} \end{gathered}$ LANTHANUM	$58 \quad 140.12$ Ce cerium	$\begin{gathered} 59{ }^{540.91} \\ \mathbf{P r} \end{gathered}$ PRASECOMMIUM	$60 \quad 144.24$ Nd neodymium	61 (145) Pm PROMETHIUM	62150.36 Sm SAMARIUM	63151.96 Eu EUROPIUM	$64 \quad 157.25$ Gd gadolinium	65158.93 Tb TERBIUM	$\begin{gathered} 66162.50 \\ \mathbf{D y} \end{gathered}$ oysprosium	67164.93 Но holmium	$68 \quad 167.26$ Er ERBIUM	69168.93 Tm THULIUM	$\begin{array}{\|cc\|} \hline 70 & 173.04 \\ \mathbf{y y b} \\ \text { YTTERBIUM } \\ \hline \end{array}$	71174.97 $\mathbf{L u}$ LUTETIUM
ACTINIDE														
89 (227)	$90 \quad 232.04$	91231.04	92238.03	93 (237)	$94 \quad(244)$	$95 \quad(243)$	$96 \quad$ (247)	97 (247)	$98 \quad$ (251)	$99 \quad(252)$	100 (257)	101 (258)	102 (259)	103 (262)
Ac	Th	$\mathbf{P a}$	I I	NT	P®]	AJOO	Cmon	[B]K	CfP	ES	[1700	M@]	N(1)	LIT
Actinium	THORIUM	PROTACTINIUM	uranium	NEPTUNIUM	PLutonium	AMERICIUM	CURIUM	BERKELIUM	CALIFORNUM	einsteinium	fermium	mendelevium	nobelium	LAWRENCIU

Molecule

oxygen

Molecule

- It consists of 2 or more atoms which have chemically combined to form a single species.
- Its may be consist of same or different types of atoms.
- Examples : carbon dioxide (CO_{2}), water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, table salt (NaCl), acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, hydrochloric acid (HCl).

Water molecule (H2O)

Electrons from hydrogen
(a) Electron shells in a water molecule
(b) Distribution of partial charges in a water molecule

Methane molecule $\left(\mathrm{CH}_{4}\right)$

Molecular weight (M.wt)

- Its the weight of a whole molecule.
- i.e. the summation of the atomic weights of the atoms that present in the molecule.

How to estimate the molecular weight (M.wt)?

Ex(1): Find the M.wt of the water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?

- Given that :

1. Atomic weight of Hydrogen $(H)=1$ a.m.u.
2. Atomic weight of Oxygen $(\mathrm{O})=16$ a.m.u.

M.wt of the water ($\mathrm{H}_{2} \mathrm{O}$)

Solution:

- M.wt = (no. of the (H) atoms*At.wt of the H)+ (no. of the (O) atoms*At.wt of the O)
- M.wt = (2*At.wt of hydrogen) + (1*At.wt of oxygen)
- M.wt= (2*1) + (1*16) = 18 a.m.u.
- The molecular weight of water is 18 a.m.u

M.wt of Methane gas

- Ex(2): Find the M.wt of the methane gas (CH_{4})?
- Given that :

1. At.wt of $(C)=12$ a.m.u.
2. At.wt of $(H)=1$ a.m.u.

M.wt of Methane gas

Solution:

- M.wt = (no. of the (H) atoms*At.wt of the H)+ (no. of the (C) atoms*At.wt of the C)
- M.wt = (4*At.wt of hydrogen) + (1*At.wt of carbon)
- M.wt= (4*1) + (1*12) = 16 a.m.u.
- The molecular weight of methane is 16 a.m.u

M.wt of Sulfuric acid

$\mathbf{E x}(2)$: Find the M.wt of the sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$?

- Given that :

1. Atomic weight of Hydrogen(H) $=1$ a.m.u.
2. Atomic weight of Oxygen $(\mathrm{O})=16$ a.m.u.
3. Atomic weight of Oxygen $(S)=32$ a.m.u.

M.wt of Sulfuric acid

Solution:

- M.wt = (no. of the (H) atoms*At.wt of the H)+ (no. of the (O) atoms*At.wt of the O)+(no. of the (S) atoms*At.wt of the S)
- M.wt $=\left(2^{*}\right.$ At.wt of $\left.H\right)+\left(4^{*}\right.$ At.wt of O$)+\left(1^{*}\right.$ At.wt of S)
- $\mathrm{M} . \mathrm{wt}=(2 * 1)+\left(4^{*} 16\right)+\left(1^{*} 32\right)=98$ a.m. u.
- The molecular weight of sulfuric acid is 98 a.m.u

M.wt of Ferric sulfate

Ex(3): Find the M.wt of the Ferric sulfate $\left((\mathrm{Fe})_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$?

- Given that :

1. At.wt of $(F e)=56$ a.m.u.
2. At.wt of $(S)=32$ a.m.u.
3. At.wt of $(\mathrm{O})=16$ a.m.u.

M.wt of Ferric sulfate

Solution:

- M.wt = (no. of the (Fe) atoms*At.wt of the Fe)+ (no. of the (S) atoms*At.wt of the S)+(no. of the (O) atoms*At.wt of the O)
- M.wt $=\left(2^{*}\right.$ At.wt of Fe$)+\left(3^{*}\right.$ At.wt of S$)+$ (3* * At.wt of O) *
- M.wt $=(2 * 56)+(3 * 32)+(3 * 4 * 16)=400$ a.m.u.
- The molecular weight of Ferric sulfate is $\mathbf{4 0 0}$ a.m.u

Home work

- Find the M.wt of the Following compounds:

1. Acetic acid ($\mathrm{CH}_{3} \mathrm{COOH}$).
2. Ferrous sulfate $\left(\mathrm{FeSO}_{4}\right)$.
3. Aluminum Phosphate (AlPO4).
4. Potassium Nitrate (KNO_{3}).

Home work

- Given that:
$>$ At.wt of $P=31$ amu
$>$ At.wt of $C=12 \mathrm{amu}$
$>$ At.wt of $\mathrm{H}=1 \mathrm{amu}$
$>$ At.wt of $\mathrm{Al}=27 \mathrm{amu}$
$>$ At.wt of $S=32 \mathrm{amu}$
$>$ At.wt of $N=14 \mathrm{amu}$
$>$ At.wt of $\mathrm{O}=16 \mathrm{amu}$
$>$ At.wt of $K=39 \mathrm{amu}$
$>$ At.wt of $\mathrm{Fe}=56 \mathrm{amu}$

Thank you

