

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Electrical & Control Engineering Department

University/Academy:	Arab Academy for Science, Technology & Maritime Transport
Faculty/Institute:	College of Engineering & Technology
Program:	B.Sc. Mechanical Engineering

Form no. (12) Course Specification

1- Course Data

Course Code: EE 419	Course Title: Modern Control Engineering		Academic Year/Level: 4th year / 8th semester
Specialization:	No. of Instructional Units	Lecture	Practical
Computer/Electronics	3 Credits	2 Hrs.	2 Hrs.
Engineering			

2- Course Aim

To enable students of other departments to design control systems using classical approach and state-space approach.

3- Intended Learning Outcome

	• K1. Distinguish between time domain and frequency domain		
	specifications		
	K1. Definition and properties of z-transform		
	• K1. Show how to solve the state equation		
	• K1. Explain the role of matrix manipulation and linear differential		
	equations for control systems representation		
	K1. Knowing open and closed loop transfer functions		
	• K4. Associate the choice of pole location with digital control		
	systems stability criterion		
a- Knowledge and Understanding	• K5. Demonstrate effect of lead compensator in time domain and in		
a- Knowledge and Understanding	frequency domain.		
	• K5. Identify aspects of lag compensation in time domain		
	• K5. Show the differences between lag and lead compensators		
	versus lead-lag compensators		
	• K5. Defining control system representation techniques (phase		
	variable form, diagonal form etc.), state transition matrix,		
	controllability problem, and observability problem.		
	• K5. Distinguish the role of controllability / uncontrollability		
	criterion for pole placement		
	• K5. Distinguish between open loop and closed loop responses in		
	presence of sampler		
	• K10. Showing the basic structure of a digital control system		

b- Intellectual Skills	 I2. Apply Root locus and Bode plot in determining system requirements I3. Modifying system response using lead-lag compensators I2. Apply Bode plot in determining system requirements I2. Apply Bode plot in determining system requirements I1. Demonstrate the role of matrix manipulation and linear differential equations in practical physical systems I2. Apply system representation techniques in classical transfer functions I1. Solve system equations to obtain system response with and without initial condition state vector I1. Detect controllable / uncontrollable systems I3. Apply the state feedback gain controller law to assign the closed loop eigenvalues in desired locations I5. Demonstrate the differences between analog versus digital
c- Professional Skills	 control systems I1. Apply difference equation using inverse z-transform I2. Calculate the overall open loop / closed loop transfer function in presence of sampler I1. Solve first and second order transient responses I11. Apply Jurry's test to check digital system stability P2. Design lead compensators using Root locus technique P2. Compare between system response via lead, lag and lead-lag compensators P2. Design lead compensators using Bode plot P2. Design lead compensators using Bode plot P2. Design lag compensators using Bode plot P2. Design lag compensators using Bode plot P1. Differentiate between state variables in phase variable form, diagonal form, etc. P12. Explain system response with and without initial conditions P4. Analyze the role of controllability and observability in practical physical systems P6. Design state feedback gain controller matrix P7. Analyze the effect of sampling in control system process P5. Analyze digital transfer functions using partial fraction P3. Compare the effect of changing sampler locations applied on first and second order systems P1. Differentiate between range of sampling time (T) and range of
d- General Skills	 gain (K) in determining system stability G6. Sketch the root locus for the compensated and uncompensated system using lead and lag compensators G6. Sketch the root locus for the compensated and uncompensated system using lead- lag compensators G1. Sketch the Bode plot for the compensated and uncompensated system using lead and lag compensators G2. Verify the role of digital control systems in A/D and D/A converters

4- Course Content

Week Number 1:	Introduction to control system
Week Number 2:	Differential equation of physical systems.
Week Number 3:	Block diagram models using MATLAB.
Week Number 4:	Signal flow graph models using MATLAB.
Week Number 5:	Test input signals.
Week Number 6:	Performance of 1 st and 2 nd order system
Week Number 7:	7^{th} week exam + Effect of 3^{rd} pole and a zero on the 2^{nd} order system.
Week Number 8:	Stability concept Routh- Hurwitz stability criterion
Week Number 9:	Root locus techniques
Week Number 10:	Bode plots
Week Number 11:	Nyquist plots.
Week Number 12:	12 th week + Approaches to system design, advantage of feedback.
Week Number 13:	Approaches to system design, advantage of feedback.
Week Number 14:	Analog controllers.
Week Number 15:	Analog controllers (2).
Week Number 16:	Final exam

5- Teaching and Learning Methods

- Lectures -Tutorials

6- Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

Academic Support:

• The general academic advisor appoints an academic supervisor for handicapped students.

Continuous follow ups are made for handicapped students after each assessment to evaluate their academic level of achievement

7- Student Assessment:

	Written Examinations to asses The Intended Learning Outcomes		
a- Procedures used:	Class Activities (Repor	Discussions,) to asses The	
	Intellectual Skills		
	Assessment 1	3 rd Week	
b- Schedule:	Assessment 2	4 th Week	
	Assessment 3	5 th Week	
	Assessment 4	7 th Week	
	Assessment 5	10 th Week	
	Assessment 6	11 th Week	
	Assessment 7	12 th Week	

	7 th Week Examination	30%
	12 th Week Examination	20%
	Final-term Examination	40%
c- Weighing of Assessment:	Oral Examination	0%
	Practical Examination	5%
	Semester Work	5%
	Total	100%

8- List of References:

a-	Course Notes	Subjected in documentation
b-	Required Books (Textbooks)	G.F. Franklin & J.D. Powell & A.E. Naeinin, "Feedback Control of Dynamic Systems", Addison Wesley Publisher
c-	Recommended Books	Ogata "Modern control Engineering "Prentice Hall
d-	Periodicals, Web Sites,, etc.	www.ieee.org

Course coordinator:

Program Manager: