

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Electrical & Control Engineering Department

University/Academy:Arab Academy for Science, Technology & Maritime TransportFaculty/Institute:College of Engineering & TechnologyProgram:B.Sc. Mechanical Engineering

Form no. (12) Course Specification

1- Course Data

Course Code: EE418	Course Title: Automatic Control Engineering		Academic Year/Level: 4th year / 7th semester
Specialization:	No. of Instructional Units	Lecture	Practical
Computer/ Electronics/ Mechatronics	3 Credits	2 Hrs.	2 Hrs.

2- Course Aim

Stability concept and time domain analysis using time and frequency response

Modeling and analysis of simple physical system are investigated

To study controller units, their type analysis and tuning.

3- Intended Learning Outcome

a- Knowledge and Understanding	 K1. Explain the open and closed loop control systems with the understanding of the positive and negative feedback systems. K3. Classify the control systems and show model physical systems in time and frequency domain. K5. Studying different methods like Root locus techniques, Nyquist and Bode diagrams and demonstrate the block diagram reduction and signal graph method using several examples and compare their results K10. Showing how to perform stability analysis and the effect of disturbances on the system.
b- Intellectual Skills	 I1. Apply some examples on the Laplace transformation and modeling some mechanical and electrical systems. I5. Demonstrate the block diagram reduction and signal graph method using several examples and compare their results. In addition to the analysis of the second order system response after applying unit step input. I2. Demonstrate the root locus method showing the location of the zeros and poles and define the system gains margins and its stability. Also, use the Bode plots and the Nyquist plots with some examples to show its gain and phase margins.

c- Professional Skills	 P1. Experiment rotatory position control systems in the laboratory. P2. Solve some examples using the Matlab tool box for block diagram reduction method and signal flow graph, and communicated with the other students. Test the impulse, step and ramp inputs on several transfer functions using Matlab and explain the output response. P4. Applying the tuning methods on physical experiments in the laboratory. P6. Use the Matlab toolbox for experiment the Root locus techniques, Bode plots and Nyquist plots method. P12. Experiment the effect of the PID control parameters on the closed loop systems using Matlab.
d- General Skills	 G1. Communicate with other students in modeling the physical systems, and practice the Laplace transformation. Communicate with other students to reach the understanding of stability analysis and the maximum and minimum limits of the system gain values. G4. Practice the Block diagram reduction and signal flow graph for several hard examples, sketch the plotted output for different inputs applying on some transfer functions, and practice the method on several transfer function to illustrate the understanding of the parameters values.

4- Course Content

Week Number 1: Introduction to open loop and	closed loop control system.
Week Number 2: Control system classification.	
Week Number 3: Block diagram. System transf	Fer function and signal flow graph. Standard input signal.
Week Number 4: Time domain specifications	
Week Number 5: Modeling of some physical sy	/stems.
Week Number 6: Time response of first and see	cond order systems
Week Number 7: 7 th week exam	
Week Number 8: Importance of feedback, sens	itivity to parameter variations.
Week Number 9: System stability and effect of	disturbance
Week Number 10: Error analysis and error const	ants
Week Number 11: Root locus techniques	
Week Number 12: 12 th week exam	
Week Number 13: Frequency domain analysis (N	Vyquist- Bode) Analog controllers
Week Number 14: Controller tuning.	
Week Number 15: Revision	
Week Number 16: Final exam	

5- Teaching and Learning Methods

-	Lectures
•	Tutorials
	Reports & sheets
	Laboratories

Seminars

6-Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

Academic Support:

• The general academic advisor appoints an academic supervisor for handicapped students. Continuous follow ups are made for handicapped students after each assessment to evaluate their academic level of achievement

7- Student Assessment:

Quiz (to asses part of the 7th and 12th week evaluation) Report (to asses part of practical evaluation)		
a- Procedures used:	Written Examinations to asses The Intended Learning Outcomes Class Activities (Reports, Discussions,) to asses The Intellectual Skills	
b- Schedule:	Assesssment 1 Assesssment 2 Assesssment 3 Assesssment 4 Assesssment 5 Assesssment 6 Assesssment 7	3 rd Week 4 th Week 5 th Week 7 th Week 10 th Week 11 th Week 12 th Week
c- Weighing of Assessment:	7th Week Examination 12th Week Examination Final-term Examination Semester Work Total	30% 20% 40% 10% 100%

8- List of References:

a-	Course Notes	Subjected in documentation
b-	Required Books (Textbooks)	K.OGATA, "Modern Control Engineering", Pearson /Prentice- Hall.4ED.2002
c-	Recommended Books	 Y. El Gamal A.Amer, "Introduction to Control Engineering", AAST 1988 Nagrath 80 Gapal, "Control System Engineering", John Wiely & Son, NY 1982 K.O.Gatw, "Modern Control Engineering", Prentice Hall New Delhi, 1984
d-	Periodicals, Web Sites,, etc.	

Course coordinator:

Program Manager: