EE 411 Control Systems (1)

COURSE INFORMATION						
	Academic Year <u>&Level</u>		Tea			
Prerequisites				Credit Hrs.		
	Year	Semester	Lecture	Tutorial	Lab.	
EE 311	4	7	2	2	2	3

COURSE AIM

Mathematical modeling of physical systems Frequency response analysis and Stability study Design of compensators for SISO control systems

COURSE WEEKLY CONTENTS

1	Root Locus Revision and Concept of	Compensa	ation	in Time Do	omain

- 2 Lead Compensation in Time Domain(Applied on Applicable Case Study e.g DC motor position control)
- 3 Lag Compensation and lead-lag Compensator in Time Domain(Applied on Applicable Case Study e.g DC motor position control)
- 4 Theory of P-I-D Controllers
- 5 Tuning of P-I-D Controllers(Applied on Applicable Case Study e.g DC motor position control)
- 6 Frequency response analysis & Bode diagrams
- 7 Concept of Nyquist Stability Criterion

+ Midterm Exam

- 8 Polar plots
- 9 Relative Stability in Nyquist plot (Applied on Applicable Case Study e.g DC motor position control)
- 10 Lead Compensation using Frequency Domain(Applied on Applicable Case Study e.g DC motor position control)
- 11 Lag Compensation using Frequency Domain (Applied on Applicable Case Study e.g DC motor position control)
- 12 12th week Assesment + Modeling of linear systems
- 13 Phase variable and State Space Representation for Continuous Systems
- 14 State space using canonical
- 15 Presentation of projects

STUDENT GRADING & ASSESSMENT

Weeks		Exams	Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20	Midterm	(10	MA	RKS	\rightarrow	30
			To be freely distributed among possible assessments					
8 to 12	÷			2 0	ΜA	RKS	\rightarrow	20
13 to 15	¢			1 0	ΜA	RKS	\rightarrow	10
16 or 17	40	Final						40
Total		Exams	Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

Textbook	I.J.Nagrath, M.Gopal " Control System Engineering"
Other	K. Ogata , " Modern control Engineering " , Prentice – Hall, 2012 .