EE 342 Power System I

COURSE INFORMATION											
Prerequisites	Academic Year &Level		Teaching Methods			- Cradit Ura					
	Year	Semester	Lecture	Tutorial	Lab.	- Credit HIS.					
EE 341	3	6	2	2		3					

COURSE AIM

To introduce to the students good knowledge on per unit system.

To apply different numerical methods for solving the power flow problem.

To inform the student of different types of power system control.

To introduce the students to the different methods of optimal dispatch of thermal generation.

COURSE WEEKLY CONTENTS

- 1 Single line diagram of power system
- 2 The per unit system
- 3 Bus admittance matrix
- 4 Bus impedance matrix
- 5 Power flow equations
- 6 Gauss- Seidel power flow solution
- 7 Gauss- Seidel power flow solution
- 8 Newton Raphson power flow solution
- 9 Newton Raphson power flow solution
- 10 Synchronous generator for power control
- 11 Tap changing transformers
- 12 Non-linear function optimization
- 13 Economic dispatch neglecting losses and no generator limits
- 14 Economic dispatch neglecting losses and including generator limits
- 15 Economic dispatch including losses

STUDENT GRADING & ASSESSMENT

Weeks	I	Exams	Assign.	Quizzes	Reports	Present.	Lab.	Total		
1 to 7	20	Midterm	← To be	1 0 freely distribu	M A	R K S possible asses	→ sments	30		
8 to 12	←			2 0	MA	R K S	\rightarrow	20		
13 to 15	÷			1 0	ΜA	RKS	\rightarrow	10		
16 or 17	40	Final						40		
Total	L	Exams	Assign.	Quizzes	Reports	Present.	Lab.	100		
REFERENCES										
Textbook	book Hadi Saadat, "Power System Analysis", McGraw- Hill, 2002.									

Other Guile & W. Paterson, "Electrical power systems "vol. I & II Pregamaon press, London.

W. Stevenson & J.Grainger, "Power System Analysis", McGraw Hill.

+ Midterm Exam