CC 216 – DIGITAL LOGIC DESIGN

CREDIT HOURS

3 Hours

CONTACT HOURS (Hours/week)

Lecture: 2; Tutorial: 2; Lab: 2

TEXT BOOK

Thomas L. Floyd, "Digital Fundamentals", Prentice Hall, latest edition.

COURSE DESCRIPTION

Number systems - binary arithmetic and codes - logic gates - Boolean algebra and logic simplifications - Design and realization of combinational circuits - Functions of combinational circuits logic - Flip-Flops - analysis design and realization of counters - analysis and realization of shift registers - Computer aided engineering.

PREREQUISITE:

CC 111

RELATION OF COURSE TO PROGRAM

Required

COURSE INSTRUCTION OUTCOMES

The student will be able to:

- Know the basic differences between analog and digital systems
- Use binary numbers and codes
- Describe the operation of logic gates
- Apply Boolean algebra on K-map
- Design a combinational and sequential logic circuits to simplify function

TOPICS COVERED

- Introduction to digital concepts.
- Number systems, operations, and codes.
- Logic gates.
- Boolean algebra and logic simplification part 1.
- Boolean algebra and logic simplification part 2.
- Functions of combinational logic.
- 7th week exam.
- Decoders, encoders, MUX, DMUX part 1.
- Decoders, encoders, MUX, DMUX part 2.
- Flip-Flops and related devices part 1.
- Flip-Flops and related devices part 2.
- 12th week exam.

- Flip-Flops applications.
- Counters.
- Shift registers.

CONTRIBUTION OF COURSE TO MEET THE REQUIREMENTS OF CRITERION 5:

Professional component Content						
Math and	Basic	Engineering Topics	General Education	Other		
Sciences						
\checkmark		\checkmark				

RELATIONSHIP OF COURSE TO STUDENT OUTCOMES:

Stu	Course	
		aspects
А	An ability to apply knowledge of mathematics, science, and	$a_1 a_2$
	engineering	
В	An ability to design and conduct experiments, analyze and interpret	$b_1 b_2 b_3 b_4$
	data.	
С	An ability to design a system, component, or process to meet desired	$c_1 c_2 c_3$
	needs within realistic constraints such as economics, environmental,	
	social, political, ethical, health, and safety, manufacturability, and	
	sustainability	
D	An ability to function on multi-disciplinary teams.	$d_1 d_2 d_3 d_4$
E	An ability to identify, formulate, and solve engineering problems	$e_1 e_2 e_3$
F	An understanding of professional and ethical responsibility	
G	An ability to communicate effectively	
Η	The broad education necessary to understand the impact of	h ₁ h ₂ h ₃ h ₄
	engineering solutions in a global, economic, environmental, and	
	social content	
Ι	A recognition of the need for, and an ability to engage in life-long	
	learning.	
J	A knowledge of contemporary issues within and outside the	
	electrical engineering profession.	
k	An ability to use the techniques, skills, and modern engineering	
	tools necessary for electrical engineering practice.	