

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Department of basic and applied sciences

University/Academy:Arab Academy for Science, Technology & Maritime TransportFaculty/Institute:College of Engineering & TechnologyProgram:B.Sc. Mechanical Engineering

Form No. (12) Course Specification

1- Course Data

Course Code: BA 224	Course Title: Math 4		Academic Year/Level: 2 nd / 4 th
Specialization:	No. of Instructional Units	Lecture	Practical
	3 Credits	2hrs.	2hrs.

2- Course Aim

- 1-To introduce the basic Vector Differential Calculus and its applications.
- 2- To introduce the basic Vector integral Calculus and its applications.
- 3- To introduce the Complex Analysis.

3- Intended Learning Outcome (ILO's)

a- Knowledge and Understanding	 K1) Concepts and theories of mathematics and sciences, appropriate to the discipline. Recall basic rules of vector analysis (K1) Define Partial Differentiation and Derivatives of vector functions (K1) Define the different vector operators (K1) Define how to solve line integral (K1) Define meaning of conservative vector fields (K1) Define how to solve Surface Integrals / Green's Theorem (K1) Define how to solve Triple Integrals and Divergence (Gauss' Theorem) (K1) Define how to solve Stoke's Theorem (K1) Define different types of integrals theorem (K1) Define Complex numbers and functions and forms of representation (K1) Define Line complex integrals and Cauchy's Integrals Theorem (K1) Define Zeros and poles of Analytic functions (Residues and their evaluation (K1) Define Residue Theorem / Application to Real Integral (K1)
b- Intellectual Skills	I2) Select appropriate solutions for engineering problems based on analytical thinking.Explain the different vector operators (I2)Explain the meaning of independent of path (I2)Explain meaning of conservative vector fields (I2)

c-	Professional Skills	P1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice integrally to solve engineering problems Apply basic rules of partial differentiation in driving the derivatives of the vector functions.(P1) Apply Green's theorem (P1) Apply Gauss theorem (P1) Apply Stok's theorem (P1)
d-	General Skills	

4- Course Content

Lecture			
Wk	Hrs	Description	
1	2	Vector Algebra / Dot and cross product and Applications.	
2	2	Partial Differentiation / and Derivatives of vector functions.	
3	2	Gradient / Divergence/ curl/ Laplacian.	
4	2	Line Integrals / line Integrals Independent of the path / Exactness.	
5	2	Conservative vector fields.	
6	2	Double Integrals in Cartesian and polar coordinates / Green's Theorem	
7	2	Surface Integrals / Stokes' Theorem /7th week Exam.	
8	2	Triple Integrals / Divergence (Gauss' Theorem).	
9	2	Review on Integrals Theorems.	
10	2	Complex numbers and functions / forms of representation.	
11	2	Analytic functions/ Harmonic functions.	
12	2	Line complex integrals / Cauchy's Integrals Theorem /12th week Exam.	
13	2	Zeros and poles of Analytic functions/ Residues and their evaluation.	
14	2	Residue Theorem / Application to Real Integral	
15	2	General Revision.	
16	2	Final Exam	

5- Teaching and Learning Methods

- 1. Lectures
- 2. Tutorials
- 3. Individual coursework

6-Teaching and Learning Methods for Students with Special Needs

- 1. Consulting with lecturer during office hours
- 2. Consulting with teaching assistant during office ours
- 3. Private sessions for redelivering the lecture contents
- 4. An academic supervisor is appointed for handicapped students. Constant follow ups are done for handicapped students after each assessment to evaluate their academic level of achievement.

7- Student Assessment

	1. Written examinations to assess the Intended learning
a- Procedures used:	outcomes.
	2. Continuous assessment (reports, discussions, etc) to
	assess the Intellectual skills.
	Assessment 1: 7 th Week Written Exam
b- Schedule:	Assessment 2: 12 th Week Written Exam
	Assessment 3: Continuous Assessments
	Assessment 4: 16 th Week Final Written Exam

	7 th Week Examination	: 30 %
	12 th Week Examination: 20 %	
c- Weighing of Assessment:	Final-term Examination	n: 40 %
	Oral Examination	: 0 %
	Semester Work	: 10 %
	Total	: 100%

8- List of References:

8-	List of References:	
a-	Course Notes	No notes
b-	Required Books (Textbooks)	Advanced Engineering Mathematics, Erwin Kreyszig
c-	Recommended Books	Advanced Engineering Mathematics, D. G. Zill, W. S. Wright
d-	Periodicals, Web Sites,, etc.	

Course coordinator:

Program Manager: