BA224 Mathematics IV

		0 N				
Prerequisites	Acaden	nic Year & Level	Teaching Methods			– Credit Hrs.
	Year	Semester	Lecture	Tutorial	Lab.	- Credit His.
BA223	2	4	2	2		3

COURSE INFORMATION

COURSE AIM

This course introduces the advanced engineering mathematical concepts and methods of the vector analysis and of the complex analysis, including their physical applications.

COURSE WEEKLY CONTENTS

- 1 Vector Algebra / Dot and cross product and its Applications.
- 2 Partial Differentiation / and Derivatives of vector functions
- 3 Gradient / Divergence / Curl / Laplacian operator
- 4 Line Integrals of a scalar and a vector function
- 5 line Integrals Independent of the path / conservative vector fields / Double Integrals in Cartesian
- 6 Double Integrals in polar coordinates / Green's Theorem
- 7 Midterm Exam
- 8 Triple Integrals
- 9 Spherical coordinates / Cylinder coordinates
- 10 Surface Integrals / Divergence (Gauss' Theorem)
- 11 Stokes' Theorem
- 12 12th Assessment
- 13 Complex numbers and functions / forms of representation Analytic functions/ Harmonic functions
- 14 Zeros and poles of Analytic functions/ Residues and their evaluation Residue Theorem / Application to Real Integral
- 15 Line complex integrals / Cauchy's Integrals Theorem

Weeks	Exams		Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7 20	20) Midterm	÷	10	ΜA		\rightarrow	30
	10	materini	To be freely distributed among possible assessments					
8 to 12	÷			2 0	ΜA	RKS	\rightarrow	20
13 to 15	÷			1 0	ΜA	RKS	\rightarrow	10
16 or 17	40	Final						40
Total		Exams	Assign.	Quizzes	Reports	Present.	Lab.	100

STUDENT GRADING & ASSESSMENT

R E F E R E N C E S

Textbook Roland Minton, Robert T Smith, "Calculus: Early Transcendental Functions", McGraw-Hill Education, 2011.

Other