Contents lists available at ScienceDirect

Experimental drop test investigation into wetdeck slamming loads on a generic catamaran hullform

OCEAN

Ahmed Swidan ^{a,b,n}, Giles Thomas ^c, Dev Ranmuthugala ^a, Walid Amin ^a, Irene Penesis ^a, Tom Allen ^d, Mark Battley ^d

^a Australian Maritime College, University of Tasmania, TAS 7248, Australia

^b Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt

^c University College London, London WC1E 7JE, UK

d Centre for Advanced Composite Materials, University of Auckland, Auckland 1023, New Zealand

article info

Article history: Received 6 November 2015 Received in revised form 17 February 2016 Accepted 23 March 2016

Keywords: Catamaran Slamming forces Pressure distribution Water impact

abstract

A series of drop-test experiments was performed to investigate the hydrodynamic loads experienced by a generic wave-piercer catamaran hullform during water impacts. The experiments, which focus on the characterisation of the unsteady slam loads on an arched wetdeck, were conducted using a Servo-hy-draulic Slam Testing System (SSTS) that allows the model to enter the water at a range of constant speeds up to 10 m/s. The systematic and random uncertainties associated with the drop test results are quan-tified in detail. The relationships between water-entry velocity and both slam force and pressure dis-tributions are presented and discussed with a strong relationship between the slam force peak magni-tudes and impact velocity being observed. In addition the three dimensionality of the water flow in these slam impact events is characterised.

& 2016 Elsevier Ltd. All rights reserved.