Manufacturing of metallic micro components using hybrid soft lithographyand micro electrical discharge machining

Khamis Essa¹, Francesco Modica², Mohamed Imbaby³, Mahmoud Ahmed El-Sayed⁴, Amr Elshaer⁵, Kyle Jiang¹, Hany Hassanin⁵

¹ School of Engineering, The University of Birmingham, Edgbaston, UK
²ITIA-CNR, Institute of Industrial Technologies and Automation, Bari, Italy
³Jubail University College, PO Box 10074 Jubail, KSA, on leave from Helwan University, Faculty of Engineering, PO Box 11718 Cairo, Egypt
⁴ Department of Industrial and Management Engineering, Arab Academy for Science and Technology and Maritime Transport, Abu Qir, PO Box 1029, Alexandria 21599, Egypt
⁵ Kingston University London, UK

Abstract

In spite of significant improvements in micro-replication techniques, methods to fabricate well-defined net shape microstructures are still in a developing stage. Soft-lithography has the capability to manufacture complex micro- and nanostructures. Althoughit is considered a robust technique, a major limitation is related to the distortion encountered in the fabricated structures during the drying process. In the present work, a manufacturing technology has been developed that emerges the benefits of Soft-Lithography and Micro Electrical Discharge Machining (μ -EDM) to produce stainless steel precise micro-components for Micro-implantable devices. The micro-parts produced by Soft-lithography were subsequently surface processed via μ -EDM in order to improve the surface quality. In addition to this, it wasfound that μ -EDM drastically improved the surface roughness of stainless steel micro-components from Ra=3.4 μ m to Ra =0.43 μ m.

Keywords: MEMS, EDM, micro machining, Soft Lithography