

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Mechanical Engineering (Mechatronics) Program

University/Academy:Arab Academy for Science, Technology & Maritime TransportFaculty/Institute:College of Engineering & TechnologyProgram:B.Sc. Mechanical Engineering

### Form no. (12) Course Specification

| 1- Course Data  | ·                                   |         |                         |
|-----------------|-------------------------------------|---------|-------------------------|
| Course Code:    | Course Title:                       |         | Academic Year/Level:    |
| ME 465          | <b>Computational Fluid Dynamics</b> |         | 4th year / 8th semester |
| Specialization: | No. of Instructional Units          | Lecture | Practical               |
| Mechanical      | 3 credits                           | 2 hrs.  | 2 hrs.                  |

## 2- Course Aim

• The aim of this course is to provide good understanding of computational fluid dynamic techniques using the finite difference, finite element and finite volume methods and to assure familiarity with modern computer software.

| 3- In | 3- Intended Learning Outcomes  |                                                                                                                                                                                                  |  |  |
|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| e-    | Knowledge and<br>Understanding | Through knowledge and understanding, students will be able to:                                                                                                                                   |  |  |
|       |                                | K1) Concepts and theories of mathematics and sciences, appropriate to the discipline.                                                                                                            |  |  |
|       |                                | K5) Methodologies of solving engineering problems, data collection and interpretation.                                                                                                           |  |  |
| f-    | Intellectual Skills            | Through intellectual skills, students will be able to:                                                                                                                                           |  |  |
|       |                                | I1) Select appropriate mathematical and computer-based methods for modeling and analyzing problems.                                                                                              |  |  |
|       |                                | I11) Analyze results of numerical models and assess their limitations.                                                                                                                           |  |  |
| g-    | Professional Skills            | Through professional and practical skills, students will be able to:                                                                                                                             |  |  |
|       |                                | P1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice integrally to solve engineering problems                                  |  |  |
|       |                                | P5) Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design experiments, collect, analyze and interpret results                         |  |  |
|       |                                | P6) Use a wide range of analytical tools, techniques, equipment, and software packages pertaining to the discipline and develop required computer programs.                                      |  |  |
| h-    | General Skills                 | <b>Through general and transferable skills, students will be able to:</b><br>Apply and integrate knowledge, understanding and skills of different subjects to solve real problems in industries. |  |  |

## 4- Course Content

| Week No.1 | Introduction to Computational Fluid Dynamics |
|-----------|----------------------------------------------|
| Week No.2 | The Finite Difference Method (FDM)           |
| Week No.3 | The Finite Difference Method (FDM)           |

#### B. SC. PROGRAM STATUS REPORT 2016

| Week No.4     | Solution of inviscid flow problems using the FDM with MATLAB                               |  |  |
|---------------|--------------------------------------------------------------------------------------------|--|--|
| Week No.5     | Solution of inviscid flow problems using the FDM with MATLAB                               |  |  |
| Week No.6     | The Finite Element Method (FEM)                                                            |  |  |
| Week No.7     | Solution of fluid flow problems using the FEM with MATLAB (PDE Tool) / 7th week evaluation |  |  |
| Week No.8     | Solution of fluid flow problems using the FEM with MATLAB (PDE Tool) (Cont.)               |  |  |
| Week No.9     | The Finite Volume Method (FVM)                                                             |  |  |
| Week<br>No.10 | Solution of fluid flow problems using the FVM with MATLAB                                  |  |  |
| Week<br>No.11 | Solution of fluid flow problems using the FVM with MATLAB                                  |  |  |
| Week<br>No.12 | Thermofluid problems using the software FLUENT - / 12th week evaluation                    |  |  |
| Week<br>No.13 | / 12th week evaluation<br>Mesh Generation using the Software Gambit.                       |  |  |
| Week<br>No.14 | Examples using the FLUENT solver                                                           |  |  |
| Week<br>No.15 | Examples using the FLUENT solver (Cont.)                                                   |  |  |
| Week<br>No.16 | Final Examination                                                                          |  |  |

### 5- Teaching and Learning Methods

• Lectures

I

- Tutorials
- Reports & sheets
- Laboratories
- Seminars

## 6-Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

### Academic Support:

- The general academic advisor appoints an academic supervisor for handicapped students.
- Continuous follow ups are made for handicapped students after each assessment to evaluate their academic level of achievement

| a-Procedures used | 1-Written Examinations to assess The Intended Learning Outcomes.                          |                                          |
|-------------------|-------------------------------------------------------------------------------------------|------------------------------------------|
|                   | 2-Class Activities (Reports, Discussions,) to assess The Intellectual and general Skills. |                                          |
| b- Schedule:      | Assessment 1                                                                              | 7 <sup>th</sup> Week Assessment          |
|                   | Assessment 2                                                                              | 12 <sup>th</sup> Week Assessment         |
|                   | Assessment 3                                                                              | Continuous Assessments                   |
|                   | Assessment 4                                                                              | 16 <sup>th</sup> Week Final Written Exam |
| c- Weighing of    | 7 <sup>th</sup> Week Evaluation                                                           | 30 %                                     |
| Assessment        | 12 <sup>th</sup> Week Evaluation                                                          | 20 %                                     |
|                   | Final-term Examination                                                                    | 40 %                                     |
|                   | Oral Examination                                                                          | 00 %                                     |
|                   | Practical Examination                                                                     | 00 %                                     |
|                   | Semester Work                                                                             | 10 %                                     |
|                   | Total                                                                                     | 100%                                     |

## 7- Student Assessment

# 8- List of References:

| a- Course Notes                         | N/A                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>b- Required Books</b><br>(Textbooks) | Computational Fluid Dynamics Lecture notes                                                                                                                                                                                                                                                                                                                     |
| c- Recommended<br>Books                 | <ul> <li>Ferziger J.H. &amp; Peric M. "Computational Methods for fluid Dynamics", Springer Verlag, 1999.</li> <li>Versteeg H. &amp; Malalasekera W. " An introduction to computational fluid dynamics (The finite volume method) ", McGraw Hill, 1995.</li> <li>Mathews J.H. &amp; Fink K.D. "Numerical methods using MATLAB", Prentice Hall, 1999.</li> </ul> |
| d- Periodicals, Web<br>Sites, etc.      | N/A                                                                                                                                                                                                                                                                                                                                                            |

**Course coordinator:** 

**Program Manager:**