EE 552 Distributed Generation and Power Quality

Prerequisites	Academic Year &Level		Teaching Methods			Cradit Ura
	Year	Semester	Lecture	Tutorial	Lab.	- Credit His.
EE 423	5	9 \10	2	2		3

COURSE INFORMATION

COURSE AIM

Introduce students to the concepts of distributed generation, distributed storage, and microgrid.

Recognize the different power quality events and their causes, characterization, and remedy.

Enrich the student knowledge with the basic concepts of power quality and its related standards.

Introduce the basic principles of series and shunt compensation for power networks. Train the student to design power filters .

COURSE WEEKLY CONTENTS

- 1 Introduction to Energy Network Interfacing
- 2 Distributed generation, distributed storage, and microgrid
- 3 Static Synchronous Generator
- 4 Impacts of Distributed generation on electrical grids
- 5 Power quality standards, definitions, and characterizations.
- 6 Fundamentals of Harmonics: Causes, indices, system response characteristics, and effects on different components.
- 7 Midterm Exam
- 8 Devices for Controlling Harmonic Distortion and Notch filter design
- 9 Analysis of electric Power Quality: Unbalance, Voltage Sag, Swell, and Flicker
- 10 Instantaneous real and imaginary power theory
- 11 Shunt and series compensation of various power quality events.
- 12 Unified power quality conditioner + 12th week assessment
- 13 Hybrid filters
- 14 Power quality monitoring
- 15 Wiring and Grounding

STUDENT GRADING & ASSESSMENT

Weeks	Exams		Assign.	Quizzes	Reports	Present.	Lab.	Total	
1 to 7	20	Midterm	÷	1 0	ΜA	RKS	\rightarrow	30	
1.07	20		To be freely distributed among possible assessments					30	
8 to 12	÷			2 0	ΜA	RKS	\rightarrow	20	
13 to 15	÷			1 0	ΜA	RKS	\rightarrow	10	
16 or 17	40	Final						40	
Total	Exams		Assign.	Quizzes	Reports	Present.	Lab.	100	

REFERENCES

Textbook	R.C. Dogan, M.F. McGranaghan, S. Santoso, and H.W. Beaty "Electrical Power
	Systems Quality," McGraw-Hill, 2nd edition, 2003
Other	A. Ghosh and G. Ledwich, "Power Quality Enhancement Using Custom Power
	Devices," Klumer Academic Publishers, USA, 2002.