

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Mechanical Engineering (Mechatronics) Program

University/Academy: Faculty/Institute: Program: Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology B.Sc. Mechanical Engineering

Form no. (12) Course Specification

1- Course Data	·		
Course Code:	Course Title:		Academic Year/Level:
ME 355	Theory of Machines		3rd year / 5th semester
Specialization:	No. of Instructional Units	Lecture	Practical
Mechanical	3 credits	2 hrs.	2 hrs.

2- Course Aim

To provide a fair understanding of the performance of various mechanisms and principal machine elements as regards their Kinematics and dynamics

3- Intended Learning Outcomes

a- Knowledge and Understanding	Through knowledge and understanding, students will be able to: K4) Principles of design including elements design, process and/or a system related to specific disciplines.		
	Through intellectual skills, students will be able to:		
b- Intellectual Skills	I2) Select appropriate solutions for engineering problems based on analytical thinking.		
	I3) Think in a creative and innovative way in problem solving and design		
	I12) Create systematic and methodic approaches when dealing with new and advancing technology.		
c- Professional Skills	Through professional and practical skills, students will be able to:		
	P2) Professionally merge the engineering knowledge, understanding, and feedback to improve design,		
	Products and/or services		
	P5) Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design experiments, collect, analyze and interpret results		
	Through general and transferable skills, students will be able to:		
d- General Skills	Apply theories and concepts of mathematics and engineering principles to mechanical power systems.		
	Apply and integrate knowledge, understanding and skills of different subjects to solve real problems in industries.		
	Design and execute a project in the field of mechanical power engineering.		
	Use mathematical and computational skills in solving mechanical power engineering problems.		
	Apply industrial safety.		

4- Course Content Introduction -Types of motion. Week No.1 Week No.2 Velocity analysis of machine components - instantaneous center method. Week No.3 Acceleration analysis. Week No.4 Acceleration analysis. Week No.5 Dynamic force analysis - Dynamic bearing reactions. Week No.6 Balancing of rotating masses. Balancing of reciprocating masses / 7th week evaluation Week No.7 Week No.8 Balancing of reciprocating masses Week No.9 Cams Week Cams **No.**10 Week Kinetic energy storage and flywheel No.11 Week Gear geometry and fundamental law of gearing / 12th week evaluation **No.**12 Week Gear trains (conventional and epicyclic). **No.**13 Week Gear trains (conventional and epicyclic) **No.**14 Week Gyroscopic couples No.15 Week **Final Examination No.**16

5- Teaching and Learning Methods

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

6-Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

Academic Support:

- The general academic advisor appoints an academic supervisor for handicapped students.
- Continuous follow ups are made for handicapped students after each assessment to evaluate their academic level of achievement

7- Student Assessment

a-Procedures used	1-Written Examinations to assess The Intended Learning Outcomes.		
	2-Class Activities (Reports, Discussions,) to assess The Intellectual and general Skills.		
b- Schedule:	Assessment 1	7 th Week Assessment	
	Assessment 2	12 th Week Assessment	
	Assessment 3	Continuous Assessments	
	Assessment 4	16 th Week Final Written Exam	
c- Weighing of	7 th Week Evaluation	30 %	
Assessment	12 th Week Evaluation	20 %	
	Final-term Examination	40 %	
	Oral Examination	00 %	
	Practical Examination	00 %	
	Semester Work	10 %	
	Total	100%	

8- List of References:

a- Course Notes	N/A	
b- Required Books	• • Wilson, Charles.E., "Kinematics and Dynamics of Machinery". Pearson Education. –	
(Textbooks)	Latest Edition.	
c- Recommended	 Shigly, "Theory of Machines", McGraw – Hill, Latest Edition Hamilton H. Mabie & Charles F. Reinholtz, "Mechanisms and Dynamics of machinery", ,	
Books	John Wiley & Sons, Latest Edition.	
d- Periodicals, Web Sites, etc.	N/A	

Course coordinator:

Program Manager: