EE 522 Electrical Drives (2)

Prerequisites		Academic Year &Level		Teaching Methods			Cradit Ura	
		Year	Semester	Lecture	Tutorial	Lab.	- Creuit Hrs.	
EE 323	EE422	5	9 or 10	2	2	-	3	

COURSE INFORMATION

COURSE AIM

To investigate the different aspects of electrical design. To study the dynamics of the electrical drive systems. To study the applications of the electrical drives.

COURSE WEEKLY CONTENTS

- 1 Elements of electric drive systems
- 2 Different mechanical loads characteristics: pumps, fans, compressors, crane hoists, and winches

+

Midterm Exam

- **3** Drive control technique applied for traction
- 4 Temperature rise and cooling of electrical machines
- 5 Load cycle and Choice of electrical motors suitable for load demand
- 6 Space phasor concept and transformation between reference frames
- 7 D-Q model of AC machines
- 8 Vector control of three-phase induction motor
- 9 Speed control of AC motors based on D-Q model
- **10** Direct torque control of Induction motor (DTC)
- 11 A comparison between voltage fed and current fed VSD
- 12 Introduction to design of electric machines
- 13 Material selection and factors affecting the machine design
- 14 Stator design of three-phase induction motors
- **15** Rotor design of three-phase induction motors

STUDENT GRADING & ASSESSMENT

Weeks	Exams		Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20	Midterm	÷	1 0	ΜA	RKS	\rightarrow	20
	20		To be freely distributed among possible assessments					30
8 to 12	÷			2 0	ΜA	RKS	\rightarrow	20
13 to 15	÷			1 0	ΜA	RKS	\rightarrow	10
16 or 17	40	Final						40
Total	Exams		Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

Textbook	Ion Boldea and Syed A. Nasar, "Electric Drives", CRC Taylor & Francis, 2005.
Other	D.W. Novotny and T. A. Lipo, "Vector control and Dynamics of AC drives",
	Oxford, 1996
	Ned Mohan, "Electric Drives: An Integrative Approach", MNPERE, 2004.