

MULTI-OBJECTIVE NON-UNIT

BASED REPETITIVE ACTIVITIES

PROJECTS SCHEDULING USING

GENETIC ALGORITHMS

A Thesis Submitted to the Faculty of Engineering in Fulfillment of the Requirements of the

degree of Master of Science in Construction Engineering

Arab Academy for Science & Technology and Maritime Transport, Cairo Branch, Egypt, 2012

Prepared By

Mohamed Saeid Eid

Teaching Assistant, Construction and Building Engineering Department, College of Engineering,

Arab Academy for Science & Technology and Maritime Transport, Egypt.

Supervised by:

Prof. Dr. Emad Elbeltagi

Professor of Construction Management,

Faculty of Engineering, Mansoura University,

Egypt.

Prof. Dr. Mohamed E. Abdelrazek

Professor of Construction Engineering and

Management at the Construction and

Building Engineering Department, College of

Engineering, Arab Academy for Science &

Technology and Maritime Transport, Egypt

I

Abstract

Multi-Objective Non-Unit Based Repetitive Activities Project

Scheduling using Genetic Algorithms

By

Mohamed Saeid Eid

Achieving a successful construction project, one should meet decision maker

various needs and objectives through a construction plan and schedule. A schedule

that utilizes the use of resources to achieve minimum construction cost as well as

minimum construction duration. In this study, a repetitive activities project

scheduling and optimization model is developed to achieve the decision maker

objectives.

The proposed scheduling model optimizes the project cost, duration, crews’

interruptions and units’ delivery dates delay simultaneously. The model consists of

two modules; a scheduling module and an optimization module. The scheduling

module takes into consideration the logical and resource start dates, different units’

quantities, different production rates for assigned construction methods, as well as

the transportation duration and cost of moving crews to schedule a repetitive

activity project. The optimization module uses a Multi-Objective Genetic

Algorithms to define a set of non-dominated solutions for the decision maker to

choose from depending on the construction project conditions.

The model is implemented a computer program and introduced to several examples

and case studies to evaluate its fitness through analysing the results. It was found fit

and applicable on medium size repetitive activities projects.

II

Acknowledgments

First, I am grateful to Allah for aiding and supporting me throughout my carrier and

studies, for my deeds are by him and for him to aid my brothers and sisters of

humanity.

I would like to thank everybody by their names that supported me physically and

mentally through the years and through this research. My family, the big loving and

caring home that gives a lot and asks for few. My professor and teachers of ethics

and manners, Prof. Mona Eid, Prof. Emad Elbeltagi, Prof. Mohamed Emam, Prof.

Sanad, Prof. Mostafa Khalifa, Prof. Lobna Elsherif. Eng. Mohamed El-Abbassy.

And many thanks to friends that helped me to excel, and special thanks to Ehab

Amer for the effort that aided me a lot.

Last, but not in any means the least, I would love to thank my Country, Egypt, and

my fellow countrymen, for I learnt the best in this land, and to you I present this

thesis.

III

TABLE OF CONTENTS

ABSTRACT ..I

ACKNOWLEDGMENTS ..II

TABLE OF CONTENTS ...II

LIST OF TABLES ...VI

LIST OF FIGURES ..VII

1. CHAPTER 1: INTRODUCTION

1.1 Research Motivation ..2

1.2 Research Objectives and Scope ...3

1.3 Research Methodology ..3

1.4 Thesis Organization ...4

2. CHAPTER 2: LITERATURE REVIEW

2.1 Introduction ...5

2.2 Network Techniques (CPM/PDM) ..5

2.3Linear Scheduling Technique ...8

2.4 Line of Balance Scheduling Technique ...12

2.5 Genetic Algorithms ...18

2.5.1 GAs Structure...19

2.5.2 Genetic Operations ...21

2.6 Multi-Objective Optimization ...22

2.6.1 Simple aggregation ..23

2.6.2 Weighted aggregation ..23

2.6.3 Pareto Front ...24

2.7 Summary and Conclusions ..26

IV

3. Chapter3: MULTI-OBJECTIVES REPETITIVE ACTIVITIES PROJECT

SCHEDULING MODEL DEVELOPMENT

3.1Introduction ..27

3.2 Model Overview ..27

3.3 Model Development ...28

3.3.1 Scheduling module...28

3.3.2 Multi-objective optimization module ..38

3.3.2.1Optimization function ...38

3.3.2.2 Optimization variables ...40

3.3.2.3 Optimization Constraints ..41

3.3.2.4 Convergence criterion ..41

3.4 Summary and Conclusions ..44

4. CHAPTER 4: MODEL IMPLEMENTATION

4.1 Introduction ...45

4.2 Implementation Media ..45

4.3 Implementation Details ...46

4.4 Example Application and Validation ...49

4.4.1 Scheduling module ..51

4.4.2 Optimization module ...53

4.4.3 Analysis of results ...54

4.5 Further Experimentations ...56

4.6 Compromise Solution ..61

4.6.1 Experimental example’s compromise solution ..65

4.7 Another Example Application and Validation ..66

4.8 Summary and Conclusions ..69

V

5. CHAPTER 5: REAL LIFE CASE STUDY

5.1 Introduction ...70

5.2 Case Study ..70

5.2.1Project overview ...70

5.2.2 Project data ..71

5.2.3 Project Scheduling ...76

5.3 Summary and Conclusions ..78

6. CHAPTER 6: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary ...79

6.2 Conclusions ...80

6.3 Recommendation and Future Work ..80

7. REFERENCES ..81

8. APPENDIX I – MS PROJECT VBA SCHEDULING AND OPTIMIZATION MODEL 86

VI

List of Tables

CHAPTER 4: MODEL IMPLEMENTATION

4.1 The Example Application Activities and Predecessors49

4.2 Quantities of Activity in Each Units ...50

4.3 Construction Methods’ Production Rates ..50

4.4 Construction Methods Duration in Each Unit ...51

4.5 Assigned Construction Methods Indices of Each Activity55

4.6 Results Comparison ...55

4.7 Activities’ Direct Costs ...57

4.8 Distance Between Repetitive Units ...57

4.9 Construction Methods’ Crews’ Transportation Speed 58

4.10 Construction Methods’ Crews’ Transportation Cost ...58

4.11 Model Results for Full Scale Experimentation ..59

4.12 Pareto Compromise and Best Alternative Solution ...65

4.13 Second Example’s Activities ..66

4.14 Quantities of Activities In Each Unit ..67

4.15 Construction Methods Details ..68

4.16 Model Results for Second Validation Example ..68

4.17 Pareto Compromise and Best Alternative Solutions for Second Validation

Example ..69

CHAPTER 5: REAL LIFE CASE STUDY

5.1 Repetitive Activities of The Case Study ..74

5.2 Project Data ...74

5.3 Construction Methods’ Production Rates and Costs ...76

5.4 Construction Methods’ Speeds and Costs ...76

5.5 Case Study Selected Results ..76

5.6 Case Study Pareto-Compromise and Best-Alternative Solutions77

VII

List of Figures

CHAPTER 2: LITErature REVIEW

2.1Network Technique Representation for Repetitive Activities Project 8

2.2 Linear Schedules Example (Matlia 1997) ..9

2.3 Line of Balance Representation (Arditi Et. Al 2002) ..13

2.4 Flowchart of Gas Procedure ..20

2.5 Crossover and Mutation ...22

2.6 Pareto Front ...25

2.7 Pareto Front Sorting ...26

Chapter3: MULTI-OBJECTIVES REPETITIVE ACTIVITIES PROJECT

SCHEDULING MODEL

3.1 Activities Start Time ..29

3.2 Determination of Previous Unit...31

3.3 Crews’ Start Time ...32

3.4 Adjusting The Crew’s Earliest Possible Start Time For The Next Units33

3.5 Calculating Units Delivery Dates Delay ...35

3.6 Schedule Module Overview .. 36-37

3.7 Pareto Front Sorting ..39

3.8 Chromosome Representation Example ...40

3.9 Normalized Eculidean Norm for Non-Dominated Solutions42

3.10 Multi-Objective Optimization Module ..43

CHAPTER 4: MODEL IMPLEMENTATION

4.1 Model Implantation Process ..47

4.2 Project Data Entry ...48

4.3Startup of Schedule and Optimization Modules ...49

4.4 Selection Probability Calculation Process ...54

4.5 Results Comparison: The Proposed Model Vs. Hyari And El-Rayes(2006)56

VIII

4.6-A Distance Between Units ...58

4.6-B Crews’ Transportation Speed ...58

4.6-C Crews’ Transportation Cost ...59

4.7 Results Comparison ...60

4.8 Optimum Set Wider View ...60

4.9 Original Pareto Front (N=2) (Elbeltagi Et Al. 2010) ..62

4.10 Normalized Pareto Front (N=2) (Elbeltagi Et Al. 2010)63

4.11 Unique Pareto Trade Off Point Eo (N=2) (Elbeltagi Et Al. 2010) 65

CHAPTER 5: REAL LIFE CASE STUDY

5.1 Cross Section of Water Channel for Type 1 and 2 ...72

5.2 Cross Section of Water Channel for Type 3 and 4 ..73

1

Chapter 1

Introduction

 “He who every morning plans the transactions of the day and follows out that

plan, caries a thread that will guide him through the most busy life. But where

no plan is laid, where the disposal of time is surrendered merely to the chance

of incidence, chaos will soon reign.” Victor Hugo – French poet & Novelist

Planning and scheduling are the essence of project management and control,

without them any project manager will be lost in a sea of activities that can‟t

be controlled. Many methods have been proposed to schedule construction

projects and representing them, starting from bar charts, time-scaled diagrams

to precedence diagrams and the most commonly used Critical Path Method

(CPM) scheduling technique, as well as PERT.

However, due to the diversity in construction projects‟ types, one can‟t always

use the same scheduling techniques to all types of construction projects. One

of those types is the repetitive activities projects. The repetitive activities

projects are characterized by the repetition of sets of activities through the

projects‟ units. The repetition of activities can be linear, (e.g. pipeline,

railway, highway constructions) or non-linear, (e.g. high rise building,

housing compounds) (Moselhi and Hassanein 2003).

The repetition of the activities requires a scheduling technique that utilizes the

resources assigned for the activities. Traditional network techniques, such as

CPM, have been introduced to repetitive activities projects to schedule and

control them. However, network techniques have been showing major

drawbacks in repetitive activities projects (Stradel and Cacha 1982, Reda

1990, Suhail and Neale 1994, and Hegazy and Kamarah 2008). These

drawbacks have encouraged the researchers to develop a number of

specialized scheduling techniques for the repetitive activities projects. These

scheduling techniques take into consideration several parameters:

1. Utilization of assigned resources.

2

2. Maintaining work continuity from one unit to another

3. Meeting projects‟ deadline through achieving a proper production rates

for the crews.

4. Accounting for transportation of crews.

5. Different quantities for the different units.

However, most of these scheduling techniques didn‟t take into consideration

optimizing all these factors simultaneously through one model.

1.1 Research Motivation

This research has been motivated by the lack of two aspects as follows:

 Inadequacy of Traditional Network Scheduling Techniques

As mentioned earlier, traditional network scheduling techniques lack the

ability to schedule the repetitive activities projects properly. These

techniques can be implemented to limited amount of repetitive activities,

but in a large scale repetitive activities project, it shows a lot of

drawbacks as criticized by many researchers. The large amount of

activities and their relationships makes it difficult for users to understand

and control the project through visualizing it on a PDM. Also, traditional

network scheduling techniques doesn‟t take into account the resources

assigned to the activities, but uses resource management techniques that

doesn‟t guarantee work continuity or meeting the deadline using the

required production rates of activities. Moreover, traditional network

scheduling techniques don‟t take into consideration the location of units

or the transportation time of crews.

 Inefficient Optimization Techniques

The need of optimization tools for construction projects is getting stronger

as the diverse and opposing objectives of planners and project managers

are increasing in an attempt to deliver the repetitive activities projects

successfully. Several traditional mathematical optimization models have

been introduced to the repetitive activities projects by researchers like

linear programming and dynamic programming (El-Rayes and Moselhi

3

1998; and Moselhi and Hassanein 2003). However, the mathematical

techniques don‟t ensure a global optimum solution for a multi-objective

problem and may be trapped into local optimum solutions. Moreover,

mathematical techniques don‟t give a set of schedules for the planner to

choose from, but rather give one solution.

1.2 Research Objectives and Scope

The scope of this research is to schedule and optimize repetitive activities

projects to achieve a set of optimum solutions that meets the planner

requirements. The research aims to achieve the following objectives:

1- Develop a flexible resource driven model to schedule the repetitive

activities projects that:

a. Use multiple construction methods assignment strategy

b. Determine the transportation duration and cost of crews moving

from one unit to the other.

c. Determine the duration of each unit separately depending of the

quantities and assigned crew‟s production rate.

d. Determine the total project cost, duration and takes into account

decreasing the total crews‟ interruption and meeting the units‟

delivery dates.

2- Use a multi-objective non-traditional optimization technique, Genetic

Algorithms, to determine the set of optimum schedules for a repetitive

activities project.

3- Implement the scheduling and optimiztion model to a commercially wide

spread and friendly interface computer program to be easily used by

planners.

1.3 Research Methodology

The methodology used to achieve the research objectives involves the

following:

1- Review of the recently developed repetitive activities projects‟

scheduling models and optimization techniques.

2- Develop a model that takes into consideration the repetitive activities

projects nature, i.e. transportation of construction crews, distances

4

between units, different quantities in each unit …etc. Sets of feasible

solutions will be created and optimized through the model to

determine the start and finish dates of activities determining the

project total duration and cost as well as the crew interruptions and

units‟ delivery dates delays.

3- Apply Genetic Algorithms technique to the model to determine the set

of optimum solution through optimizing the solution to achieve the

multi-objective criteria needed by planners.

4- Integrate the model with a commercial project management software –

MS Project – using VBA macros.

5- Apply the developed model on a case study project to validate the

model in real life construction projects.

1.4 Thesis Organization

The research composed of four chapters in addition to the current one, and

they are as follows:

Chapter two (Literature Review): presents a literature review of the recent

repetitive activities projects‟ scheduling models and optimization techniques.

Chapter three (Proposed Model): presents the mathematical formulation of

the proposed model and the factors affecting the scheduling model are stated

and analyzed. The chapter also discusses the optimization technique used in

this model.

Chapter four (Implementation and Case Study): presents the integration

of the developed model into a computer program and the implementation on

a validation example drawn from the literature.

Chapter five (Case Study): presents a real life case study to verify the

model‟s effectiveness.

Chapter six (Summary, Conclusion and Recommendations): presents the

thesis conclusions and discuss the recommendations for further studies on the

current research.

5

Chapter Two

Literature Review

2.1 Introduction

Construction projects always face several challenges; completing the project on

time, keeping the project expenses to minimum, increase the utilization of

resources…etc. However these challenges increase with repetitive activities

projects.

Repetitive activities projects are those projects where a set of activities are

repeated through the whole project. Repetition can be due to geometric and

location layouts or due to multiplications of units. Repetitive activities projects

can be classified into two main categories: linear projects, such as pipe lines,

highway, and railways, and nonlinear such as: multiple housing and high rise

buildings (Moselhi and Hassanein 2003).

Repetition of activities requires from the project managers and planners to find

the optimum plan and schedule that meets the project objectives through

optimum utilization of their available resources.

Through this chapter, a discussion is made on the use of commercially wide

spread critical path method (CPM) technique and precedence diagram method

representation (PDM) in the repetitive activities projects and its limitation.

Additionally, a review of the latest researches on the scheduling techniques for

the repetitive activities projects is presented.

2.2 Network Techniques (CPM/PDM)

Network based methods, such as the critical path method (CPM), are proven to

be powerful scheduling and progress control technique (Arditi et al. 2002). The

critical path method have been used in the construction projects for decades, and

have been proven to be easy to apply to most of the construction projects types.

It is now widely known with the help of commercial application and computer

programs that uses the CPM technique (Mattila and Park 2003). In addition,

6

aggressive marketing by CPM software developers has also helped CPM

dominate the market (Duffy et. al 2011).

While CPM has been used on countless projects, it has been found inadequate

when scheduling repetitive activities projects (Mattila and Park 2003). It has

been reported that the CPM based on the network diagrams applied on the

repetitive activities projects has many drawbacks. It was observed the inability

of CPM to model the repetitive nature of linear construction (Stradel and Cacha

1982, Reda 1990, Cole 1991, Rahbar and Rowings 1992, Suhail and Neal 1994,

and Harmelink 1995).

The CPM technique is a duration oriented technique that doesn‟t take into

consideration the resources as an input drive the project schedule. A scheduling

technique, as such, does not maintain the work continuity of resources.

Maintaining the work continuity in a repetitive activities project is highly

significant for the planner on moving the resources from one unit to the other

without creating idle time to optimize the project schedule. Maintaining work

continuity decreases the project total cost, avoiding idle time costs, as well

decreasing the total project duration on keeping all the resources working to

achieve the least project duration. Some limitations have been identified for

CPM technique when scheduling continuous projects regarding the difficulty to

maintain continuity in crew utilization (Yamin and Harmelink 2001). This

makes the CPM scheduling techniques less effective for repetitive activities

construction projects (Huang and Sun 2006). To maintain work continuity,

repetitive units must be scheduled in such a way as to enable timely movement

of crews from one unit to the next, avoiding crew idle time. (Ammar and

Elbeltagi 2001).

Moreover, CPM technique doesn‟t takes into consideration the required output

rate of each activity type to meet the delivery dates of units since it is duration

oriented technique. CPM technique schedules the activities of each unit as soon

as possible dates (early start dates) based only on the logical relationships with

preceding activities (Wassef and Hegazy 2001) regardless of the desired

production rates required for each activity type or the resources assigned to the

7

activity. Thus may fail the project manager to deliver the units on time and

might create idle time for the resources.

In addition, CPM technique uses resource management techniques - after

scheduling - to manage the resources assigned to activities with the priorities

only given to the critical activities. This will result into variation delivery dates

of project units as well as creating idle time for resources that are not on the

critical path. Resource management with CPM is commonly done by plotting

resource usage per day in a bar chart diagram. This graph must be viewed

together with the CPM network to understand how moving resources from one

activity could affect other activities (Yamin and Harmelink 2001). In addition,

such a technique initially assume unlimited availability of resources in the

development if a project schedule and through resource allocation require

revision of the project schedule to comply with resource availability (El-Rayes

and Moselhi 1998).

CPM doesn‟t have any consideration for location of work in schedule (Hegazy

and Kamarah 2008). Location of units are key items in repetitive activities

projects, as it aids the planner to determine the transportation duration and cost

of crews undertaking the units.

Also, considering that the CPM technique is usually applied to precedence

diagram method PDM, it shows a great drawback in representing the repetitive

activities projects. Repetitive activities project may consists of thousands of

activities and representing them and their relationships using PDM technique

makes it difficult for users and planners to visualize projects‟ schedules and

manage the work in progress as shown in Fig. 2.1.

8

Fig. 2.1: Network Technique Representation for Repetitive Activities Project

On recognizing the drawbacks of applying the CPM technique to repetitive

activities projects, a number of resource driven techniques have been developed

to overcome these drawbacks taking into account the repetitive activities projects

special nature. Some of these techniques are presented in the next sections.

2.3 Linear Scheduling Technique

A linear schedule is a visual representation for a repetitive activities project‟s

plan. It shows the plan‟s logic and the relationships between activities. The

schedule is displayed on a time-location diagram, with time on one axis and

location on the other axis. Time and location can be on either axis, depending on

which makes more sense to the construction project type. For a high-rise

building, putting location on the vertical axis coincides with the building rising

from floor to floor. For a highway project, putting location on the horizontal axis

coincides with the dimensional nature of the project (Mattila and Park 2003).

Fig. 2.2 illustrates an example of a linear schedule for a rural highway project.

9

Fig. 2.2: Linear Schedule Example (Mattila 1997)

Vorester et al. (1992) suggested that there are three types of activities that can

appear in linear schedule: linear, block and bar. However, Harmelink and

Rowings (1998) refined the linear activity types into the following six specific

subtypes:

1. Continuous full-span linear (CFL)

2. Intermittent full-span linear (IFL)

3. Continuous partial-span linear (CPL)

4. Intermittent partial-span linear (IPL)

5. Full-span block (FB)

6. Partial-span black (PB)

Linear scheduling has long been regarded as a technique that provides

significant advantages when applied to linear construction (Johnson 1981). LSM

is also very easy to understand, and it can be used at every level of the repetitive

activities construction projects (Yamin and Harmelink 2001). However, it has

been viewed essentially as a graphical technique that is not as easily adaptable to

computerization as network models (Chrzanowski and Johnston 1988). At the

heart of network model-based scheduling methods is the ability to determine the

10

critical path. This path identifies those activities that, if their duration changes,

the duration of the entire project changes. For linear scheduling to be accepted as

a viable tool in project planning and management, it also must be able to

determine a set of controlling activities (Harmelink and Rowings 1998).

Harmelink and Rowings (1998) proposed an analytical basis for formulation of

computer-based linear scheduling algorithms through determination of the

controlling activity path from a linear schedule. The procedure to determine the

controlling activity path in a linear schedule involves the following three steps:

1) Activity sequence list:

The activity sequence list identifies all of the possible logical sequences through

the activities on a linear schedule. The controlling activity path is defined as the

continuous path of longest duration through the project and defines the sequence

of activities that must be completed as planned to finish the project within the

overall planned duration. The activity sequence with the longest duration (or the

least free time) contains all of the activities on the controlling activity path.

2) Upwards pass

The goal of the upward pass is to determine which activities or portions of

activities could potentially be controlling. The process starts with the beginning

of the project and progresses upward, identifying the path with the least free time

between each pair of continuous full-span activities. The potential controlling

segment of the origin activity can be determined by examining the relationship

between these two activities.

3) Backward pass

The purpose of the backward pass is to determine which portions of the potential

controlling segments are actually on the controlling activity path. This step can

be compared with the backward pass used in CPM scheduling, which identifies

activities that do not have any float.

Ammar and Elbeltagi (2001) introduced an effective scheduling algorithm for

linear and repetitive projects using CPM technique for the scheduling of

11

activities considering logic constraints while satisfying resource continuity and

to define the controlling path. The model benefits from an earlier analysis by

Harris and Ioannou (1998) to determine the controlling path. The model assumes

a constant production rate along the different repetitive units of each activity and

calculated as follows:

ri = 1 / di (2.1)

Where ri and di denote production rate and duration of activity i respectively.

The model also assumes that only the most significant resource will be

considered and initially requires the following data:

 A precedence network for a typical unit.

 Unit duration for each activity in the network (d).

 The number of repetitive units (n).

The algorithm is carried out by three steps:

 Step 1: Specifying relationship type:

This step specifies the relationship type among different activities, which

is considered the most important aspect to maintain the resource

continuity usage. To specify the relationship between two consecutive

activities, the production rate of each activity is compared with that of its

successors. The production rate of the successor can be one of the

following cases:

o Greater than the current activity‟s production rate, thus will create

a Start-to-Start (SS) relationship with a lag time equals to the

current activity‟s duration.

o Less than the current activity‟s production rate, thus will create a

Finish-to-Finish (FF) relationship with a lag time equals to the

successor activity‟s duration.

o Equal to the current activity‟s production rate. In this case, any of

the above cases can be used with a FF or SS relationship with

consideration to the lag time.

12

 Step 2: Network scheduling

After obtaining the data from the previous step, network calculations

similar to that of CPM technique are done. Forward path calculations are

done to determine the early times of each activity, while the backward

path determines the late times. Also the critical activities are specified.

The critical activities will be checked in Step 3 to specify logic and

resource critical units.

 Ste 3: Determining controlling path

After timing all activities are determined, the critical units (logic and

resource) are specified based on the activities‟ production rates. The

production rate of each activity is compared with that of its preceding and

succeeding activities and by applying a set of rules the controlling path

can be easily determined.

2.4 Line of Balance Scheduling Technique

Line of balance (LOB) is one of the earliest scheduling techniques created for

repetitive activities projects. It was first used by the US Navy in early 1940‟s as

a graphical scheduling technique to control the production of warships. Several

researchers have been attempted to implement it in the construction industry.

Line of balance is a graphical resource oriented scheduling technique that takes

into consideration the special nature of the repetitive activities projects,

respecting the units‟ locations, usage of multiple crews and shows the production

output rate of each activity in the project. The LOB chart also shows the crew

movement from one unit to other.

Line of balance scheduling chart consists of two axes, on the horizontal axis the

duration of the project, and on the vertical axis the units repeated through the

project. Each activity repeated through the units - using one or more crew - is

connected together forming the activity line as shown in Fig. 2.3.

13

Fig. 2.3: Line of Balance Representation (Arditi et al. 2002)

Lumsden (1968) incorporated the network logic by linearly propagating the

CPM start and finish dates for the activities of the first repetitive unit with a rate

that would achieve the project completion date. The schedule is obtained through

three steps:

1. Calculate the start and finish dates of the first repetitive unit using the

CPM technique.

2. Calculate the required progress rate based on the competition date of the

first unit and project deadline as given in Eq. (2.2);

R = units – 1 / (Deadline-CPM Duration) (2.2)

3. Apply the same progress rate to all activities.

To achieve the required progress rate for each activity through the different

units, it is required to determine the number of crews needed to be assigned to

these activities. The number of crews (C) is determined by multiplying the

progress rate (R) by the units‟ duration (d) as presented in Eq. 2.3;

C = R X d (2.3)

However, on calculating the number of crews required for each activity type, the

number might needs to be rounded up and thus creating a new progress rate that

may interfere with the project required rates. Lumsden suggests that each project

has a “Natural Rhythm, and that any deviation from that rhythm results in a less

than full utilization of resources. Also, in the previous Eq. (2.2), it was assumed

14

that the quantities through the units are the same and the duration would be the

same, while in practice, the quantities in each repetitive activity is not the same

and the production rate of each crew is not equal, and this assumption limits the

applicability of the LOB method (Huang and Sun 2006).

Moselhi and Hassanein (2003) presented a model to optimize repetitive activities

projects and overcoming the regular LOB drawbacks by employing a resource

driven and traditional network scheduling techniques. The proposed model

calculates quantities of each unit and the duration corresponding to the assigned

crew‟s production rate.

The proposed model is flexible with the number of predecessors of each activity

and their relationships. As well as it calculates the transportation duration and

cost of each crew moving from one unit to the other.

The proposed model consists of four main steps:

1. Dividing the project into sections based on the location of units and the

possible start time of each unit.

2. Determining the quantities of each section.

3. Determining the optimum crew to be assigned to this location based on a

series of pre-entered indices.

4. Calculation of the section duration.

The model is said to be very efficient, yet it‟s a single objective model, and deals

with the multi-objective requirements as a function in the duration criteria,

which may give local optimum solutions.

Hegazy et al. (2004) developed a LOB model for scheduling infrastructure

projects. The model created in this work used Genetic Algorithms as an

optimization tool. The model allows for up to three construction methods, each

consists of different crew, material and sub-contractors formation.

The model allows for site order change, which can improve the overall project

duration concerning the transportation time, as well as decreasing the crews‟

15

interruptions to increase production rate. It takes into consideration the seasonal

changes and its effects on the production rate of the crews at each construction

site.

However, the model objective function is to minimize the total construction cost,

thus it‟s a single objective model, even though the total construction cost

includes direct cost, indirect cost, liquidated damage, incentive for early

completion and crew moving costs but it neglected the project total duration as a

main objective. This may give a local optimum or a vague output and will not

give the project managers and planners the flexibility of choosing a plan that

meets their project‟s requirements.

Hyari and El-Rayes (2006) introduced a model based on linear scheduling

technique (LSM) and Genetic Algorithms as an optimization tool to find the

optimum set of plans in a tradeoff between total project duration and work

continuity. The model used the date entered by the user to determine the logical

relationship between repetitive activities, the quantities of work for each unit and

the available crew formations and their corresponding production rates.

The model consists of four main steps:

1. Calculating the duration of the activity depending on the quantities of the

unit and the production rate of the crew.

2. Determination of the earliest possible start time for a crew to be assigned

to a unit.

3. Determination of the activities earliest possible start time depending on

the crew start time and logical start time.

4. Determination of project total duration and project total interruptions

The model can be easily implemented to most of the repetitive activities

projects, however it didn‟t consider transportation duration of crews from one

unit to the other. Also, due to the research scope, the model doesn‟t represent all

the parameters a project manager requires like cost, delivery dates…etc.

16

Huang and Sun (2006) introduced a practical non-unit based repetitive activities

scheduling model, as it is very rare to have identical repetitive units in a

repetitive activities project. They organized the project into activity groups and

resources to be assigned to each group.

Huang and Sun identified, as well, the need to reconsider the hard relationship

between activities in the same activity group. For example, there shouldn‟t be

any hard relationship between foundations activities in different spans, the

relationship should be more generalized to give a more realistic schedule. This

means that in an activity group there‟s no specific order to undertake them.

The proposed model also allows assigning more than one resource to the activity

group to carry out different units in the activity group. Moreover, the model

maintains the work continuity of the resources assigned to decrease the idle time

of resources. The model as well takes into consideration the mobilization and

demobilization of crews moving from one unit to another unit.

The scheduling model is carried out in three steps:

1. Identify activity groups

2. Development of resources chains

3. Position resources chains for project scheduling.

However, they considered only single objective for the model, accounting only

for total project duration and neglecting other objectives that may change the

optimum solution.

Ipsilandis (2007) presented a multi-objective programming model for repetitive

linear projects. Defining the complex nature of linear repetitive projects and the

various objectives a project manager needs for his project. Ipsilandis defined the

five objectives needed for this type of construction projects to minimize total

project duration, total work-break time, unit completion time, total cost of work-

break time, and delay cost in unit completion.

17

Ipsilandis also defined some general parameters that are common for repetitive

linear projects: all tasks are performed in all units; set of dependencies are fixed

in all the units, and a task can‟t be performed in any project unit before the same

task is completed in the previous unit. This means that the model doesn‟t take

into consideration assigning more than one resource to more than one unit in an

activity group. In addition, the model solves the multi-objective criteria in a

single objective cost function.

Elbeltagi and ElKassas (2008) developed a cost optimization scheduling model

for repetitive activities projects. The model consists of two modules; a

scheduling module and a cost optimization module. the model is capable to (1)

schedule repetitive activities projects with typical and non-typical repetitive

activities, (2) calculate the total project cost including direct, indirect and

interruption costs and (3) generate optimum or near optimum project schedule.

In their work, the scheduling module consists of two stages; an initial stage and a

refinement stage. In the initial stage, the scheduling module creates a schedule

that respects the logical start time of the activity from the relationship with other

activities, and the start time of the earliest possible available crew. After

scheduling, it calculates the interruptions of each activity. In the refinement

stage, the scheduling module shifts the activities with crew interruptions to

minimize the interruptions in an attempt to maximize the work continuity. The

cost optimization module used the genetic algorithms to determine a near

optimum solution for the project schedule. The variables for the genetic

algorithm optimization module are the construction indices assigned to the

activities.

One notable effort was developed by Duffy et al. (2011) in creating a linear

scheduling technique that takes into consideration the production rate variability

based on working windows. The proposed model is an addition to a previous

research proposed by Yamin and Harmelink (2001).

Understanding that construction crews have variable production rates depending

on the changing conditions of the location of units, an adjustment on the duration

18

of each unit should be calculated depending on the activity performance index in

the corresponding working window.

Working windows are a grid approach to organize the project units based on

their locations and time. Each working window has its variables that affect the

production rate of the activities. Duffy et al. (2011) classified the variables that

affect the production rate into four categories:

 General variables; that are not related to either time or location. For

example; number of workers, construction methods.

 Time variables

 Location variables

 Time-location variables: like weather, and site conditions.

Determining the activity performance index depending on the working window

variables, the model can not obtain the actual production rate of a crew assigned

to an activity as well as determining the time remaining and distance traveled for

each activity in the grid.

The model is very easy and can be implanted in commercial software as it is

easy for the planners to use. However, it optimizes only a single objective

function. Also it only used production rates with linear quantities only (m and

feet), while there are other production rates that will give an error or illogic

calculations like m
3
 and kg etc… Moreover, not all crews for each activity are

affected with the same variables (location, time, general or time-location

variables) in the same way.

2.5 Genetic Algorithm

Through the researches made in the last decade, it was found the need of an

optimization tool to deal with the complex, diverse and conflicting variables and

objectives. Different tools are used to find the optimum solutions for the

repetitive activities project scheduling. These tools varied from dynamic

programming to the use of Artificial Intelligence (AI) models. With the recent

implementations of AI in construction management problems, Genetic

19

Algorithms (GAs) showed great efficiency in searching for global optimum

solutions for the complex problems. (Li and Love 1997, Feng et. al. 1997,

Hegazy and Ayed 1999, Hyari and El-Rayes 2006, Elbeltagi et. al. 2005).

Genetic Algorithms (GAs) are inspired by biological systems‟ improved fitness

through evolution (Holland 1975). GAs form a set of random solutions that

search the solution space for the optimum set of solutions through evaluating the

solutions depending on their fitness.

2.5.1 GAs structure

Genetic Algorithm is a metaheuristic that simulates Darwin's theory of evolution

and the survival of the fittest. The solutions in GA are subject to evolution like in

nature through crossover of inherited genes and mutation. These solutions are

called chromosomes, and each chromosome consists of numbers of genes which

carries the values of the problem‟s decision variables. Genes‟ values can be

binary or real number depending on the problem at hand. The chromosomes‟

length is equal to the number of decision variables in the problem. (Elbeltagi et

al. 2005).

Each chromosome is evaluated to calculate its fitness depending on the objective

function(s). Good chromosomes are the ones that have high fitness value in case

of maximization problems, or low fitness value in case of minimization

problems. Those good chromosomes (solutions) have a higher probability to

create offspring chromosomes that may have better fitness.

The number of chromosomes generated represents the population size. The population

size usually affects both the run time and the precision of the solution. It is determined by

trial and errors. A whole complete cycle of creation of chromosomes, their evaluation

against the fitness function and finally the selection of the fittest, is referred to as one

generation (iteration). The number of generations also affects both the run time and the

precision of the solution, and likewise the population size. The appropriate number of

generation is determined experimentally (Elbeltagi et al. 2005).

20

The first generation of chromosome yield a number of offspring generation. Only good

ones are selected and the rest are discarded. The offspring generation then undergoes

reproduction, crossover and mutation operations in an attempt of enhancing the solution.

This process continues until the termination condition satisfied as shown in Fig. 2.4.

(Elbeltagi et al. 2005).

Selection utilizes roulette wheel to contain all individuals in the population and their slots

in the wheel are sized in proportion to their relative fitness values. When each time a

decision has to be made, a simple spin of the wheel yields the selected candidate. In this

way, the random nature of GAs is maintained and chromosomes with a high degree of

fitness can still have a higher chance to survive in succeeding generations. Once the

selection is made, an exact replica of the string is entered into a mating pooling, waiting

for further genetic operations (Elbeltagi et al. 2005).

Fig 2.4: Flowchart of GAs Procedure

Defining the fitness functions (Objective functions)

Generate initial population

Determining the fitness of each chromosome

Select parents

Crossover

Mutation

Convergence check

Done

21

2.5.2 Genetic operations

Crossover is the main genetic operator in GAs which passes the genes from

two parents chromosomes to two new offspring chromosomes mimicking

marriage in nature. Randomly choosing the parents as the best of the

population will most likely yield to have a better offspring through crossover.

The randomizing of selecting the parents chromosomes is guided by their

fitness; the fittest chromosomes are more likely to be selected as parents for

the next population. However, not all the chromosomes in the population will

be subjected to crossover operation; this is controlled by a crossover

probability (Pc). This crossover probability defines the number of

chromosomes that will undergo crossover (population size X Pc), and the

priority is given to the most fit parents chromosomes. However, the more the

crossover probability index is the more the time it will take to complete the

computations, which might be wasted in discovering undesired solution

space. In the other hand, the less the crossover probability index is the more

probability the solution will be trapped into local optimum region (Elbeltagi

et al. 2005).

Mutation is another genetic operation that helps avoiding local optimum

solutions by suddenly and randomly altering the genes value between its

upper and lower bounds in some of the chromosomes. Although mutation can

be considered a secondary GAs operation, it is essential to ensure discovering

more into the solution space. Moreover, mutation prevents premature

convergence by increasing the population diversity (Elbeltagi et al. 2005).

Like the crossover process, only a number of chromosomes will undergo the

mutation process, these chromosomes are selected depending to the mutation

probability (Pm). Thus, the number of chromosomes that will undergo

mutation is equal to the multiplication of the population size by the mutation

probability (population size X Pm). However, the more the mutation

probability index is the more computation time it will take the processor, and

also the more likely the process yield into losing vital and fit solutions. In the

other hand, the less the mutation probability index, the more likely the

22

problem will face a premature convergence and local optimum solutions

(Elbeltagi et al. 2005). Fig. 2.4 illustrates the overall GA‟s operations, while

Fig. 2.5 illustrates the crossover and mutation process.

Figure 2.5: Crossover and Mutation

2.6 Multi-Objective Optimization

Single objective problems optimization can easily be achieved through one

maximum/minimum objective function. However, for a multi-objective

optimization problem, the functions can be conflicting and diverse. Thus,

there is no single optimum solution, and instead there are a set of optimum

solutions for planner to choose from. Decision makers desire solutions that

simultaneously optimize multiple objectives and obtain an acceptable trade-

off amongst objectives (Dehuri and Cho 2009).

Conventional mathematical optimization techniques such as dynamic

programming and linear programming are not suitable for solving a multi-

objective problem. These techniques solve an optimization problem by one

point (one answer). Also, conventional mathematical techniques can‟t

discover a disconnected feasible region and would be trapped in a local

optimum solution.

To solve a multi-objective optimization problem, different methods have

been used such as; simple aggregation, weighted aggregation and Pareto

optimal solution set.

23

2.6.1 Simple aggregation

Simple aggregation methods converts a mutli-objective problem to a single

objective one by aggregating all objective in a single objective function as

shown in Eq. (2.4)

Min (max): F = f1 + f2 + ….. + fn (2.4)

Optimization using simple aggregation gives a single optimal solution.

However, the relative importance of the objectives is not considered in this

approach. Beside this, one of the objective functions may be, especially if its

value is large, the dominant in the over objective function and the smallest

objectives may be ignored (Elbeltagi et al. 2010).

2.6.2 Weighted aggregation

Weighted aggregation is a modified simple aggregation method, where a

multi-objective problem is transformed into a single objective function by

applying a function operator to the objective vector (Baumgartner et al.

2004). These functions are designed by the decision maker to achieve his/her

preferences. A linear combination of the objective functions sample is shown

below:

Min (max): F = w1f1 + w2f2 + …. + wnfn (2.5)

Where the weights (wi) indicate the relative importance of the function vector

to the decision maker and the sum of weights are equal to unity. The values

of the weights are problematic, and can‟t be determined without prior

information and parameters of the problem at hand.

This method is simple, and achieves an optimum solution for the planner

with much less programming effort. Also, achieve the solution that is more

likely to be preferred to the planner if the weights are entered properly.

24

However, both of the above mentioned multi-objective optimization methods

have several drawbacks (Elbeltagi et al. 2010):

 Only a single optimal solution can be obtained due to the use of a

single objective function.

 Trade-offs between objectives can‟t be evaluated in aggregation

objective functions

 For weighted aggregation, the solution is highly dependent on the

weights, and any lack of information may lead to improper weights

and undesirable optimal solution.

 If the feasible region is discontinuous, these methods will be trapped

in local optimum solution.

 Objectives are usually of different measuring units which may give a

vague solution.

2.6.3 Pareto Front

The Pareto Front concept is to find a set of optimum solutions so the decision

maker can choose from the most desirable. A solution belongs to a Pareto set

(set of non-dominated solutions) if there is no other solution that can improve

at least one of the objectives without degradation of any other objective.

Using Pareto Front sets has several advantages; (1) it gives the decision

maker a set of optimum and desirable solutions to choose from, (2) unlike the

other methods, it doesn‟t ignore the trade-off between objective functions, (3)

it discovers more of the solution space with respect to the objective functions

which avoids local optimum solutions, and (4) it can discover a

discontinuous feasible solution space.

Figure 2.6 shows the concept of Pareto optimality considering two

minimization objective functions; duration and cost. All the solutions in the

feasible region space - marked by dashed line - satisfy the problem

constraints. But only the Pareto optimum solutions are on the Pareto Front

25

marked by solid line in the left lower corner. The set of Pareto optimal

solutions are called Pareto Front.

To measure the fitness of solutions in any GAs iteration, the Pareto Front

Sorting may be used efficiently (Fig. 2.7). Pareto Front sorting sorts different

feasible solutions into fronts that determine their ranks. In Pareto Front

sorting, the set of non-dominated solutions defining the first Pareto Front is

identified and assigned a rank of unity. This set is then isolated and the other

solutions are compared to determine their non-dominated solutions and this

new set is ranked by two. The sorting process is repeated until the entire

population is ranked.

The rank obtained from Pareto Front sorting helps to determine the fitness of

the solution. The fitness of each solution i is calculated by Eq. (2.6)

(Elbeltagi et al. 2010).

Fitnessi = 1 / ranki (2.6)

Where fitnessi and ranki are the new fitness value and rank number for the

solution i.

Duration

Cost

Fig. 2.6: Pareto Front

Feasible Region

Pareto Front

26

2.7 Summery and Conclusions

This chapter presented a review of the repetitive activities projects and their

need for a scheduling technique that suits their nature. The use of traditional

network techniques has been presented and their drawbacks have been

annotated in this chapter. The use of line of balance scheduling technique is

also presented along with some of the latest researches made in this area to

optimize the use of line of balance combined with CPM technique. The use

of genetic algorithms has been noticed to be used efficiently in the

optimization of the repetitive activities project scheduling. However, the

usages of multi-objective evaluation of solutions have been needed.

Duration

Cost

Fig 2.7: Pareto Front Sorting

First Front

Third Front

Second Front

Fourth Front

27

CHAPTER 3

MULTI-OBJECTIVIES REPTIVITE ACTIVITIES PROJECT

SCHEDULING MODEL DEVELOPMENT

3.1 Introduction

This chapter presents the development of a multi-objective scheduling model for

repetitive projects. The proposed model consists of two modules; scheduling and

optimization modules. In this chapter, an explanation of the proposed model is

presented. The mathematical formulation and logic of the scheduling module, as

well as the optimization module are explained. The objectives of the model and

factors are also shown.

3.2 Model Overview

The proposed model comprises of a scheduling and optimization modules that

takes into consideration several factors that affect the schedule. These factors

are; assigned construction method, duration, cost, work continuity and delivery

dates of units. On meeting the delivery dates of units, the total project duration

might decrease, however it might as well create interruptions and affect the work

continuity as well as increasing the cost. Also, decreasing project cost might

produce a slow progress rate and increase the total project duration. In an

attempt to overcome such problems, a new model is proposed to assign

appropriate construction methods to different activities to achieve the following

objectives:

 Minimization of total project duration.

 Minimization of total project cost.

 Minimization of total project interruptions (maximum work

continuity).

 Minimization of units‟ delivery dates delays.

The scheduling module of the proposed model is a resource driven module that

develops a schedule for a repetitive activity project while respecting logical

28

relationship constraints as well as other practical factors taken into consideration

as follow:

 The ability to have different quantities to be undertaken at each

unit for the same activity.

 Each activity type can have different construction methods; each

construction method has its own production rate and direct cost.

 The ability to start two or more units of the same activity type at

the same time using different construction methods.

The optimization module utilizes a multi-objective genetic algorithm through

assigning the different construction methods to the project activities.

3.3 Model Development

The proposed model, as mentioned before, consists of scheduling and

optimization module. In the scheduling model, each activity (i) can have

different number of construction methods (m) that can be assigned to the activity

in any unit (j). These construction methods are associated with different direct

costs and production rates, thus creating different activity durations when

assigning them to different units. Accordingly, by assigning different

combination of construction methods to different activities‟ units, different

schedules are developed.

3.3.1 Scheduling Module

The scheduling module consists of four coherent stages that aim to create a

schedule depending on the assigned crews‟ to the different activities in each unit.

The scheduling module also calculates:

 The total project duration

 The total project cost

 The total project crews‟ interruptions

 The total units‟ delivery delays

29

1) calculating the activities‟ scheduling dates

This step determines the activity‟s start (Si,j) and finish (Fi,j) dates

depending on the assigned construction method and the logical

relationship with preceding activities.

The start date (Si,j) is obtained using Eq. 3.1 by determining the latest of

both logical relationship start date (SLi,j), calculated from a regular CPM

calculations in Eq. 3.2, and the earliest possible start date of the crew

(SCi,j).

Si,j = Max [SLi,j , SCij] (3.1)

SLi,j = Fi-1, j ± lag (3.2)

In figure 3.1, two activities are carried out using two crews. Crew one is

assigned for activity two in the third unit. The start time of this activity

(S2,3) will be the latest of the predecessor finish date, or the logical start

time (SL2,3) and the crew start time (SC2,3). Although the preceding has

finished early, the activity will not start until the assigned crew is

available to work on the current activity.

Time

 Crew 2

 Crew 1

 Crew 2

Unit

1

2

3

4

8

7

6

5

Fig. 3.1: Activities‟ Start time

 Crew 1

Activity’s start date (S2,3) is the latest of
logical start time (SL2,3) and crew start time

(SC2,3)

 Crew 1

 Crew 1

 Crew 2

 Crew
2

Legend:
Activity 1
Activity 2

30

The crew‟s earliest possible start (SCi,j) is obtained through determining

the previous unit (PU) finish date (Fi,PU) that the crew have undertook, in

addition to its corresponding transportation duration (TDPU,j) from the

previous unit (PU) to the current one, the crew‟s earliest possible start

date can be obtained using Eq. 3.3.

SCi,j = Fi,PU + TDm Pu,j (3.3)

Depending on the construction method, assigned to activity, production

rate and the quantities of work to be undertaken, the duration of the

activity can be calculate using Eq. 3.4.

Di,j = Qi,j / Pm,i (3.4)

Where Di,j is the duration of activity (i) in unit (j). Qi,j, is the quantity of

work of activity (i) in unit (j), Pm,i is the production rate for construction

method crew (m) that can be assigned to activity (i).

The finish date is calculated by adding the duration of the activity to its

start date as shown in Eq. 3.5.

Fi,j = [Si,j + Di,j] (3.5)

2) detection of the previous unit

Determination of the previous unit that the construction method‟s crew

has been working at before the current one aids the module to determine

the transportation duration (TD) and cost (TC) for the assigned crew. This

step objective is to determine the previous unit (PU), if it exists.

Detection of the previous unit is obtained through the following two

steps:

a. determining if the assigned crew have been working at any unit

before the current one using a Crew Start Check index (CSCm)

b. If the previous step equal “Started” then by checking backward

through the preceding units determining their finish dates (Fi,j) and

compare them with the current unit‟s crew‟s earliest possible start

31

date (SCi,j), if the two dates are equal then the preceding unit will

be the previous unit (PU) that the crew has been working at.

These steps are illustrated in a flow chart in the following Fig. 3.2.

Fig. 3.2: Determination of Previous Unit (PU)

3) Transportation duration and cost

Transportation from one unit to the other is a crucial element in

scheduling a repetitive activity project. Thus, it must be

calculated according to the assigned construction method‟s crew

type (m) and the previous unit (PU) it worked at before, for each

two units have different distances, so there would be different

transportation duration (TD) and cost (TC).

No

Yes

Yes

X = j

CSCm =

Started

SCi,j = Fi,x

PU = X

X <=1

End

CSCm = Started

PU = j

X = X - 1

No

No

Yes

32

The transportation duration (Fig. 3.2) of any crew is obtained

through Eq. 3.6 by dividing the distance travelled between the

two units by the average speed of the crew.

TDm PU,j = DS PU,j / SPm (3.6)

Where, m is the construction method‟s crew index, j is the current unit, (PU) is

the previous unit, (DS) is the distance to be travelled by the crew from one unit to

the other and (SP) is the average speed of the construction method‟s crew (m).

The transportation cost (TCm PU,j) of any crew (m) from one unit (PU) to

the other (j) is obtained through multiplying the transportation distance

(TS) between the two units by the cost of transportation per unit distance

as shown in Eq. 3.7.

TCm PU,j = TS PU,j * CTm (3.7)

Where, (m) is the construction method‟s crew index, (j) is the

current unit, (PU) is the previous unit and (CT) is the cost of

transportation of the construction method‟s crew (m) per unit

distance.

Time

 Crew 2

 Crew 1

 Crew
2

Unit

1

2

3

4

8

7

6

5

Fig. 3.3: Crews‟ Start Time

 Crew 1

Transportation duration (TD1 1,3)

from unit one to three for crew 1

33

4) Adjusting the crew‟s available start dates in the upcoming units

After scheduling an activity (i) in unit (j) using the assigned

construction method‟s crew (m), the earliest possible start dates

for the following units of the same activity using the same

construction method should be adjusted.

The adjustment is obtained through checking the upcoming units of the

same activity type and changing their earliest possible start date (SCi,j) for

the same construction method‟s crew (m) to the finish date of the current

activity (Fi,j) as shown in Fig. 3.4.

Fig. 3.4: Adjusting The Crew‟s Earliest Possible Start Time for the Next Units

At this point, the scheduling module have created a practical plan that takes into

consideration the production rate of the assigned construction method‟s crew, its

transportation duration and cost, detection of the previous unit that crew have

been undertaking and changing the crew‟s earliest possible dates for the same

activity in the next units.

The scheduling module also calculates:

 Total project duration

 Total project cost

 Total project crews‟ interruptions

 Total units‟ delivery delays

Yes

No

X = I + 1

SCi,x = Fi,j

X>= I

End

X = X + 1

34

1) Total project duration

The total project duration equals to the maximum finish date of the last

activity in each unit. This can be represented as in Eq. 3.8:

TPD = Max [Fi,J] (3.8)

 Where, TPD is the total project duration.

2) Total project cost

The total project cost consists of three parts: direct cost, indirect cost and

transportation cost. Both the direct and transportation cost are

construction method‟s dependent, while the indirect cost is a duration

dependent cost as shown in Eq. 3.9.

TPC = ∑[CCm,i,j + TCmPU,j] + TPD * IC (3.9)

 Where, (TPC) is the total project cost, (CC) is the construction

methods (m) cost assigned to activity (i) in unit (j), (IC) is the indirect

cost index per day.

3) Total project interruptions

Interruptions may occur due to the difference between the logical

start time (SLi,j) and the crew‟s earliest possible start date (SCi,j).

It needs to be calculated and minimized (through the optimization

module) to increase the utilization of resources.

Interruptions are only found when the resources are idle, and not

being used or undertaking activities. This may happen as the

logical start date is greater than the crew‟s earliest possible start

date. The module first check if there would be interruptions in the

first place, and then calculates the interruptions as shown in Eq.

3.10.

If SLi,j > SCij then Interi,j = [SLi,j - SCij] (3.10)

Where Interi,j is the interruption in activity (i) at unit (j).

The total project interruption is calculated using Eq. 3.11.

TPI = ∑ Interi,j (3.11)

 Where, TPI is the total project interruptions.

35

4) Total project units delivery delays

Meeting Delivery dates of project‟s units is an important key in a

successful repetitive construction project. Thus, it is important to

calculate any units‟ delivery delays.

First, the module check for each activity if there‟s a required

finish date. If the check is true, then it checks if there‟s any

delivery delay and calculates it as shown in Fig. 3.5.

Fig. 3.5: Calculating Unit‟s Delivery Dates Delays

Where, ADDi,.j is the activity (i) at unit (j) required delivery date, DDi,.j is

the delivery delay for activity (i) in unit (j).

The total project delivery delay is then calculated through Eq.

3.12.

TPDD = ∑ [DDi,.j] (3.12)

A flow chart showing an over view on the scheduling module is presented Fig.

3.6.

Yes

End

DDi,.j = [Fi,.j - ADDi,.j]

Yes

No

ADDi,.j ≠ NA

No

ADDi,.j < Fi,.i

36

Yes

Yes

No

i = 1, j = 1

SLi,j = Fi-1,j

m = y (assigned)

No

CCSm=

NotUSed

Yes

K = j – I

Fi,K = SCi,j
Yes

K < 1

No

TDmPU,j = DS PU,j / SPm
TCm PU,j = TS PU,j * CTm

SCi,j = Fi,PU + TDPU,j

d
c

CSCm = Started

PU = K

SLi,j > SCi,j

Interi,j = [SLi,j - SCi,j]

Sij = Max [SLi,j , SCi,j]

No

Fi,j = [Si,j + Di,j]

X = I + 1

a

Fig. 3.6: Scheduling Module Overview

37

Fig. 3.6: Scheduling Module Overview (Continued)

Yes

Yes

No

X >= I

SCi,X = Fi,j
X = X + 1

a

c
d

j = j + 1

Yes

No

ADDi,j ≠ NA

DDi,j = [Fi,j - ADDi,j]

Fi,j > ADDi,j

No

j > J

i = i + 1

i > I
No

TPD = Max [FI,J]

TPC = ∑[ACCm,i,j + TCmPU,j] + TPD * IC

TPI= ∑ Interi,j

TPDD = ∑ DDi,j

j = 1

38

3.3.2 Multi-Objective Optimization Module

The proposed scheduling module formulation is suitable for generating repetitive

activities projects‟ schedules depending on the indices of the construction

methods assigned to the activities in the different units. However, due to the

great number of feasible solutions (schedules) depending on the combinations of

construction methods assigned to different activities each has its own outputs

(duration, cost, interruptions and units delivery delays), An optimization module

is necessary to select the optimum set of schedules for the project manager to

choose from. The optimization module as such requires identifying the objective

function, the optimization variables and the optimization constraints.

3.3.2.1 Objective functions

The optimization of the proposed model is carried out through a four objective

functions; (1) minimize total project duration, (2) minimize total project cost, (3)

minimize total project interruptions, and (4) minimize total project units‟

delivery delays. These objective functions are all calculated from the scheduling

module for each schedule as mentioned in the previous section. The solutions

(schedules) are evaluated through multiple dimensions, multi-objective

optimization functions as given in Eq. 3.13.

Min. Total Project Duration: FI,J

Min. Total Project Cost: ∑[ACCm,i,j + TCmPU,j] + TPD * IC (3.13)

Min. Total Project Interruptions: ∑ Interi,j

Min. Total Project‟s Units‟ Delivery Dates Delays: ∑ DDi,j

In order to evaluate the solutions (schedules) based on the four objectives, the

Pareto-Front sorting concept (Fig. 3.7) is used. The Pareto-Front sorting process

starts by identifying a set of non-dominated solutions, which will be ranked as

the first Pareto Front. Then the process continues to rank the other schedules to

the second Pareto Front and so on till all the solutions are ranked to their fronts.

Consequently, the fitness of any solution equals the inverse of its rank (Pareto

Front index) (Beradi et al. 2009, Li and Zhang 2009, Elbeltagi et al. 2010).

39

A solution (schedule) with a lower-numbered rank is assigned a higher fitness

than that for a solution with a higher-numbered rank. Accordingly, for a

minimization problem, the fitness of each solution i is calculated by Eq. 3.14

(Elbeltagi et. al. 2010).

Fitnessi = 1 / ranki (3.14)

Where fitnessi and ranki are the fitness value and rank number for the solution

i.

The main goal of the multi-objective optimization process is to achieve a

continuous improvement of the solutions quality within successive iterations.

 f1

f2

Fig. 3.7: Pareto Front Sorting

First Front

Third Front

Second Front

Fourth Front

 f2

40

3.3.2.2 Optimization variables

As earlier mentioned, the independent variables in the proposed model are the

construction methods assigned to each activity. Each construction method‟s crew

has its own production rate, direct cost, and available start date. The number of

variables for each solution (schedule) is I * J, where I is the number of activities

types and J is the number of units. For example, a project consisting of five

activities repeated in four units will produce twenty variables. Assuming a four

construction methods available for each activity type will result to a solution

space of 4
20

 possible schedules (four construction methods assigned to the

twenty activities). Therefore, a manual optimization attempt for a small

repetitive activity construction project will result to an enormous number of

solutions and very tedious work to determine the optimum solution due to the

highly dynamic nature of the model. Optimization variables‟ values are

represented in genetic algorithm by the genes‟ values, and the space where the

gene is found is the activity, and the chromosome length is the total number of

genes (decision variables) as shown in Fig. 3.8.

Fig. 3.8: Chromosome Representation Example

Chromosome

Activity
 Gene

value

41

3.3.2.3 Optimization constraints

Three constraints have been introduced to the model to keep the solutions

(schedules) feasible, these constraints are as follows:

1. The construction methods‟ indices are limited to the positive integer

number of methods available to each activity.

2. The actual number of crews used in each activity is limited to the number

of repetitive units, since this model assumes that only one crew works in a

single unit.

3. Precedence constraint; the start time of an activity must be greater than or

equal to the finish date of the predecessor.

3.3.2.4 Convergence criterion

In order to determine the convergence of the optimization process, the following

mechanism is proposed. After sorting all solutions in generation t, the

normalized Euclidean norm (NEN) of the non-dominated solutions (First Pareto

Front) is calculated to determine the nearest solution to the origin. For each non-

dominated solution k in generation t, the NEN value is calculated using Eq. 3.15

and Fig. 3.9 for a two criteria optimization problem (Sanad 2011).

2

max

2

max

2

max

2

max

TPDD

TPDD

TPI

TPI

TPD

TPD

TPC

TPC
NEN

kkkkt

k
 (3.15)

Where: TPCk, TPDk, TPIk, and TPDDk are the cost, duration, interruption, and

units delivery dates delays objective function values of solution k respectively.

TPCmax, TPDmax, TPImax, and TPDDmax are the maximum cost objective, the

maximum duration objective, the maximum interruption objective, and the

maximum delivery dates delay objective in the non-dominated solutions

respectively.

42

Fig. 3.9: Normalized Euclidean Norm for Non-Dominated Solutions (Sanad 2011)

For each generation, the nearest non-dominated solution to the origin (the non-

dominated solution with the minimum NEN) is already identified. Then, the

difference between the nearest solution of the current generation and the nearest

solution of the previous generation (
1t

t
Diff

) is calculated using Eq. 3.16 (Sanad

2011).

1

1

1

1

1

1

1

1

1

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

nt

t

TPDD

TPDDTPDD

TPI

TPITPI

TPD

TPDTPD

TPC

TPCTPC
Diff (3.16)

where: t

n
TPC , t

n
TPD , t

n
TPI , and t

n
TPDD are the cost, duration, interruption, and

delivery dates delays objective function values, respectively, of the nearest

solution in generation t. 1t

n
TPC , 1t

n
TPD , 1t

n
TPI , and 1t

n
TPDD are the cost,

duration, interruption, and delivery dates delays objective function values,

respectively, of the nearest solution in the previous generation t-1.

Convergence of the evolutionary process occurs when the
1t

t
Diff

 value has not

changed or changes by not more than 1% for a consecutive ten generations.

An overview flow chart of the proposed multi-objective model is presented in

Fig. 3.10.

Duration

TPCmax

T
P

D

m
a

x

TPDk

T
P

C
k

NENk
C

o
st

43

Fig. 3.10: Multi-Objective Optimization Module

No

Yes

Yes

Start

Initialize Population

Schedule

Evaluation and Ranking

Select Parents

Crossover

Create Random Number

Rnd# <

Crossover

Index

Mutation

Offspring

pool =

population

Schedule all new Offspring

Evaluation and Ranking

Converge

nce

End

Add To Offspring Pool

Yes

No

No

44

3.4 Summary and Conclusions

The development of a multi-objective scheduling and optimization model for a

repetitive activity project has been presented in this chapter. The scheduling

module takes into consideration the construction methods‟ crew assigned to each

activity and their corresponding production rates, direct costs, transportation

durations and costs from one unit to another. The scheduling module handles

multi construction methods assignment strategy. The module also calculates the

project‟s total project duration, the project‟s total cost including the indirect cost,

the project‟s total crews‟ interruptions and the project‟s total units‟ delivery

dates delays.

The multi-objective optimization module selects combinations of the appropriate

construction methods assigned to the different activities to determine the

optimum set of schedules through a four multi-dimensional objective functions.

45

CHAPTER 4

MODEL IMPLEMENTATION

4.1 Introduction

In this chapter, the implementation of the proposed model is presented along

with an example application of repetitive units construction project to validate

the model and show its capabilities in scheduling repetitive activities projects.

The optimization module using genetic algorithm will also be implemented to

determine the optimum sets of plans considering the number of construction

methods for each activity type, construction methods‟ costs, production rate,

project‟s indirect cost, interruptions of working construction methods‟ crews,

and delays in units‟ delivery dates.

4.2 Implementation Media

The proposed model is implemented on a commercially available and widely

spread scheduling software (MS Project 2007) for its ease of use and simple

interface. Also, for its wide use by construction practitioners. The software

provides the planner with simple data entry of the activities; dependencies,

relationships, duration…etc. The software performs CPM calculations on the

project as well as representing the project schedule in bar chart and network

diagrams. MS Project, also, allows modeling more complex algorithms by

implementing the model through Visual Basic Application macro tool (VBA

macro). VBA allows dynamically altering the schedule depending on the inputs

given to the model. The implementation for scheduling and optimizing repetitive

activities projects will follow the same steps as the formulation explained in

Chapter three.

46

4.3 Implementation Details

The implementation of the model on MS Project (2007) starts by creating a

regular construction plan through data entry of the activities – repeated

according to the number of repeated units – and their relationships through the

same unit along with their corresponding available construction methods‟

crews‟ duration, direct costs as well as the required delivery date of the unit if

needed. An example of five activities repeated through five different units is

presented in this and the following sections to illustrate the implementation of

the model.

As shown in Figs. 4.1 and 4.2, a data entry of the construction repetitive project

is completed through the four units with their dependencies and relationships.

Each of the five repetitive activities can have up to four different construction

methods. Each construction method has its own duration to undertake the

activity as well as its direct cost and the available start time to be assigned to

this activity. The required units‟ delivery dates are also entered in their

corresponding column. For the VBA implementation purpose, any unavailable

data will be entered as 0 days, NA, and $0 for no construction method‟s

duration, start time, and direct cost, respectively. For example, the first activity

- excavation1 - has only one available construction method, thus the duration

for the available three other methods are 999days, their corresponding start time

are NA, and their costs are $0. As well as the delivery date of this activity is NA

as there is no required delivery date.

The data entered are then used by the MS Project regular CPM calculation to

calculate the project duration. On starting the proposed model implemented on

VBA macros, the user will be asked to enter six inputs that start up both the

scheduling and optimization modules as shown in Fig. 4.3:

 Number of activities

 Number of Units

 Project indirect cost per day

 Initial population size

47

 Crossover probability rate

 Mutation probability rate

These data entered aids the VBA macros to create a data base for the proposed

repetitive activity project in addition to guidance for the GA‟s optimization

process. The VBA macros then starts to create an initial random solutions

(chromosomes) depending to the population size desired, schedule these

solutions, evaluate them and starts optimizing them through evolution process

described in chapter three. VBA code of MS Project is provided in Appendix I.

Fig. 4.1: Model Implementation Process

Data Entry on MS Project

Activity Data:
 Activity name
 Predecessors and

relationship
 Start date for the first

activity
 Delivery date if required

Construction Methods Data:

 Corresponding duration for
each activity

 Corresponding cost for
each activity

Start Scheduling/Optimization
Model on VBA macros

Project Optimization Data
Entry:

 Number of activities
 Number of repetitive units
 Indirect cost per day
 Population size
 Crossover rate
 Mutation rate

 Scheduling Module

Optimization Module

Output Pareto Optimum Solutions

48

C

o
n

st
.

M
et

h
o

d
4

C
o

st

$
0

.0
0

$
0

.0
0

$
0

.0
0

$
3

,7
0

0
.0

0

$
0

.0
0

$
0

.0
0

$
0

.0
0

$
0

.0
0

$
3

,5
0

0
.0

0

$
0

.0
0

C
o

n
st

.

M
et

h
o

d
3

C
o

st

$
0

.0
0

$
2

,5
0

0
.0

0

$
4

,0
0

0
.0

0

$
3

,9
0

0
.0

0

$
0

.0
0

$
0

.0
0

$
3

,0
0

0
.0

0

$
3

,9
0

0
.0

0

$
3

,6
0

0
.0

0

$
0

.0
0

C
o

n
st

.

M
et

h
o

d
2

C
o

st

$
0

.0
0

$
3

,0
0

0
.0

0

$
3

,9
0

0
.0

0

$
4

,0
0

0
.0

0

$
0

.0
0

$
0

.0
0

$
3

,1
0

0
.0

0

$
3

,7
5

0
.0

0

$
3

,8
0

0
.0

0

$
6

,0
0

0
.0

0

C
o

n
st

.

M
et

h
o

d
1

C
o

st

$
1

,0
0

0
.0

0

$
3

,2
0

0
.0

0

$
3

,7
0

0
.0

0

$
4

,5
0

0
.0

0

$
0

.0
0

$
1

,2
0

0
.0

0

$
3

,4
0

0
.0

0

$
3

,5
0

0
.0

0

$
4

,3
0

0
.0

0

$
8

,0
0

0
.0

0

D
el

iv
er

y

D
at

e

N
A

N
A

N
A

N
A

3
/1

5
/2

0
1

1

N
A

N
A

N
A

N
A

4
/2

2
/2

0
1

1

P
re

d
.

 1

2

3

4

 6

7

8

9

F
in

is
h

1
/1

9
/2

0
1

1

2
/3

/2
0
1

1

3
/2

/2
0
1

1

3
/1

4
/2

0
1

1

3
/1

4
/2

0
1

1

1
/2

4
/2

0
1

1

2
/9

/2
0
1

1

2
/2

4
/2

0
1

1

3
/1

5
/2

0
1

1

3
/2

2
/2

0
1

1

S
ta

rt
4

N
A

N
A

N
A

1
/3

/2
0
1

1

N
A

N
A

N
A

N
A

1
/3

/2
0
1

1

N
A

S
ta

rt
3

N
A

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

N
A

N
A

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

N
A

S
ta

rt
2

N
A

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

N
A

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

S
ta

rt
1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

1
/3

/2
0
1

1

S
ta

rt

1
/3

/2
0
1

1

1
/4

/2
0
1

1

1
/5

/2
0
1

1

1
/6

/2
0
1

1

1
/7

/2
0
1

1

1
/8

/2
0
1

1

1
/9

/2
0
1

1

1
/1

0
/2

0
1

1

1
/1

1
/2

0
1

1

1
/1

2
/2

0
1

1

C
o

n
st

.

M
et

h
o

d

4
 (

d
ay

s)

9
9

9

9
9

9

9
9

9

1
5

.0
2

9
9

9

9
9

9

9
9

9

9
9

9

1
6

.2
5

9
9

9

C
o

n
st

.

M
et

h
o

d

3
 (

d
ay

s)

9
9

9

1
9

.1
6

1
2

.9
5

1
2

.0
2

9
9

9

9
9

9

2
0

1
0

.7
1

1
3

.0
1

9
9

9

C
o

n
st

.

M
et

h
o

d

2
 (

d
ay

s)

9
9

9

1
4

.3
7

1
5

.1
2

1
0

.0
1

0

9
9

9

1
5

1
2

.5

1
0

.8
4

1
7

.7
8

C
o

n
st

.

M
et

h
o

d

1
 (

d
ay

s)

1
2

.5

1
1

.5

1
8

.1
5

8
.5

9

0

1
5

.6
3

1
2

1
0

.7
1

1
3

.0
1

4
.8

D
u

ra
ti

o

n
 (

d
ay

s)

1
2

.5

1
1

.5

1
8

.1
5

8
.5

9

0

1
5

.6
3

1
2

1
0

.7
1

1
3

.0
1

4
.8

T
as

k
 N

am
e

E
x

ca
v

at
io

n
1

F
o

u
n

d
at

io
n

1

C
o

lu
m

n
s1

B
ea

m
s1

S
la

b
s1

E
x

ca
v

at
io

n
2

F
o

u
n

d
at

io
n

2

C
o

lu
m

n
s2

B
ea

m
s2

S
la

b
s2

ID

1

2

3

4

5

6

7

8

9

1
0

F
ig

.
4

.2
:

P
ro

je
ct

 D
at

a
E

n
tr

y

a
)

A
ct

iv
it

ie
s‟

 a
n

d
 a

v
ai

la
b
le

 c
o
n

st
ru

ct
io

n
 m

et
h

o
d

s‟
 d

u
ra

ti
o
n
s

b
)

C
o
n

st
ru

ct
io

n
 m

et
h
o

d
s‟

 s
ta

rt
 d

at
es

c)

C
o
n

st
ru

ct
io

n
 m

et
h
o

d
s‟

 c
o
st

s
an

d
 u

n
it

s
d

el
iv

er
y
 d

at
es

 (
c
)

 (

b
)

(a
)

49

Fig. 4.3: Start up of Scheduling and Optimization modules

4.4 Example Application and Validation

In order to validate the proposed model and demonstrate its capabilities in

scheduling and optimizing multi-objective repetitive activities projects, an

example of a three span concrete bridge drawn from literature (Hyari and El-

Rayes 2006) is analyzed. The project consists of five activities; excavation,

foundations, columns, beams and slabs that are repeated in four sections of the

project which would generate a solution alternatives of 4
20

 possible schedule.

The precedence relationships among these five successive activities are finish to

start with no lag time as shown in Table 4.1.

Table 4.1: The Example Application Activities and Predecessors.

ID Activity Description Predecessor

1 Excavation -

2 Foundation 1

3 Column 2

4 Beam 3

5 Slab 4

The activities‟ quantity of the example project in each unit is presented in Table

4.2 below. For example, the quantities of foundation for units 1, 2, 3 and 4 are

1032, 1077, 943 and 898 m
3

respectively.

50

Table 4.2: Quantities of Activity in Each Unit

Repetitive Activities

Repetitive
units (j)

Excavations
Quantities
(Qij)
m

3

Foundations
Quantities
(Qij)
m

3

Columns
Quantities
(Qij)
m

3

Beams
Quantities
(Qij)
m

3

Slabs
Quantities
(Qij)
m

3

1 1147 1032 104 85 0

2 1434 1077 86 92 138

3 994 943 129 101 114

4 1529 898 100 80 145

The module takes into account up to four construction methods per activity

type, and as provided from the example. Table 4.3 shows the given production

rate for each construction method while Table 4.4 shows the duration needed

for each construction method to undertake each activity in the four units

depending on their quantities.

Table 4.3: Construction Methods Production Rates

Activity

Description

Construction

Method 1

(m
3
/day)

Construction

Method 2

(m
3
/day)

Construction

Method 3

(m
3
/day)

Construction

Method 4

(m
3
/day)

Excavation 91.75 NA NA NA

Foundation 89.77 71.81 53.86 NA

Column 5.73 6.88 8.03 NA

Beam 9.9 8.49 7.07 5.66

Slab 28.73 7.76 NA NA

51

T
a
b

le
 4

.4
:

C
o
n
st

ru
ct

io
n
 M

et
h
o
d
s‟

 D
u
ra

ti
o
n
 i

n
 E

ac
h
 U

n
it

S
la

b

0

4
.8

3
.9

7

5
.0

5

0

1
7

.7
8

1
4

.6
9

1
8

.6
9

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

C
o
lu

m
n

1
8

.1
5

1
5

.0
1

2
2

.5
1

1
7

.4
5

1
5

.1
2

1
2

.5

1
8

.7
5

1
4

.5
3

1
2

.9
5

1
0

.7
1

1
6

.0
6

N
A

N
A

N
A

N
A

N
A

B
ea

m

8
.5

9

9
.2

9

1
0

.0
2

8
.0

8

1
0

.0
1

1
0

.8
4

1
1

.9

9
.4

2

1
2

.0
2

1
3

.0
1

1
4

.2
9

1
1

.3
2

1
5

.0
2

1
6

.2
5

1
7

.8
4

1
4

.1
3

F
o

u
n

d
a
ti

o
n

1
1

.5

1
2

1
0

.5

1
0

1
4

.3
7

1
5

1
3

.1
3

1
2

.5
1

1
9

.1
6

2
0

1
7

.5
1

1
6

.6
7

N
A

N
A

N
A

N
A

E
x
ca

v
a

ti
o

n

1
2

.5

1
5

.6
3

1
0

.8
3

1
6

.6
6

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

A
ct

iv
it

y
 D

es
cr

ip
ti

o
n

U
n

it

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

C
o
n

st
r
u

ct
io

n

M
et

h
o
d

C
o

n
st

ru
ct

io
n

M
et

h
o

d
 1

D
u

ra
ti

o
n

(d
a

y
s)

C
o

n
st

ru
ct

io
n

M
et

h
o

d
 2

D
u

ra
ti

o
n

(d
a

y
s)

C
o

n
st

ru
ct

io
n

M
et

h
o

d
 3

D
u

ra
ti

o
n

(d
a

y
s)

C
o

n
st

ru
ct

io
n

M
et

h
o

d
 4

D
u

ra
ti

o
n

(d
a

y
s)

52

All the data of this example are entered to MS Project plan as earlier stated in

section 4.3. The example drawn from the literature doesn‟t take into

consideration the transportation duration of construction methods‟ crews, also it

has only two objectives; (1) minimize project duration and (2) minimize crews‟

interruptions. For this reason, through the first trial of validation, construction

methods‟ crews‟ transportation durations and costs as well as two of the

proposed objectives; (1) minimize total project cost and (2) minimize the units‟

delivery delays, are neglected and will be studied in the later sections to

compare the results obtained with the results from the literature.

4.4.1 Scheduling module

By pressing the start button, the developed system reads the data entered and

then determines the maximum number of construction methods available for

each activity. Then, it reads the duration of each activity in respect with the

available construction methods and their corresponding costs, the delivery dates

required for each activity (if any).

The model, then randomly creates the initial set of chromosomes depending on

the population size as predefined by the user. The chromosome length equals

the multiplication of number of activities by the number of units. In the current

example, the chromosomes length equals to twenty genes.

Each gene value (variable) is the index of the construction method assigned to

an activity. These variables are limited to the maximum number of construction

methods available for this activity type. For example, the gene number 2 –

foundation in the first unit – can have a value from one to three, as there are up

to three different construction methods available for this activity type.

Upon creating a given chromosome the scheduling module calculates the total

project duration proposed by this chromosome, depending on the genes values

(construction method assigned to the activities), as well as the total project

interruption.

53

The scheduling module - as presented in Appendix I - starts by determining the

construction method index (gene value), then determines if the assigned

construction method‟s crew has been assigned to any other units before the

current one so as to determine the previous unit and the corresponding

transportation duration and cost. The module then calculates the assigned crew

available start date, and compares it with the logical start date to determine the

activity‟s start date and crew‟s interruption, if any.

After scheduling an activity, the module compares the finish date with the

required delivery date of the activity, and calculate the delivery date delay if

any. Then the module adjusts the assigned construction method‟s crew available

start date for the next units to the finish date of the current activity. The

scheduling module finishes its role after calculating the chromosome‟s total

project duration and total project interruption as well as total project delivery

delays and total project cost. However the last two criteria are neglected for

comparison purposes with the example drawn from the literature.

4.4.2 Optimization module

The optimization module starts by evaluating the chromosomes depending on

their results achieved from the scheduling module through sorting these

chromosomes into Pareto Fronts from 1 to n, where n is the number of fronts

created and 1 is the highest rank. Each chromosome is then given its fitness by

calculating the inverse of the rank as mentioned in Chapter three.

To calculate the selection probability of each chromosome, the optimization

module first calculates the relative fitness of each chromosome using Eq. 4.1.

 () () ∑ ()

 (4.1)

Where (i) is the number of chromosome.

The relative fitness of each chromosome is then cumulatively added through the

whole population to obtain the selection probability for each chromosome as

illustrated in Fig. 4.4, creating higher probability for the chromosomes with the

54

higher fitness. The selection of the parents chromosomes are carried out using a

“Roulette Wheel” selection criteria, where a series of randomly created number

are compared with the parent chromosomes‟ selection probabilities to introduce

them to GAs operations or else will be inserted to upcoming generation as they

are.

Fig. 4.4: Selection Probability Calculation Process

4.4.3 Analysis of results

Sample solutions of the proposed model results are analyzed and compared to

the solutions drawn from the literature. The population proposed is 200

chromosomes and with a crossover and mutation probability indices of 0.85 and

0.2 respectively. A sample of the Pareto Front solutions (schedules) are shown

in Table 4.5.

i = 1

Fitness(i) = 1 / Rank(i)

i = I

i = i + 1

i = 1

 () () ∑ ()

i = I

i = i + 1

i = 1

 () () ∑ ()

i = I

i = i + 1

End

55

Table 4.5: Assigned Construction Methods‟ Indices for Each Activity

 Schedule1 Schedule2 Schedule3 Schedule4 Schedule5 Schedule6

Excavation1 1 1 1 1 1 1

Foundation1 3 3 3 3 3 3

Columns1 1 2 1 2 1 1

Beams1 3 4 4 4 4 2

Slabs1 2 2 2 2 2 2

Exavation2 1 1 1 1 1 1

Foundation2 2 1 1 3 1 1

Columns2 1 2 3 1 2 1

Beams2 2 4 2 2 2 4

Slabs2 1 1 2 1 2 1

Excavation3 1 1 1 1 1 1

Foundation3 1 1 1 2 1 1

Columns3 3 3 3 3 2 2

Beams3 3 2 3 1 3 3

Slabs3 1 1 2 1 2 1

Excavation4 1 1 1 1 1 1

Foundation4 1 1 1 1 2 2

Columns4 3 3 3 3 3 3

Beams4 1 1 1 1 1 1

Slabs4 1 1 1 1 1 1

Project Duration 91 92 92.5 93 93.5 94
Project Interruptions 12 6 5 4 3 0

Table 4.6: Results Comparison

Comparison

element
Proposed model Sample solutions Hyari and El-Rayes (2006) Sample solutions

Project

Duration
91 92 92.5 93 93.5 94 106.8 107 108.5 110.9 114.3 117.9

Project

Interruption
12 6 5 4 3 0 15 14 11 8 4 0

The gap between the proposed model results and the example drawn from

literature results (as shown in Table 4.6) are due to the ability to use more than

one construction method for the same activity type creating flexibility when

dealing with large number of repetitive units. Through analyzing the results

obtained from the proposed model and results by Hyari and El-Rayes (2006), it

is observed that the current model‟s project duration varied between a maximum

value of 94 days and minimum value of 91 days, while Hyari and El-Rayes

(2006) minimum project duration is 106.8 days and expanded to 117.9 days.

However, both models reached a zero project interruption, yet the current

model‟s maximum project interruption is 12 days while Hyari and El-Rayes

56

(2006) project interruption reached 15 days. Fig. 4.5 shows a comparison

between the proposed model‟s results and the results drawn from the literature.

Fig. 4.5: Results Comparison: Proposed Model Vs. Hyari and EL-Rayes (2006)

4.5 Further Experimentations

This section presents the proposed model full ability to optimize the four

objectives simultaneously; (1) minimization of project duration, (2)

minimization of project cost, (3) minimization of project total interruptions

and (4) minimization of units‟ delivery dates delays.

The example drawn from literature didn‟t take into account the project cost;

direct cost, indirect cost and transportation cost. The example, also, didn‟t

consider the units‟ delivery dates required. For this purpose, some

assumptions have been taken into account to experiment the model by

adding costs for the construction methods undertaking each activity, as well

as their transportation costs and delivery dates of each activity if required as

shown earlier in Fig. 4.1.

Table 4.7 shows the direct cost of each activity with respect to the different

construction methods that can be assigned to them. The indirect cost for this

experimentation is assumed to be LE200 per day with a population size of

200 and crossover and mutation probability of 0.85 and 0.15 respectively.

0

2

4

6

8

10

12

14

16

90 95 100 105 110 115

Model's Resuls

Hyari and El-Rayes 2006

57

Table 4.7: Activities Direct Costs

Activity
Repetitive

Unit

Construction

Method1 ($)

Construction

Method2 ($)

Construction

Method3 ($)

Construction

Method4 ($)

Excavation

1 1000 0 0 0

2 1200 0 0 0

3 4700 0 0 0

4 4700 0 0 0

Foundation

1 3200 3000 2500 0

2 3400 3100 3000 0

3 3500 3150 3000 0

4 3500 3200 3000 0

Columns

1 3700 3900 4000 0

2 3500 3750 3900 0

3 4500 3300 3200 0

4 5000 5200 5600 0

Beams

1 4500 4000 3900 3700

2 4300 3800 3600 3500

3 4500 4300 4000 3800

4 4700 4500 4100 3900

Slabs

1 0 0 0 0

2 8000 6000 0 0

3 8100 6500 0 0

4 8000 6100 0 0

Table 4.8 illustrates the assumed distances between repetitive units in KM. Table

4.9 shows the assumed speeds for each construction method‟s crew as well as

transportation cost for each crew in Table 4.10 to experiment the impact of

crews‟ speeds and transportation on a repetitive activities project. These data are

introduced to the VBA macros using data entry windows as shown in Fig. 4.6

(A, B, and C).

Table 4.8: Distance between Repetitive Units

 To

 From
Unit2 Unit3 Unit4

Unit 1 0.5 1 1.25

Unit 2 -- 0.5 .75

Unit 3 -- -- 0.25

Unit 4 -- -- --

58

Table 4.9: Construction Methods‟ Crews‟ Transportation Speeds

 Crews

Activities

Construction

Method1(Crew1)

Construction

Method2(Crew2)

Construction

Method3(Crew3)

Construction

Method4(Crew4)

Excavations 1km/day NA NA NA

Foundations 3km/day 5km/day 5km/day NA

Columns 5km/Day 5km/day 6km/day NA

Beams 3km/day 5km/day 5km/day 6km/day

Slabs 3km/day 5km/day NA NA

Table 4.10: Construction Methods‟ Crews‟ Transportation Cost

 Crews

Activities

Construction

Method1(Crew1)

Construction

Method2(Crew2)

Construction

Method3(Crew3)

Construction

Method4(Crew4)

Excavations $1000/day NA NA NA

Foundations $1500/day $1500/day $1300/day NA

Columns $1400/day $1300/day $1300/day NA

Beams $1600/day $1500/day $1500/day $1300/day

Slabs $1300/day $1300/day NA NA

Fig. 4.6-A: Distance between units

Fig. 4.6-B: Crew‟s Transportation Speed

59

Fig. 4.6-C: Crew‟s Transportation cost/day

The Pareto optimum solution set expanded to 121 optimum solutions. Selected

results from the optimum set obtained from the model are shown in the

following Table 4.11.

Table 4.11: Model Results for Full Scale Experimentation

 Sample Schedules Outputs

 1 2 3 4 5 6 7 8 9 10

Total Cost 96807 97129.8 97109.8 97799 97513 96918 99055 96744 96799 99813

Total Delays 0.93 0 0.93 0 6.3 3.9 4 2.8 3.2 0

Total

Duration
94.3 98.1 94 93.24 91 94 93.27 97 94 91

Total

Interruption
28 20 13 34 36 10 10 57 35 13

A quick comparison between the optimum 10 solutions is shown in the

following figure (Fig 4.7) on a radar chart. A wider look on the First Pareto

Front (optimum set) is shown in Fig. 4.8

60

Fig 4.7: Results Comparison

Fig. 4.8: Optimum Set Wider View

0

2

4

6

8

10
1

2

3

4

5

6

7

8

9

10

Cost(X1000)

Delay

Duration(X10)

Interruptions (X10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Interruptions

Duration(X10)

Delay

Cost(X10000)

61

4.6 Compromise Solution

On reaching convergence in a GA problem and determining the set of optimized

solutions, the decision maker will have to choose the preferable solution for the

current project. However, decision makers, in some cases, have no certain

criterion facilitates the selection of their preferred solution among the optimized

solution set. A “compromise solution” is then preferred for the decision maker to

determine the best solution of the optimized set of solutions. In order to

determine the compromise solution among the set of Pareto optimal solutions,

the procedure introduced by Elbeltagi et al. (2010) is adopted.

Elbeltagi et al. (2010) introduced the following mechanism to determine a single Pareto-

compromise solution of the optimization problem with multiple objectives. Concisely

presented in the following are the step-by-step mathematical and graphical details of the

selection procedure to find the mutually agreeable objective criteria values defining a

unique Pareto-compromise solution to a given multi-objective optimization problem with

n objectives:

Step 1: Determine the solutions of the Pareto optimization problem defining the

Pareto front, and identify extreme objective values
max

i

f
and

min

i

f
 (i=1, n). For

example, suppose n=2 so that the problem is,

Minimize
 zfzf

21
,

 (4.2)

Further suppose f1 = - (criterion 1) and f2 = criterion 2, and that the solution to Eq.

(4.2) is represented by two criteria vectors
*

1
f and

*

2
f having m=10 entries and

extreme values
max

1
f ,

min

1

f
 and

max

2
f ,

min

2
f , defining the original Pareto front

shown in Fig. 4.9.

62

Step 2: Normalize the objective criteria vectors
*

i
f

 (i=1, n) defining the Pareto

front to find the normalized objective criteria vectors,

 minmaxmin*

iiiii
ffffX

; (i=1, n) (4.3)

having extreme entry values
max

i
X

= 1 and
min

i
X

= 0 (i=1, n). For n=2 and the

Pareto front in Fig. 4.10, for example, the corresponding normalized vectors X1 and

X2 from Eq. (4.3) define the normalized Pareto front in Fig. 4.10.

Step 3: Reorder the normalized vectors i
X

 from Eq. (4.3) to form the primary

objective criteria vector,

 T
T

iii
xxx 1,...,0,...,

maxmin

; (i=1, n) (4.4)

T

i

n

k

ki
nxxreorderedy

1

1

TT

ii
yy 0,...,1,...,

minmax

; (i=1, n) (4.5)

Fig. 4.9: Original Pareto Front (n=2) (Elbeltagi et al. 2010)

max

1
f ,

min

2
f

Paret
o
Front

Pareto-
compromise
solution

Criterion
1

min

1
f ,

max

2
f

C
ri

te
ri
o

n

2

+ -

63

Fig. 4.10: Normalized Pareto Front (n=2) (Elbeltagi et al. 2010)

so that each pair of primary-aggregate criteria vectors (xi , yi) defines a 2-

dimentional subspace of the n-dimensional objective space, where (x1 , y1) = (x2 ,

y2) = (X1 , X2) when n=2. From Fig. 4.9, for example, the aggregate vectors are, y1

= reordered [(x2 + x3)/2], y2= reordered [(x1 + x3)/2], and y3 = reordered [(x1 +

x2)/2].

Step 4: Uniformly translate and re-normalize each pair of primary-aggregate

objective criteria vectors (xi , yi), to create a corresponding translated Pareto front

defined by the vectors,

 xxxx
ii

 1
*

;
 yyyy

ii
 1

*

; (i=1, n)

 (4.6)

where δx and δy are m-dimensional vectors of translation parameters δx=δy=√2-1.

For n=2, for example, the normalized Pareto front in Fig. 4.10 is translated to the

Pareto front indicated by the dashed curve in Fig. 4.11.

max

1
X ,

min

2
X

Normalized
Pareto Front

Normalized Criterion 1

min

1
X ,

max

2
X

N
o

rm
a

liz
e

d
 C

ri
te

ri
o

n

2

1

1

64

Step 5: For the translated Pareto front defined by each pair of vectors (xi
*
, yi

*
) from

Eq. (4.6) determine the 45° radial distance to the centre point Ei(0.5,0.5) of the

corresponding 2D-subspace as,

∆ri= √2(0.5-(xj
*
+xj+1

*
)(yj

*
+yj+1

*
))/(xj

*
+xj+1

*
+yj

*
+yj+1

*
); (i=1, n)

 (4.7)

where vector index j is such that xj
*
/yj

*
 ≤1 whereas xj+1

*
/yj+1

*
 ≥1, and ∆r1 = ∆r2

(=∆r0) when n=2. As shown in Fig. 4.11 for n=2, for example, Eq. (4.7) determines

the 45° radial distance from the Pareto front (x
*
, y

*
) to the centre point Ei(0.5,0.5) to

be ∆r0, where the radial-shifted Pareto front (x
°
 , y

°
) passing through point Eo is

circular.

Step 6: For the extreme vector
max

i
f

,
min

i
f

 from step 1, and the radial distance ∆ri,

from step 5, evaluate the function,

2
2minmaxmax

iiii
rffff

i

; (i=1, n) (4.8)

To find n criteria values

i

f
(i=1, n) that collectively define a unique compromise

solution that represents a mutually agreeable Pareto-tradeoff between all n criteria.

As shown in Fig. 4.9 for n=2, for example, Eq. (4.8) determines the Pareto-

compromise solution to be at point 0 on the original Pareto front.

65

Fig. 4.11: Unique Pareto Trade-off Point Eo (n=2) (Elbeltagi et al. 2010)

4.6.1 Experimental example’s compromise solution

The experimental example‟s Pareto optimum solution set expanded to 121 solutions as

previously mentioned in section 4.4. Selecting a single solution from the presented

solutions is a difficult task. In order to help the decision maker to select a single solution

among the set of Pareto-optimal solutions, the procedure introduced by Elbeltagi et al.

(2010) is applied. The resulted Pareto-compromise solution and its theoretical objective

values are listed in Table 4.12. The best-alternative solution among the Pareto-optimal

solutions is found to be the solution number 18 in Fig. 4.8.

Table 4.12: Pareto-Compromise and Best-Alternative Solutions

Solution
Project
Duration
(days)

Project
Cost ($)

Project

Interruptions

(days)

Delivery Dates

Delays
(days)

Pareto-Compromise
Solution

91.96 97529.63 24.56 12.96

Best-Alternative

Solution
100 95953 23 12.58

1

Radial-shifted
Pareto Front (x° , y°)

Criterion
1

(1-√2/2,
1)

C
ri

te
ri
o

n

2
 Eo (0.5,0.5)

r = √2/2

(1
,
1

-

√
2

/2
)

Translated Pareto
Front (x* , y*)

∆r0

0

1

66

4.7 Another Example Application and Validation

In order to increase the proposed model‟s credibility, an example of highway

project drawn from the literature (Moselhi and Hassanain 2003) is analyzed for

validation. The project involves the construction of a three-lane-highway of

stretch of 15 Km and consists of five activities as follows:

Table 4.13: Second Example‟s Activities

ID Activity Description Predecessor

1 Cut and Chip Trees -

2 Grub and Remove Stumps 1

3 Earthmoving 2

4 Base 3

5 Paving 4

The project is divided into 15 repetitive units each of length 1 Km and each of

the five activities is repeated at each of the 15 segments or units of the project.

The precedence relationships among these sequential activities are finish to start

with no lag time as given in Table 4.13. The data of quantities for each activity is

shown in Table 4.14

Three alternative construction methods were introduced into the model, every

construction method may represents different production rates and/or different

cost. This approach gives the planner flexibility in creating alternative

construction methods by changing one of the three parameters mentioned above

and check which schedule is suitable to the project or the planner can use the

optimization part of this model to optimize the schedule taking into

consideration the relationship between time, cost and interruption. The methods

of construction data are shown in Table 4.14.

67

Table 4.14: Quantities of Activities s in Each Unit

Cut and

Chip

Trees

Grub and

Remove

Stumps

Earthmoving Base Paving

Repetitive

units (Km)

Quantities

m
2

Quantities

m
2

Quantities

m
3

Quantities

m
2

Quantities

m
2

1 12000 12000 7000 32000 32000

2 12000 12000 6000 32000 32000

3 18000 18000 6000 32000 32000

4 12000 12000 6000 32000 32000

5 18000 18000 8600 32000 32000

6 30000 30000 7000 32000 32000

7 36000 36000 6500 32000 32000

8 30000 30000 6000 32000 32000

9 24000 24000 6000 32000 32000

10 24000 24000 6000 32000 32000

11 18000 18000 6000 32000 32000

12 12000 12000 6000 32000 32000

13 12000 12000 6000 32000 32000

14 12000 12000 6000 32000 32000

15 12000 12000 6000 32000 32000

.

68

Table 4.15: Construction Methods Details

ID
Activity

Description

Method 1 Method 2 Method 3

Rate

(unit/day)

Cost

(LE/day)

Rate

(unit/day)

Cost

(LE/day)

Rate

(unit/day)

Cost

(LE/day)

1
Cut and Chip

trees
3000 2000 2500 1250 3500 1500

2
Grub and remove

stumps
4000 2000 3000 1500 3500 1750

3 Earthmoving 1000 1700 1000 2500 900 1600

4 Base 3200 3000 3200 3000 3000 3800

5 Paving 4000 3000 4000 3000 4000 3500

In order to investigate the models validation the indirect cost was estimated for

LE3000/day as well as some delivery dates were required for the “Grub and

Remove Trees” activity at 9
th

 and 15
th

 unit to finish after 35 and 87 days

respectively. The model reached to a Pareto optimum solution set of 16

schedules. Selected schedules from the Pareto optimum solution set is shown in

Table 4.15.

Table 4.16: Model Results for Second Validation Example

 Sample Schedules Outputs

 1 2 3 4 5 6 7 8 9

Total

Cost
1351503 1381597 1332308 1383930 1355062 1380989 1348082 1351142 1378152

Total

Duration
99 97 89 90 89 95 91 100 88

Total

Delays
5 7.9 0 0.9 0 1 8.7 0 8.8

Through the analysis of the model‟s results in comparison to the proposed model

by Moselhi and Hassanein (2003), it was observed that the model minimum

duration and maximum total project duration was 88 and 100 days respectively,

while the model proposed by Moselhi and Hassanein (2003) minimum and

maximum project duration were 87 and 97 days respectively. However the

69

proposed model gave variant schedules with respect to total project cost and

respecting the units‟ delivery dates required.

Table 4.16 illustrates the Pareto compromise solution and best alternative for the

Pareto optimum scheduling set.

Table 4.17: Pareto-Compromise and Best-Alternative Solutions for Second Validation

Example

Solution
Project
Cost ($)

Project
Duration
(days)

Delivery Dates

Delays
(days)

Pareto-Compromise
Solution

1355230 88.5 4.4

Best-Alternative

Solution
1332308 89 0

4.8 Summary and Conclusions

The implementation of the multi-objective non-unit based repetitive activities

project scheduling model have been presented in this chapter. The model is

implemented on a MS Project with VBA macros to enable flexible data entry

and efficient calculations. The model is capable to generate a number of

schedules as predefined by the user and optimize them through the application of

genetic algorithm to determine a set of optimum schedule for the user to choose

from. Compromise solution has also been presented to an experimental example

to aid the decision maker to choose a solution (schedule) from a large number of

optimum solutions.

70

CHAPTER 5

REAL LIFE CASE STUDY

5.1 Introduction

In the previous chapter, the model ability was compared to previous work drawn from the

literature review. It has been proved the flexibility of the model in scheduling and

optimizing repetitive activities projects. In this chapter, real case study shall be presented

to prove the applicability of the model for real projects. The case study is representing a

project has five serial repetitive activities for constructing water channel in Riyadh city in

King of Saudi Arabia.

5.2 Case Study

5.2.1 Project Overview

The case study has been implemented in this research is "Wadi Hanifa Restoration

Project" in Saudi Arabia in Riyadh extracted from Masters of Science thesis by Al-

Taweel, S. (2007). The project client is ArRiyadh Development Authority and the

designer is Buro Happold from Brittan and the architecture from Canada "Moriyama and

Teshima ". Wadi Hanifah is deemed as the most important natural landmark in Riyadh

area. It spreads over an area exceeded 120 sq-km penetrating Riyadh-city. The valley is

flowing down from northwestern towards southeastern. More than forty rivers are pouring

on this Wadi which is still contains the remains of traditional environment features at the

area, such as villages, parks, and farms. This valley is overflow with agricultural,

inheriting, entertaining ingredients that assist in its developing as entertaining,

agricultural and cultural center for the city-dwellers.

The higher commission for Riyadh development has established a strategy for investing

and developing Wadi Hanifah since 1407H for the sake of maintaining its natural

environment and prohibiting human destructive activity and preparing it as a natural

drainage for water. It could also be used as an entertaining summer resort. The

commission considers the valley as an environmental protectorate as well as developing

area under its supervision. According to above mentioned, the commission performed

visibility study including water resources, land, wildlife, land ownership and its

employment, the existing farms in the valley, inheriting and entertaining ingredients,

71

traffic, air and water pollution and water livings. The study resulted in creation of a

comprehensive strategy for developing the valley. Finally this strategy approved by the

commission in 1415H. The strategy is based on a number of policies, organizations,

procedures and works in order to achieve the goals above mentioned. The strategy aims to

cease environmental destruction to the valley by maintaining and developing its resources

as well as establishing organizational diagrams for the usage of the land in the valley,

providing entertaining facilities and completing the basic structure in the valley area in

order to encourage investment in developmental projects. Accordingly, HRH, the chief of

higher commission for developing Riyadh-city order to constitute several committees for

studying the destructive factors that affect the environment of the valley and suggesting

adequate solutions. Now, most of the committees has achieved their successfully. In

1419H the commission has decided to form a committee to set up a joint venture to

develop the valley. The project consist of four zones, zone 3 was awarded to Al-Mashric

Company. Zone 3 has been divided to three Areas (Area A, Area B and Area C). Area A

and C consist of Excavation of water channel and Area B represent the bioremediation

structure. In this research Area A and B water channel stage shall be scheduled as

repetitive project.

5.2.2 Project Data

Project activities for water channel stage consist of repetitive activities that are repeated

for all units. The channel is divided into four types relating to their dimension, (type 1,

type 2, type 3 and type 4). The cross sections details for all channels are shown in Figs.

5.1 & 5.2. In channel construction stage, there are five activities repeated in 21 units as

shown in Table 5.1. The quantities for activities in all units are shown in Table 5.2.

72

C H AN N EL TYPE 1

O F CH AN NEL W ILL FO LLO W

G RADIEN T O F BO TTO M

R E-G R AD ED W AD I BED

BO TTO M O F EXC AVATIO N

(FO R EXCAVATIO N FO R M ATIO N

0.5% SLO PE 0.5% SLO PE

 TH E APPR O VED D W FC

 LO N G ITUDINAL SLO PE

LINE O F FIN ISH LEVEL

LINE O F BO TTO M EXCAVATIO N

CL

SEE D W G . NO . SZ3/A /CE/02101a)

G EO TEXTILE

LIM IT O F
G EO TEXTILE

LIM
IT O

F

G EO TEXTILE

G EO TEXTILE

200D IA . (40%) AN D 300 D IA . (60%)

R IYAYDH LIM ESTO NE R O U G H BLO CKS

VARIES

1

VARIES

1

W ATER LEVEL

VARIES

(2400 M AX.)

(1400 M IN .)

1000

VARIES

(1033 M AX.)

(700 M IN .)

20002000

(5800 M AX.)

(3800 M IN .)

VARIES

400

VARIES

(2400 M AX.)

(1400 M IN .)

1

O F C H AN N EL W ILL FO LLO W

G RADIEN T O F BO TTO M

R E-G R AD ED W ADI BED

0.5% SLO PE 0.5% SLO PE

 TH E APPR O VED DW FC

 LO NG ITUD IN AL SLO PE

C H AN N EL TYPE 2

G EO TEXTILE

VAR IES

1

R IYAD H LIM ESTO N E RO UG H BLO C KS

200 D IA . (40%) AN D 300 D IA . (60%)

CL

N O R M AL W ATER LEVEL

VAR IES

300300

100m m THICK

G R AVEL M ULCH

 Figure 5.1: Cross Section of Water Channel for Type 1 and 2.

73

VAR IES

1

O F C H AN N EL W ILL FO LLO W

G R AD IEN T O F BO TTO M

R E-G R AD ED W AD I BED

0.5% SLO PE 0.5% SLO PE

 TH E APPR O VED D W FC

 LO N G ITU D IN AL SLO PEG EO TEXTILE

CL

1

R IYAD H LIM ESTO N E R O U G H BLO C KS

200 D IA . (40%) AN D 300 D IA . (60%)

N O R M AL W ATER LEVEL

VAR IES

VAR IES

0-1500
1800 (M AX.) 2500 1800 (M AX.)

VAR IES

900 (M AX.)

400

VAR IES

0-1500

20002000

6100 (M AX.)

300
300

0-500

VAR IES

100m m TH IC K

G R AVEL M U LC H

C H AN N EL TYPE 3

O F C H AN N EL W ILL FO LLO W

G R AD IEN T O F BO TTO M

R E-G R AD ED W AD I BED

G EO TEXTILE

0.5% SLO PE 0.5% SLO PE

 TH E APPR O VED D W FC

 LO N G ITU D IN AL SLO PE

CL

R IYAD H LIM ESTO N E R O U G H BLO C KS

200 D IA . (40%) AN D 300 D IA . (60%)

N O R M AL W ATER LEVEL

1

VAR IES VAR IES

1

VAR IES

0-1500
1800 (M AX.) 6000 1800 (M AX.)

VAR IES

VAR IES

0-1500

20002000

9600 (M AX.)

400

300

0-500

900 (M AX.)

VAR IES

C H AN N EL TYPE 4

 Figure 5.2: Cross Section of Water Channel for Type 3 & 4

 Figure 5.2: Cross Section of Water Channel for Type 3 and 4

74

Table 5.1: Repetitive Activities of the Case Study

Table 5.2: Project Data

 Repetitive Activities

Repetitive Unit Data Site Clearance Channel

Excavation
Geotextile laying

Chainage

Stations

Repetitive

Units No.
Channel Quantities Units Quantities Units Quantities Units

Ch.36.38 to

Ch.37.00
1 Type 1 19000

2
M

7500

3
M

6200

2
M

Ch.37.00 to

Ch.38.00
2 Type 2 20000 7600 6200

Ch.38.00 to

Ch.39.00
3 Type 2 20000 7000 6200

Ch.39.00 to

Ch.40.00
4 Type 2 19000 7600 6200

Ch.40.00 to

Ch.41.00
5 Type 2 19000 7500 6200

Ch.41.00 to

Ch.42.00
6 Type 2 20000 7500 6300

Ch.43.00 to

Ch.44.00
7 Type 3 19000 7500 6200

Ch.44.00 to

Ch.45.00
8 Type 3 20000 7500 6200

Ch.45.00 to

Ch.46.00
9 Type 3 19000 7500 6200

Ch.46.00 to

Ch.47.00
10 Type 3 19000 7500 6200

Ch.47.00 to

Ch.48.00
11 Type 3 19000 7400 6300

Ch.48.00 to

Ch.49.00
12 Type 3 18000 7500 6200

Ch.49.00 to

Ch.49.50
13 Type 3 19000 7500 6200

Ch.49.50 to

Ch.50.00
14 Type 4 19000 7500 6200

Ch.50.00 to

Ch.50.50
15 Type 4 20000 7500 6200

Ch.50.50 to

Ch.51.00
16 Type 4 19000 7600 6200

Ch.51.00 to

Ch.51.50
17 Type 4 19000 7500 6200

Ch.51.50 to

Ch.52.00
18 Type 4 19000 7500 6200

Ch.52.00 to

Ch.52.50
19 Type 4 19000 7600 6200

Ch.52.50 to

Ch.53.00
20 Type 4 19000 7500 6300

Ch.53.00 to

Ch.53.50
21 Type 4 20000 7600 6300

ID Activity Description Predecessor

1 Site Clearance -

2 Channel Excavation 1

3 Geotextile Laying 2

4 Stone Laying 3

5 Mulshstone Laying 4

75

Table 5.2: Project Data (Continued)

 Repetitive Activities
Repetitive unit data Stone laying Mulshstone laying

Chainage

Station

Repetitive

units No.

Channel

Type
Quantities Units Quantities Units

Ch.36.38 to

Ch.37.00
1 Type 1 3300

3
M

3500

3
M

Ch.37.00 to

Ch.38.00
2 Type 2 3400 3600

Ch.38.00 to

Ch.39.00
3 Type 2 3400 3600

Ch.39.00 to

Ch.40.00
4 Type 2 3300 3500

Ch.40.00 to

Ch.41.00
5 Type 2 3300 3500

Ch.41.00 to

Ch.42.00
6 Type 2 3300 3600

Ch.43.00 to

Ch.44.00
7 Type 3 3300 3500

Ch.44.00 to

Ch.45.00
8 Type 3 3400 3500

Ch.45.00 to

Ch.46.00
9 Type 3 3300 3500

Ch.46.00 to

Ch.47.00
10 Type 3 3300 3400

Ch.47.00 to

Ch.48.00
11 Type 3 3300 3500

Ch.48.00 to

Ch.49.00
12 Type 3 3300 3500

Ch.49.00 to

Ch.49.50
13 Type 3 3300 3400

Ch.49.50 to

Ch.50.00
14 Type 4 3400 3500

Ch.50.00 to

Ch.50.50
15 Type 4 3300 3500

Ch.50.50 to

Ch.51.00
16 Type 4 3300 3500

Ch.51.00 to

Ch.51.50
17 Type 4 3300 3500

Ch.51.50 to

Ch.52.00
18 Type 4 3300 3500

Ch.52.00 to

Ch.52.50
19 Type 4 3300 3500

Ch.52.50 to

Ch.53.00
20 Type 4 3300 3500

Ch.53.00 to

Ch.53.50
21 Type 4 3300 3500

5.2.3 Project Scheduling

To implement the case study, four construction methods was applied that can be assigned

to each activity. All construction methods have the different production rates and direct

costs as shown in Table 5.3. Through implementing the model in this research, best

combination of construction methods which are assigned to the different activities shall

be obtained achieving minimum project duration, cost, interruptions and units delivery

dates.

76

Table 5.3: Construction Methods Production Rates and Costs

 Method 1 Method 2 Method 3 Method 4

ID Activity description P.R.
Cost
($)

P.R.
Cost
($)

P.R.
Cost
($)

P.R.
Cost
($)

1 Site clearance 2000 1850 1900 1650 1900 1600 1800 1500

2 Channel excavation 700 3900 700 3800 700 3700 700 3300

3 Geotextile laying 600 1100 650 1000 550 900 550 850

4 Riyadh lime Stone laying 300 2500 300 2300 300 2200 300 2000

5 Gravel mulch laying 300 1650 300 1500 280 1400 270 1300

Table 5.3 illustrates the transportation speed (Km/day) and cost per Km for each

construction method.

 Table 5.4: Construction Methods Transportation Speed and Costs

 Method 1 Method 2 Method 3 Method 4

ID Activity description Speed
Cost

($)
Speed

Cost

($)
Speed

Cost

($)
Speed

Cost

($)

1 Site clearance 8 10 10 11 8 9 9 10

2 Channel excavation 5 10 5 9 6 10 6 8

3 Geotextile laying 10 5 10 6 8 5 9 7

4 Riyadh lime Stone laying 9 7 10 7 10 6 8 6

5 Gravel mulch laying 8 10 10 10 9 7 10 8

The project indirect cost was 3000 $ / day and the data have been entered to the model by

the same way as example in chapter 4. Then scheduling and optimization model was

applied to the project. Selected results obtained are shown in Table 5.5. The model

proposed various schedules with maximum and minimum project total duration of 211

and 194 days respectively. Also with maximum and minimum project total cost of

LE3237487 and LE3164646 respectively. Finally with maximum and minimum total

project interruptions of 130 and 60 days respectively.

Table 5.5: Case Study Selected Results

 1 2 3 4 5 6 7 8 9

Total Cost

(LEX1000)
3179 3216 3614 3218 3221 3216 3217 3209 3237

Total Duration 211 194 207 204 189 207 200 200 208

Total

Interruption
91 109 130 88 84 106 102 113 60

The total crews‟ interruptions for the proposed solution are relatively high; this is due to

the large number of possible schedules with different crews assigned to different units

77

minimizing the total project schedule as much as possible. Table 5.6 shows the Pareto-

compromise solution and best alternative for the case study.

Table 5.6: Case Study Pareto-Compromise and Best-Alternative Solutions

Solution
Project

Duration
(days)

Project
Cost ($)

Project

Interruptions

(days)

Pareto-Compromise
Solution

202 3216573 94

Best-Alternative

Solution
211 3179204 91

It is significantly important to annotate that the computer model calculations

took more than 96hours; this is due to the large solution space for the case study

which expands to 4^105 possible solution. This vast feasible solutions space

takes more time for the GA‟s calculation to reach convergence and define the

Pareto optimum scheduling set. This can be overcome by using parallel

computation or coarse grain computation approaches in larger projects.

Moreover, the optimum solution set outcome depends on the initial population

and the mutation probability, thus it may reaches a local optimum solution in

larger problems with low mutation probability. To avoid local optimum

solutions, the mutation probability was increased to 0.85-0.9. However, some

other related techniques (i.e. Ant Colony or Particle Swarm) can be used to reach

the optimum set more effectively avoiding local optimum solutions and with

much less calculation time.

5.3 Summary and Conclusions

In this chapter, real case study was implemented by the model for the two parts of the

model, scheduling and optimization. It was observed the flexibility of the model in

dealing with the data of the case study. It is noted that optimization process is very

important help decision maker to choose between different schedules that minimize total

project duration, total project cost and total project interruptions.

78

CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

In this research, a flexible and dynamic model for scheduling and optimizing repetitive

activities project has been developed. The model has been implemented on MS Project

with VBA macro program. The model provides a schedule complies with precedence

relationship using different relationship types and assigned construction method

constraints. In addition, it considers the impact of following practical factors:

 Assigned construction methods transportation duration.

 Assigned construction methods transportation cost.

 Multiple crews assigned to work simultaneously.

 Accounting for project total cost and duration.

 Accounting for interruption for crews assigned to repetitive activities.

 Accounting for units‟ delivery dates delays.

 Optimization among several alternatives construction methods for each activity.

For each activity in a repetitive unit, the model identifies the scheduled start and finish

times depending on the assigned construction methods‟ crew for each unit in every

activity and interruption days for each crew, if any, as well as transportation duration and

costs from the previous unit to the current one. The model also identifies the project

duration, total direct cost and total indirect cost. The model has been developed on a MS

Project by using Visual Basic Application (VBA) macros. The model employs non-

traditional optimization technique, Genetic-Algorithm, that has powerful random search

capabilities. The model sorts the output possible schedules to Pareto Fronts to determine

the optimum set of schedules for the decision maker to choose from. The optimization

process identifies the combination of construction methods that achieves the following

objectives:

1- Minimize the total project cost.

2- Minimize the total project duration.

3- Minimize the total project interruptions.

4- Minimize the total units‟ delivery date delays.

79

6.2 Conclusions

In this research, a scheduling and optimization model for repetitive activities projects

was developed. The developed model can be used to optimize construction schedules

based on multiple objectives. Some remarks were concluded and listed below:

 Using different construction methods for the same activity type strategy creates a

more flexible schedule that respects resource and precedence relationship,

especially in large number of repetitive units.

 Transportation duration and cost of construction methods can affect the selection

of the optimum schedule significantly.

 Multi-objective optimization for repetitive activities projects can be highly

beneficial for the construction industry, avoiding future problems such as project‟s

cost, duration and units‟ delivery dates delays.

 Genetic Algorithms technique is efficient in solving multi-objective optimization

problems when it is integrated with Pareto Front sorting. It showed in the research

its capability to search for the optimum solution set in a moderate large solution

space in an efficient manner.

6.3 Recommendations and Future Work

The Proposed model can be implemented to different construction repetitive activities

projects effectively. It can aid the decision maker with proposing different repetitive

activities project schedules to select the most appropriate one with respect to the project at

hand.

The presented model in this research could be improved considering the following points:

 Integrate the non-repetitive activities and repetitive activities in one Scheduling and

Optimization model.

 Integrate the ability to change the work order among repetitive units.

 Experiment different evolutionary algorithms optimization techniques that discover

the solution space more effectively and efficiently (Particle Swarm Optimization, Ant

Colony and Shuffled Frog Leaping algorithms).

80

Reference list

 Al-Taweel, S. (2007), “Repetitive Projects Scheduling and Optimization Using Genetic

Algorithms”, Masters of Science thesis, Arab Academy for Science and

Technology, Alexandria, Egypt.

 Ammar, M. and Elbeltagi, E. (2001), “Algorithm for Determining Controlling Path

Considering Resource Continuity”, Journal of Computing in Civil Engineering,

15(4), 292-298.

 Arditi, D., Tokedmir, O. and Suh, K. (2002), “Challenges in Line-of-Balance

Scheduling”, Journal of Construction Engineering and Management, 128(6),

545-556.

 Baumgartner, U., Magele, C. and Renhart, W. (2004), “Pareto Optimality and Particle

Swarm Optimization”, IEEE Transactions on Magnetics, 40, 1172-1175.

 Beradi, L., Giustolisi, O., Savic, D. and kapelan, Z. (2009), “An effective mulit-objective

approach to prioritization of sewer pipe inspection”, Journal of Water Science &

Technology, 60, 841-850.

 Chrzanowski E. and Johnston, D. (1988), “Application of Linear Scheduling”, Journal

of Construction Engineering and Management, 112, 476-491.

 Cole, L. J. R. (1991), “Construction Scheduling: Principles, practices, and six case

studies”, Journal of Construction Engineering and Management, 117(4), 579-

588.

 Dehuri, S. and Cho, S. (2009), “Multi-criterion Pareto base particle swarm optimized

polynominal neural network for classification: A review and state-of-the-are

projects”, Computer Science review, 3, 19-40.

 Duffy, G., Oberlender, G. and Jeong, D. (2011), “Linear Scheduling Model with

Varying Production Rates”, Journal of Construction Engineering and

Management, 137(8), 574-582.

81

 Elbeltagi, E. Hegazy, T. and Grierson, D. (2005), “Comparison among five

evolutionary-based optimization algorithms”, Advanced Engineering

Informatics, 19, 43-53.

 Elbelatgi, E., and ElKassas E.M. (2008), “Cost Optimization of Projects with Repetitive

Activities Using Genetic Algorithms”, The Sixth International Conference on

Engineering Computational Technology, Paper 66.

 Elbeltagi, E. Hegazy, T. and Grierson, D. (2010),” A New Evolutionary Strategy for

Pareto Multi-Objective Optimization”, The seventh International Conference on

Engineering Computional Technology, Paper 99.

 El-Rayes, K., and Moselhi, S. (1998), “Resource-driven scheduling of repetitive

activities”, Construction Management Economics, 16, 433-446.

 Feng, C., Liu, L., and Burns, S. (1997),”Using genetic algorithms to solve construction

time-cost trade-off problems”, Journal of Computation in Civil Engineering,

11(3), 184–189.

 Harris, R. and Ioannou, P. (1998), “Scheduling Projects with Repeating Activities”,

Journal of Construction Engineering and Management. 124(4). 269-278.

 Harmelink, D.J. (1995), “Linear Scheduling Model: The development of a linear

scheduling model with micro computer applications for highway construction

control”, PhD Thesis, Iowa State Univ., Ames, Iowa.

 Harmelink, D. and Rowings, J. (1998), “Linear Scheduling Model: Development of

Controlling Activity Path”, Journal of Construction Engineering and

Management. 124(4), 263-268.

 Hegazy, T., and Ayed, A. (1999), “Simplified spreadsheet solutions: Models for critical

path method and time–cost trade-off analysis”, Cost Engineering, 417, 26–33.

 Hegazy, T., Elhakeem, A. and Elbeltagi, E. (2004). “Distributed Scheduling Model for

Infrastructure Networks”, Journal of Construction Engineering and

Management, 130(2), 160-167.

82

 Hegazy, T. and Kamarah, E. (2008), “Efficient repetitive scheduling for high-rise

construction”, Journal of Construction Engineering and Management, 134(4),

253-264.

 Holland, J. H. (1975), “Adaptation in natural and artificial systems”, University of

Michigan Press, Ann Arbor, Mich.

 Huang, R. and Sun, K. (2006), “Non-Unit-Based Planning and Scheduling of Repetitive

Construction Projects”. Journal of Construction Engineering And Management,

132(6), 585-597.

 Hyari, K. and El-Rayes, K. (2006), “Optimal Planning and Scheduling for Repetitive

Construction Projects”, Journal of Management in Engineering, ASCE. 22(1).

11-19.

 Ipsilandis, P. G. (2007), “Multiobjective Linear Programming Model for Scheduling

Linear Repetitive Projects”, Journal of Construction Engineering and

Management. 133(6), 417-424.

 Johnosn, D. (1981), “Linear Scheduling Method for Highway Construction”, Journal of

Construction Division. ASCE,107, 247-261.

 Li, H., and Love, P. (1997) “Using improved genetic algorithms to facilitate time-cost

optimization”, Journal of Construction Engineering and Management, 123(3),

233–237.

 Li, H. and Zhang, Q. (2009), “Multiobjective Optimization Problems with Complicated

Pareto Sets, MOEA/D and NSGA-IIO”, IEEE Transactions on Evolutionary

Computation, 13, 284-302.

 Lumsden, P. (1968), “Using Machine Learning and GA to Solve Time-Cost Trade-Off

Problems”, Journal of Construction Engineering and Management, 123, 233-

237.

83

 Mattila, K. G. (1997), “Resource Leveling of Linear Schedules; A Mathematical

Approach using Integer Linear Programming”, PhD thesis. Purdue Univ., West

Lafayette, Ind.

 Mattila, K. G. and Park, A. (2003), “Comparison of Linear Model and repetitive

Scheduling Method”, Journal of Construction Engineering and Management,

129(1), 56-64.

 Moselhi, O. and Hassanein, A. (2003), “Optimized Scheduling of Linear Projects”,

Journal of Construction Engineering and Management, 129(6), 664-673.

 MS Project (2007), MS Project Reference Manual, Microsoft Corporation.

 Rahbar, F.F., and Rowings, J.E. (1992), “Repetitive activity scheduling process”, Trans.,

Am. Assn. Cost Eng., 2, O.5.1-O.5.8.

 Reda, R. M. (1990), “RPM: Repetitive project modeling”, Journal of Construction

Engineering and Management, ASCE. 116(2), 316-330.

 Sanad, H. (2011), “Optimum Analysis of Construction Projects With Nonlinear Cash

Flow”, Doctor of Philosophy Thesis, Tanta University, Egypt.

 Stradel, O. and Cacha, J. (1982), “Time space scheduling method”, Journal of

Construction Division. ASCE, 108, 445-457.

 Suhail, S.A., and Neale, R.H. (1994), “CPM/LOB: New methodology to integrate CPM

and line of balance”, Journal of Construction Engineering and Management,

120(3), 667-684.

 Vorster, M., Beliveau, Y. and Bafna, T. (1992), “Linear Scheduling and Visualization”.

Transportation Research Record. 1351, 32-39.

 Wassef, N. and Hegazy, T. (2001), “Cost Optimization in Projects with Repetitive Non-

Serial Activities”, Journal of Construction Engineering and Management, 127,

183-191.

84

 Yamin, R. and Harmelink, D. (2001), “Comparison of Linear Scheduling Model (LSM)

And Criticalpath Method (CPM)”, Journal of Construction Engineering and

Management, 127, 374-381.

85

Appendix I – MS Project VBA Scheduling and Optimization

Model

Dim AllTasks(1 To 2000) As ProjectTask
Dim AllChromosomes As Collection
Dim AllChr(1 To 1001) As ChromosomInfo
Dim Paretoset(1 To 20000) As ChromosomInfo
Dim AllChild(1 To 1000) As ChromosomInfo
Dim PrevParetoSet(1 To 20000) As ChromosomInfo
Dim ParetoFrist(1 To 20000) As ChromosomInfo
Public NChild As Integer
Public ts As Tasks
Public Acrew As CrewInfo
Public X As Integer
Public Y As Integer
Public CN As Integer
Public i As Integer
Public Agene As GeneInfo
Public GN As Integer 'Gene number
Public GC As Double 'Gene cost
Public GCrewCost As Double 'Crew Cost
Public TotalGenesCrewCost As Double 'total genes crew cost
Public ChrTotalCost As Double
Public K As Integer
Public Interruption As Variant
Public DeliveryDelay As Date
Public Act As Integer
Public Unit As Integer
Public MinCost As Double
Public MinInt As Double
Public DefStartDate As Date
Public Trail As Integer
Public TrailMax As Integer
Public NoSolutionS As Collection
Public Indirect_cost As Double
Public ActivityIndex As Integer
Public TotalTransportationCost As Double
Public PrevUnit As Integer
Public MaxDD As Double
Public MaxDur As Double
Public MaxInter As Double
Public MaxCost As Double
Public NENCurrent As Double
Public NENPrev As Double
Public Best1 As Integer
Public Best2 As Integer
Public MC As Integer
Public MD As Integer
Public MI As Integer
Public MDD As Integer
Public CrossoverValue As Integer
Public ParetoOpt As Integer
Public paretoValue As Double
Public paretoCheck As Double
Public NoParetoSol As Integer

86

'CROSSOVER
Public SinglePoint As Integer
Public Parent1 As Integer
Public Parent2 As Integer
Public Parent3 As Integer
Public Parent4 As Integer
Public Offspring1 As Integer
Public Offspring2 As Integer
Public population As Integer
Public CopyChromo As Integer
Public PasteChromo As Integer
Public MO As Double
Public CrossIndex As Double
Public A As Double
Public B As Double
Public Identical As String
Public Identical_ChecK As String
Public mutationindex As Double
Public ConverIndex As Double
Public ParetoIndex1 As Double
Public Paretoindex2 As Double
Public ParetoCount As Integer
Public PrevParetoCount As Integer
Public PGC As Double
Public PDD As Double
Public PD As Double
Public PI As Double
Public PGN As Integer
Public AllSolutions As Integer
Public Count1 As Integer
Public Count2 As Integer
Public Count3 As Integer
Public Count4 As Integer
Public ParetoFrontIndex As Integer
Public Rel_ParetoFrontIndex As Double
Public Distance As Long
Public CostDistance As Double
Public CDistanceCheck As Double
Public InterDistance As Double
Public IDistanceCheck As Double
Public DurDistance As Double
Public DDistanceCheck As Double
Public DelayDistance As Double
Public DDDistanceCheck As Double
Public CounterStop As Integer
Public checkCounter As Long
Public Max_Reached As String
'selection probabilities
Public totmerit As Double
Public summerit As Double
Public Deadline As Integer
Public R As Variant

87

Public Sub CommandButton1_Click()

Randomize
Dim PauseTime, Start, Finish, TotalTime
Dim CrewStart(1 To 5, 1 To 4) As Date
Dim CrewStartCheck(1 To 5, 1 To 4) As String
ParetoCount = 1
Dim M As Integer
Dim N_Gener As Integer
NChild = 0
checkCounter = 0
MinCost = 1E+16
MinDur = 1E+17
MinDD = 1E+16
MinInt = 1E+16

Start = Timer

Act = TextBox1.Value
Unit = TextBox2.Value
population = TextBox4.Value
mutationindex = TextBox6.Value
CrossIndex = TextBox5.Value
Indirect_cost = TextBox3.Value

TrailMax = 500

Set ts = ActiveProject.Tasks

Application.SelectAll
Application.SaveSheetSelection
DefStartDate = ts(1).Start1

ReDim TransportationDuration(1 To Act, 1 To Unit, 1 To 21, 1 To 21) As Double
' (activity, crew#, current Unit, Prev Unit)
ReDim TransportationCost(1 To Act, 1 To Unit, 1 To 21, 1 To 21) As Integer

X = 1
Do
'read aTask (copy of project data base)
Set AllTasks(X) = New ProjectTask
AllTasks(X).Name = ts(X).Name
AllTasks(X).FixedCost = ts(X).Cost
If ts(X).Finish1 <> "NA" Then
AllTasks(X).RequiredEndDate = ts(X).Finish1
End If
Set AllTasks(X).CrewData = New Collection
If ts(X).Duration1 <> "0" Then
Set Acrew = New CrewInfo
Acrew.Duration = ts(X).Duration1
Acrew.Cost = ts(X).Cost1
AllTasks(X).CrewData.Add Acrew
End If
If ts(X).Duration2 <> "0" Then
Set Acrew = New CrewInfo

88

Acrew.Duration = ts(X).Duration2
Acrew.Cost = ts(X).Cost2
AllTasks(X).CrewData.Add Acrew
End If
If ts(X).Duration3 <> "0" Then
Set Acrew = New CrewInfo
Acrew.Duration = ts(X).Duration3
Acrew.Cost = ts(X).Cost3
AllTasks(X).CrewData.Add Acrew
End If
If ts(X).Duration4 <> "0" Then
Set Acrew = New CrewInfo
Acrew.Duration = ts(X).Duration4
Acrew.Cost = ts(X).Cost4
AllTasks(X).CrewData.Add Acrew
End If
AllTasks(X).CrewNumber = AllTasks(X).CrewData.Count
X = X + 1
Loop Until X > Act * Unit

„Determine transportation distance, duration and cost
Dim UnitDistance(1 To 21, 1 To 21) As Double
Dim CrewSpeed(1 To 5, 1 To 4) As Double
Dim CrewTransCost(1 To 5, 1 To 4) As Double

For Y = 1 To Unit
For X = Y + 1 To Unit
Call Get_Distance(UnitDistance)
Next X
Next Y

For Y = 1 To Act
For X = 1 To AllTasks(Y).CrewNumber
Call Get_Speed(CrewSpeed)
Next X
Next Y

For Y = 1 To Act
For X = 1 To AllTasks(Y).CrewNumber
Call Get_TransCost(CrewTransCost)
Next X
Next Y

For Y = 1 To Act
For X = 1 To AllTasks(Y).CrewNumber
For K = 1 To Unit
For i = K + 1 To Unit
TransportationDuration(Y, X, K, i) = UnitDistance(K, i) / CrewSpeed(Y, X)
Next i
Next K
Next X
Next Y

89

For Y = 1 To Act
For X = 1 To AllTasks(Y).CrewNumber
For K = 1 To Unit
For i = K + 1 To Unit
TransportationCost(Y, X, K, i) = TransportationDuration(Y, X, K, i) * CrewTransCost(Y,
X)
Next i
Next K
Next X
Next Y

 'Creating new Chromosmes :)
X = 1

Do
Set AllChr(X) = New ChromosomInfo
Set AllChr(X).Genes = New Collection
ChrTotalCost = 0
GCrewCost = 0
TotalGenesCrewCost = 0
Y = 1
i = 1
ActivityIndex = 1
Do Until Y > Act * Unit
If ActivityIndex > Act Then ActivityIndex = 1

i = Alltasks(x).Crewnumber

Set Agene = New GeneInfo
GN = Int((i * Rnd) + 1)
Agene.GeneValue = GN
GCrewCost = AllTasks(Y).CrewData(GN).Cost
Agene.CrewCost = GCrewCost
AllChr(X).Genes.Add Agene

TotalGenesCrewCost = TotalGenesCrewCost + GCrewCost
ActivityIndex = ActivityIndex + 1
Y = Y + 1
Loop

AllChr(X).TotalCost = TotalGenesCrewCost
X = X + 1
Loop Until X > population

' Creating dummy child pool

X = 1
Do
Set AllChild(X) = New ChromosomInfo
Set AllChild(X).Genes = New Collection
ChrTotalCost = 0
GCrewCost = 0
TotalGenesCrewCost = 0
Y = 1

90

i = 1
Do Until Y > Act * Unit
i = AllTasks(Y).CrewNumber
Set Agene = New GeneInfo
GN = Int((i * Rnd) + 1)
Agene.GeneValue = GN
GCrewCost = AllTasks(Y).CrewData(GN).Cost
Agene.CrewCost = GCrewCost
AllChild(X).Genes.Add Agene
TotalGenesCrewCost = TotalGenesCrewCost + GCrewCost
Y = Y + 1
Loop
AllChild(X).TotalCost = TotalGenesCrewCost

X = X + 1
Loop Until X > population

Label4.Caption = "Scheduling"

' Initial schedule

X = 1
Do
Call Schedule
Call Restore_Data
X = X + 1
Loop Until X > population

'pareto set

ParetoCount = 0
Call get_pareto_optimal(population)

 For X = 1 To population
 If AllChr(X).ParetoFront = 1 Then
 If ParetoCount > 0 Then 'check identical paretoset
 For i = 1 To ParetoCount
 GN = 1
 For Y = 1 To Act * Unit
 If Paretoset(i).Genes(Y).GeneValue = AllChr(X).Genes(Y).GeneValue Then GN
= GN + 1
 Next Y
 If GN = Act * Unit Then GoTo 121
 Next i
 GoTo 111
 End If

111 ParetoCount = ParetoCount + 1
 Set Paretoset(ParetoCount) = New ChromosomInfo
 Set Paretoset(ParetoCount).Genes = New Collection
 Y = 1
 Do Until Y > Act * Unit
 Set Agene = New GeneInfo
 GN = AllChr(X).Genes(Y).GeneValue
 Agene.GeneValue = GN
 GC = AllChr(X).Genes(Y).CrewCost

91

 Agene.CrewCost = GC
 Paretoset(ParetoCount).Genes.Add Agene
 Paretoset(ParetoCount).PretoSol = Pareto
 Y = Y + 1
 Loop
 Paretoset(ParetoCount).TotalCost = AllChr(X).TotalCost
 Paretoset(ParetoCount).TotalDelays = AllChr(X).TotalDelays
 Paretoset(ParetoCount).TotalDuration = AllChr(X).TotalDuration
 Paretoset(ParetoCount).TotalIntrruptions = AllChr(X).TotalIntrruptions
 Paretoset(ParetoCount).Note = AllChr(X).Note
 Paretoset(ParetoCount).ParetoFront = 1

 End If
121 Next X

Call selection_prob

M = 0
N_Gener = M

Trail = 1

Label4.Caption = "Optimizing"

„Optimization Module

Do While Trail < TrailMax
NChild = 0
M = M + 1
120 Call chro_select(Parent1, Parent2)
NChild = NChild + 1
MO = Rnd
If MO > CrossIndex Then
 If AllChr(Parent1).InvParetoFront > AllChr(Parent2).InvParetoFront Then
 Set AllChild(NChild) = New ChromosomInfo
 Set AllChild(NChild).Genes = New Collection

 For Y = 1 To Act * Unit
 Set Agene = New GeneInfo
 GN = AllChr(Parent1).Genes(Y).GeneValue
 Agene.GeneValue = GN
 GC = AllChr(Parent1).Genes(Y).CrewCost
 Agene.CrewCost = GC
 AllChild(NChild).Genes.Add Agene
 Next Y
 AllChild(NChild).TotalCost = AllChr(Parent1).TotalCost
 AllChild(NChild).Note = "None"
 Else
 Set AllChild(NChild) = New ChromosomInfo
 Set AllChild(NChild).Genes = New Collection

 For Y = 1 To Act * Unit
 Set Agene = New GeneInfo
 GN = AllChr(Parent2).Genes(Y).GeneValue
 Agene.GeneValue = GN
 GC = AllChr(Parent2).Genes(Y).CrewCost
 Agene.CrewCost = GC

92

 AllChild(NChild).Genes.Add Agene
 Next Y
 AllChild(NChild).TotalCost = AllChr(Parent2).TotalCost
 AllChild(NChild).Note = None
 End If
If NChild < population Then GoTo 120
Else

Call CrossOver(Parent1, Parent2, NChild)
Call Mutation(mutationindex, NChild)
If NChild < population Then GoTo 120
End If

For X = 1 To population 'empty parents
 For Y = 1 To Act * Unit
 AllChr(X).Genes(Y).GeneValue = 0
 Next Y
Next X

For X = 1 To population 'copy offspring

 For Y = 1 To Act * Unit
 AllChr(X).Genes(Y).GeneValue = AllChild(X).Genes(Y).GeneValue
 AllChr(X).Genes(Y).CrewCost = AllChild(X).Genes(Y).CrewCost
 Next Y

 AllChr(X).TotalCost = AllChild(X).TotalCost
 AllChr(X).Note = AllChild(X).Note
Next X

For X = 1 To population 'Empty children pool
 For Y = 1 To Act * Unit
 AllChild(X).Genes(Y).GeneValue = 0
 Next Y
Next X

For X = 1 To population
Call Schedule
Call Restore_Data
Next X
Call get_pareto_optimal(population)
Call selection_prob

 For X = 1 To population ' add pareto front 1 to pareto set
 If AllChr(X).ParetoFront = 1 Then
 If ParetoCount > 0 Then 'check identical paretoset
 For i = 1 To ParetoCount
 GN = 0
 For Y = 1 To Act * Unit
 If Paretoset(i).Genes(Y).GeneValue = AllChr(X).Genes(Y).GeneValue Then GN =
GN + 1
 Next Y
 If GN = Act * Unit Then GoTo 122
 Next i
 GoTo 112
 End If

93

112 ParetoCount = ParetoCount + 1
 If ParetoCount > 20000 Then
 ParetoCount = 1
 Max_Reached = True
 End If

 Set Paretoset(ParetoCount) = New ChromosomInfo
 Set Paretoset(ParetoCount).Genes = New Collection
 Y = 1
 Do Until Y > Act * Unit
 Set Agene = New GeneInfo
 GN = AllChr(X).Genes(Y).GeneValue
 Agene.GeneValue = GN
 GC = AllChr(X).Genes(Y).CrewCost
 Agene.CrewCost = GC
 Paretoset(ParetoCount).Genes.Add Agene
 Paretoset(ParetoCount).PretoSol = Pareto

 Y = Y + 1
 Loop

 Paretoset(ParetoCount).TotalCost = AllChr(X).TotalCost
 Paretoset(ParetoCount).TotalDelays = AllChr(X).TotalDelays
 Paretoset(ParetoCount).TotalDuration = AllChr(X).TotalDuration
 Paretoset(ParetoCount).TotalIntrruptions = AllChr(X).TotalIntrruptions
 Paretoset(ParetoCount).Note = AllChr(X).Note
 Paretoset(ParetoCount).ParetoFront = 1

 End If
122 Next X

Call get_pareto_optimal_final(population, ParetoCount)

'Concervgence Check

If M = 1 Then
PrevParetoCount = 0 'Create Prev. Pareto Set

For X = 1 To ParetoCount

 If PrevParetoCount > 0 Then 'check identical
 For i = 1 To PrevParetoCount
 GN = 0
 For Y = 1 To Act * Unit
 If PrevParetoSet(i).Genes(Y).GeneValue = Paretoset(X).Genes(Y).GeneValue Then
GN = GN + 1
 Next Y
 If GN = Act * Unit Then GoTo 123
 Next i
 GoTo 113
 End If

113 PrevParetoCount = PrevParetoCount + 1
 Set PrevParetoSet(PrevParetoCount) = New ChromosomInfo

94

 Set PrevParetoSet(PrevParetoCount).Genes = New Collection
 Y = 1
 Do Until Y > Act * Unit
 Set Agene = New GeneInfo

 GN = Paretoset(X).Genes(Y).GeneValue
 Agene.GeneValue = GN
 GC = Paretoset(X).Genes(Y).CrewCost
 Agene.CrewCost = GC
 PrevParetoSet(PrevParetoCount).Genes.Add Agene
 PrevParetoSet(PrevParetoCount).PretoSol = Pareto

 Y = Y + 1
 Loop
 PrevParetoSet(PrevParetoCount).TotalCost = Paretoset(X).TotalCost
 PrevParetoSet(PrevParetoCount).TotalDelays = Paretoset(X).TotalDelays
 PrevParetoSet(PrevParetoCount).TotalDuration = Paretoset(X).TotalDuration
 PrevParetoSet(PrevParetoCount).TotalIntrruptions =
Paretoset(X).TotalIntrruptions
 PrevParetoSet(PrevParetoCount).Note = Paretoset(X).Note
 PrevParetoSet(PrevParetoCount).ParetoFront = Paretoset(X).ParetoFront

123 Next X

GoTo 130
End If

Distance = 9999 'Distance calculations
CostDistance = 0
DelayDistance = 0
InterDistance = 0
DurDistance = 0
checkCounter = 0

MaxCost = 0
MaxDur = 0
MaxInter = 0
MaxDD = 0

NENCurrent = 999999
NENPrev = 999999

For X = 1 To ParetoCount 'determine the max value
If Paretoset(X).ParetoFront <> 1 Then GoTo 610

If Paretoset(X).TotalCost > MaxCost Then MaxCost = Paretoset(X).TotalCost
If Paretoset(X).TotalDelays > MaxDD Then MaxDD = Paretoset(X).TotalDelays
If Paretoset(X).TotalDuration > MaxDur Then MaxDur = Paretoset(X).TotalDuration
If Paretoset(X).TotalIntrruptions > MaxInter Then MaxInter =
Paretoset(X).TotalIntrruptions

610 Next X

For X = 1 To ParetoCount 'determine current NEN
If Paretoset(X).ParetoFront <> 1 Then GoTo 710

95

If MaxCost > 0 Then CostDistance = (Paretoset(X).TotalCost / MaxCost) ^ 2
If MaxDD > 0 Then DelayDistance = (Paretoset(X).TotalDelays / MaxDD) ^ 2
If MaxInter > 0 Then InterDistance = (Paretoset(X).TotalIntrruptions / MaxInter) ^ 2
If MaxDur > 0 Then DurDistance = (Paretoset(X).TotalDuration / MaxDur) ^ 2

If Sqr(CostDistance + DelayDistance + InterDistance + DurDistance) < NENCurrent
Then NENCurrent = Sqr(CostDistance + DelayDistance + InterDistance + DurDistance)
Best1 = X
710 Next X

For Y = 1 To PrevParetoCount 'determine max value for prev. pareto
If PrevParetoSet(Y).ParetoFront <> 1 Then GoTo 810

If PrevParetoSet(Y).TotalCost > MaxCost Then MaxCost = PrevParetoSet(Y).TotalCost
If PrevParetoSet(Y).TotalDelays > MaxDD Then MaxDD =
PrevParetoSet(Y).TotalDelays
If PrevParetoSet(Y).TotalDuration > MaxDur Then MaxDur =
PrevParetoSet(Y).TotalDuration
If PrevParetoSet(Y).TotalIntrruptions > MaxInter Then MaxInter =
PrevParetoSet(Y).TotalIntrruptions

810 Next Y

For Y = 1 To PrevParetoCount 'determine prev NEN
If PrevParetoSet(Y).ParetoFront <> 1 Then GoTo 910

If MaxCost > 0 Then CostDistance = (PrevParetoSet(Y).TotalCost / MaxCost) ^ 2
If MaxDD > 0 Then DelayDistance = (PrevParetoSet(Y).TotalDelays / MaxDD) ^ 2
If MaxInter > 0 Then InterDistance = (PrevParetoSet(Y).TotalIntrruptions / MaxInter) ^ 2
If MaxDur > 0 Then DurDistance = (PrevParetoSet(Y).TotalDuration / MaxDur) ^ 2

If Sqr(CostDistance + DelayDistance + InterDistance + DurDistance) < NENPrev Then
NENPrev = Sqr(CostDistance + DelayDistance + InterDistance + DurDistance)
Best2 = Y

910 Next Y

CostDistance = 0
DurDistance = 0
InterDistance = 0
DelayDistance = 0

If PrevParetoSet(Best2).TotalCost > 0 Then CostDistance =
((PrevParetoSet(Best2).TotalCost - Paretoset(Best1).TotalCost) /
PrevParetoSet(Best2).TotalCost)
If PrevParetoSet(Best2).TotalDelays > 0 Then DelayDistance =
((PrevParetoSet(Best2).TotalDelays - Paretoset(Best1).TotalDelays) /
PrevParetoSet(Best2).TotalDelays)
If PrevParetoSet(Best2).TotalDuration > 0 Then DurDistance =
((PrevParetoSet(Best2).TotalDuration - Paretoset(Best1).TotalDuration) /
PrevParetoSet(Best2).TotalDuration)
If PrevParetoSet(Best2).TotalIntrruptions > 0 Then InterDistance =
((PrevParetoSet(Best2).TotalIntrruptions - Paretoset(Best1).TotalIntrruptions) /
PrevParetoSet(Best2).TotalIntrruptions)

Distance = CostDistance + DelayDistance + DurDistance + InterDistance

96

If Distance < 0.0001 Then CounterStop = CounterStop + 1 Else CounterStop = 0
If CounterStop = 10 Then Trail = TrailMax

i = 1
For X = 1 To ParetoCount 'new prev. paretoset
 For i = 1 To PrevParetoCount 'check identical
 GN = 0
 For Y = 1 To Act * Unit
 If PrevParetoSet(i).Genes(Y).GeneValue = Paretoset(X).Genes(Y).GeneValue Then
GN = GN + 1
 Next Y
 If GN = Act * Unit Then GoTo 124
 Next i
 GoTo 114

114 PrevParetoCount = PrevParetoCount + 1
 Set PrevParetoSet(PrevParetoCount) = New ChromosomInfo
 Set PrevParetoSet(PrevParetoCount).Genes = New Collection
 Y = 1
 Do Until Y > Act * Unit
 Set Agene = New GeneInfo

 GN = Paretoset(X).Genes(Y).GeneValue
 Agene.GeneValue = GN
 GC = Paretoset(X).Genes(Y).CrewCost
 Agene.CrewCost = GC
 PrevParetoSet(PrevParetoCount).Genes.Add Agene
 PrevParetoSet(PrevParetoCount).PretoSol = Pareto

 Y = Y + 1
 Loop
 PrevParetoSet(PrevParetoCount).TotalCost = Paretoset(X).TotalCost
 PrevParetoSet(PrevParetoCount).TotalDelays = Paretoset(X).TotalDelays
 PrevParetoSet(PrevParetoCount).TotalDuration = Paretoset(X).TotalDuration
 PrevParetoSet(PrevParetoCount).TotalIntrruptions =
Paretoset(X).TotalIntrruptions
 PrevParetoSet(PrevParetoCount).Note = Paretoset(X).Note
 PrevParetoSet(PrevParetoCount).ParetoFront = Paretoset(X).ParetoFront

124 Next X

130 Trail = Trail + 1

Loop
N_Gener = M

X = 1
For Y = 1 To ParetoCount
If Paretoset(Y).ParetoFront = 1 Then
 Set ParetoFrist(X) = New ChromosomInfo
 Set ParetoFrist(X).Genes = New Collection
 K = 1
 Do Until K > Act * Unit
 Set Agene = New GeneInfo

97

 GN = Paretoset(Y).Genes(K).GeneValue
 Agene.GeneValue = GN
 GC = Paretoset(Y).Genes(K).CrewCost
 Agene.GeneCost = GC
 ParetoFrist(X).Genes.Add Agene
 ParetoFrist(X).PretoSol = Pareto
 K = K + 1
 Loop
 ParetoFrist(X).TotalCost = Paretoset(Y).TotalCost
 ParetoFrist(X).TotalDelays = Paretoset(Y).TotalDelays
 ParetoFrist(X).TotalDuration = Paretoset(Y).TotalDuration
 ParetoFrist(X).TotalIntrruptions = Paretoset(Y).TotalIntrruptions
 ParetoFrist(X).Note = Paretoset(Y).Note
 ParetoFrist(X).ParetoFront = Paretoset(Y).ParetoFront
X = X + 1
End If
 Next Y
Finish = Timer
TotalTime = Finish - Start
Label4.Caption = "Run Time = " & TotalTime / 60
End Sub

Public Sub Schedule()

' Scheduling

i = 1
Y = 1
K = 1
ActivityIndex = 1
TotalTransportationCost = 0
ReDim CrewStart(1 To 5, 1 To 4) As Date
ReDim CrewStartCheck(1 To 5, 1 To 4) As String
ReDim TransportationDuration(1 To 5, 1 To 4, 1 To 21, 1 To 21) As Double '
(activity, crew#, current Unit, Prev Unit)
ReDim TransportationCost(1 To 5, 1 To 4, 1 To 21, 1 To 21) As Integer

 ' Restart crew start time check
 Do Until ActivityIndex > Act
 For i = 1 To 4
 CrewStartCheck(ActivityIndex, i) = "no"
 Next i
 ActivityIndex = ActivityIndex + 1
 Loop

i = 1
ActivityIndex = 1
Interruption = 0
DeliveryDelay = 0

98

Do Until Y > Act * Unit
 i = AllChr(X).Genes(Y).GeneValue
 If i = 1 Then

 'Check if the crew started before or not
 If CrewStartCheck(ActivityIndex, i) = "started" Then
 K = Y - Act
 'Getting the previous unit and transporation cost and duration
 Do Until K < 1
 If ts(Y).Start1 = ts(K).Finish Then PrevUnit = K
 K = K - Act
 Loop
 ts(Y).Start1 = ts(Y).Start1 + TransportationDuration(ActivityIndex, i, Int((PrevUnit /
Act) + 0.99), Int((Y / Act) + 0.99))
 TotalTransportationCost = TotalTransportationCost +
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99))

 If ts(Y).Start > ts(Y).Start1 Then
 Interruption = Interruption + (ts(Y).Start - ts(Y).Start1) - 0.63

 ts(Y).Start1 = ts(Y).Start
 Else
 ts(Y).Start = ts(Y).Start1
 End If
 Else
 CrewStartCheck(ActivityIndex, i) = "started"
 ts(Y).Start1 = ts(Y).Start
 End If
 ts(Y).Duration = AllTasks(Y).CrewData(i).Duration

 'Changing the crews start time in the rest of the activities
 K = Y + Act
 Do Until K > Act * Unit
 ts(K).Start1 = ts(Y).Finish
 K = K + Act
 Loop

 ElseIf i = 2 Then

 'Check if the crew started before or not
 If CrewStartCheck(ActivityIndex, i) = "started" Then
 K = Y - Act
 'Getting the previous unit and transporation cost and duration
 Do Until K < 1
 If ts(Y).Start2 = ts(K).Finish Then PrevUnit = K
 K = K - Act
 Loop
 ts(Y).Start2 = ts(Y).Start2 + TransportationDuration(ActivityIndex, i, Int((PrevUnit /
Act) + 0.99), Int((Y / Act) + 0.99))
 TotalTransportationCost = TotalTransportationCost +
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99))

 If ts(Y).Start > ts(Y).Start2 Then
 Interruption = Interruption + (ts(Y).Start - ts(Y).Start2) - 0.63

99

 ts(Y).Start2 = ts(Y).Start
 Else
 ts(Y).Start = ts(Y).Start2
 End If
 Else
 CrewStartCheck(ActivityIndex, i) = "started"
 ts(Y).Start2 = ts(Y).Start
 End If
 ts(Y).Duration = AllTasks(Y).CrewData(i).Duration

 'Changing the crew start time in the rest of the activities
 K = Y + Act
 Do Until K > Act * Unit
 ts(K).Start2 = ts(Y).Finish
 K = K + Act
 Loop

 ElseIf i = 3 Then

 'Check if the crew started before or not
 If CrewStartCheck(ActivityIndex, i) = "started" Then
 K = Y - Act
 'Getting the previous unit and transporation cost and duration
 Do Until K < 1
 If ts(Y).Start3 = ts(K).Finish Then PrevUnit = K
 K = K - Act
 Loop
 ts(Y).Start3 = ts(Y).Start3 + TransportationDuration(ActivityIndex, i, Int((PrevUnit /
Act) + 0.99), Int((Y / Act) + 0.99))
 TotalTransportationCost = TotalTransportationCost +
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99))

 If ts(Y).Start > ts(Y).Start3 Then
 Interruption = Interruption + (ts(Y).Start - ts(Y).Start3) - 0.63
 ts(Y).Start3 = ts(Y).Start
 Else
 ts(Y).Start = ts(Y).Start3
 End If
 Else
 CrewStartCheck(ActivityIndex, i) = "started"
 ts(Y).Start3 = ts(Y).Start
 End If
 ts(Y).Duration = AllTasks(Y).CrewData(i).Duration

 'Changing the crew start time in the rest of the activities
 K = Y + Act
 Do Until K > Act * Unit
 ts(K).Start3 = ts(Y).Finish
 K = K + Act
 Loop

 Else

 'Check if the crew started before or not
 If CrewStartCheck(ActivityIndex, i) = "started" Then

100

 K = Y - Act
 'Getting the previous unit and transporation cost and duration
 Do Until K < 1
 If ts(Y).Start4 = ts(K).Finish Then PrevUnit = K
 K = K - Act
 Loop
 ts(Y).Start4 = ts(Y).Start4 + TransportationDuration(ActivityIndex, i, Int((PrevUnit /
Act) + 0.99), Int((Y / Act) + 0.99))
 TotalTransportationCost = TotalTransportationCost +
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99))

 If ts(Y).Start > ts(Y).Start4 Then
 Interruption = Interruption + (ts(Y).Start - ts(Y).Start4) - 0.63

 ts(Y).Start4 = ts(Y).Start
 Else
 ts(Y).Start = ts(Y).Start4
 End If
 Else
 CrewStartCheck(ActivityIndex, i) = "started"
 ts(Y).Start4 = ts(Y).Start
 End If
 ts(Y).Duration = AllTasks(Y).CrewData(i).Duration

 'Changing the crew start time in the rest of the activities
 K = Y + Act
 Do Until K > Act * Unit
 ts(K).Start4 = ts(Y).Finish
 K = K + Act
 Loop

 End If

ActivityIndex = ActivityIndex + 1
If ActivityIndex > Act Then ActivityIndex = 1
Y = Y + 1
Loop

„Calculating Delivery Dates Delays
For Y = 1 To Act * Unit
 If ts(Y).Finish1 = NA Then GoTo 510
 If ts(Y).Finish > ts(Y).Finish1 Then DeliveryDelay = DeliveryDelay + (ts(Y).Finish -
ts(Y).Finish1)
510 Next Y

AllChr(X).TotalDuration = ActiveProject.ProjectFinish - ActiveProject.ProjectStart
AllChr(X).TotalIntrruptions = Interruption
AllChr(X).TotalDelays = DeliveryDelay
AllChr(X).TotalCost = AllChr(X).TotalCost + TotalTransportationCost + (Indirect_cost *
AllChr(X).TotalDuration)

End Sub

101

Public Sub Restore_Data()
Application.RestoreSheetSelection
Y = 1
Do Until Y > Act * Unit
If AllTasks(Y).CrewNumber = 1 Then
ts(Y).Start1 = DefStartDate
ElseIf AllTasks(Y).CrewNumber = 2 Then
ts(Y).Start1 = DefStartDate
ts(Y).Start2 = DefStartDate
ElseIf AllTasks(Y).CrewNumber = 3 Then
ts(Y).Start1 = DefStartDate
ts(Y).Start2 = DefStartDate
ts(Y).Start3 = DefStartDate
Else
ts(Y).Start1 = DefStartDate
ts(Y).Start2 = DefStartDate
ts(Y).Start3 = DefStartDate
ts(Y).Start4 = DefStartDate
End If
Y = Y + 1
Loop

Y = 1
Do Until Y > Act * Unit
ts(Y).ConstraintDate = "NA"
Y = Y + 1
Loop
End Sub

Public Sub CrossOver(Parent1, Parent2, NChild)
Randomize
 'perform crossover
 SinglePoint = Int(Rnd * (Act * Unit)) + 1 'Select two crossover
points
GCrewCost = 0

 X = 1
Do Until X > SinglePoint
AllChild(NChild).Genes(X).GeneValue = AllChr(Parent1).Genes(X).GeneValue
AllChild(NChild).Genes(X).CrewCost = AllChr(Parent1).Genes(X).CrewCost
GCrewCost = GCrewCost + AllChr(Parent1).Genes(X).CrewCost
X = X + 1
Loop

Do Until X > Act * Unit
AllChild(NChild).Genes(X).GeneValue = AllChr(Parent2).Genes(X).GeneValue
AllChild(NChild).Genes(X).CrewCost = AllChr(Parent2).Genes(X).CrewCost
GCrewCost = GCrewCost + AllChr(Parent2).Genes(X).CrewCost
X = X + 1
Loop

AllChild(NChild).TotalCost = GCrewCost
AllChild(NChild).Note = "CrossOver"

End Sub

102

Sub get_pareto_optimal(population)
 'ReDim NoSolutionS(1) As Integer
 AllSolutions = False
 ParetoFrontIndex = 0
 For X = 1 To population
 AllChr(X).ParetoFront = 0
 Next X
 Count3 = 0: Count4 = 0
 Do
 ParetoFrontIndex = ParetoFrontIndex + 1
 'ReDim Preserve NoSolutionS(ParetoFrontIndex)
 For X = 1 To population
 If AllChr(X).ParetoFront = 0 Then AllChr(X).ParetoFront = ParetoFrontIndex
 Next X
 For X = 1 To population
 If AllChr(X).ParetoFront < ParetoFrontIndex Then GoTo 110
 For Y = 1 To population
 Count1 = 0: Count2 = 0
 If X = Y Then GoTo 100
 If AllChr(Y).ParetoFront < ParetoFrontIndex Then GoTo 100

 If AllChr(X).TotalCost >= AllChr(Y).TotalCost Then Count1 = Count1 + 1
 If AllChr(X).TotalDelays >= AllChr(Y).TotalDelays Then Count1 = Count1
+ 1
 If AllChr(X).TotalDuration >= AllChr(Y).TotalDuration Then Count1 =
Count1 + 1
 If AllChr(X).TotalIntrruptions >= AllChr(Y).TotalIntrruptions Then Count1
= Count1 + 1

 If AllChr(X).TotalCost > AllChr(Y).TotalCost Then Count2 = Count2 + 1
 If AllChr(X).TotalDelays > AllChr(Y).TotalDelays Then Count2 = Count2 +
1
 If AllChr(X).TotalDuration > AllChr(Y).TotalDuration Then Count2 =
Count2 + 1
 If AllChr(X).TotalIntrruptions > AllChr(Y).TotalIntrruptions Then Count2 =
Count2 + 1

 If Count2 = 4 Then AllChr(X).ParetoFront = 0: Exit For
 If Count1 = 0 And Count2 = 0 Then AllChr(Y).ParetoFront = 0
 If Count1 = 4 And Count2 > 0 Then AllChr(X).ParetoFront = 0: Exit For
100 Next Y
110 Next X
 For X = 1 To population
 If AllChr(X).ParetoFront = ParetoFrontIndex Then Count3 = Count3 + 1
 Next X
 'NoSolutionS(ParetoFrontIndex) = Count3 - Count4 'Counts number of
solutions in each Pareto level
 Count4 = Count3
 If Count3 = population Then AllSolutions = True
 Loop While AllSolutions = False
 For X = 1 To population
 AllChr(X).InvParetoFront = (1 / AllChr(X).ParetoFront)
 Next X
End Sub

103

Sub selection_prob()
 totmerit = 0
 summerit = 0 'Calculate probability of selection
 For X = 1 To population 'Calculate chromosomes relative
fitness
 totmerit = totmerit + AllChr(X).InvParetoFront
 Next X
 For X = 1 To population
 AllChr(X).Rel_ParetoFront = AllChr(X).InvParetoFront / totmerit
 Next X
 For X = 1 To population 'Calculate probability of selection
 AllChr(X).SumParetoFront = summerit + AllChr(X).Rel_ParetoFront
 summerit = AllChr(X).SumParetoFront
 Next X
End Sub

Sub chro_select(Parent1, Parent2)
Randomize
'Parent1 = 0
'Parent2 = 0
'Y = 0
 Do 'Select two chromosomes randomly
 A = Rnd
 For X = 1 To population 'Select first chromosome
 If A < AllChr(X).SumParetoFront Then
 Parent1 = X
 Exit For
 End If
 Next X

 B = Rnd
 For X = 1 To population 'Select second chromosome
 If B < AllChr(X).SumParetoFront Then
 Parent2 = X
 Exit For
 End If
 Next X

 Identical = True 'Check if chromosomes are identical

 For Y = 1 To Act * Unit
 If Parent1 = 0 Then Exit For
 If Parent2 = 0 Then Exit For

 If AllChr(Parent1).Genes(Y).GeneValue <>
AllChr(Parent2).Genes(Y).GeneValue Then Identical = False: Exit For
 Next Y

 Loop While Identical = True

 End Sub

104

Sub Mutation(mutationindex, NChild)
Randomize 'Perform mutation
GCrewCost = 0
 For X = 1 To Act * Unit
 MO = Rnd
 If MO < mutationindex Then
 GN = Int(((AllTasks(X).CrewNumber) - 1 + 1) * Rnd + 1)

 AllChild(NChild).Genes(X).GeneValue = GN
 AllChild(NChild).Genes(X).CrewCost = AllTasks(X).CrewData(GN).Cost
 AllChild(NChild).Note = "Mutation"
 End If
 Next X

 For X = 1 To Act * Unit
 GCrewCost = GCrewCost + AllChild(NChild).Genes(X).CrewCost
 Next X
AllChild(NChild).TotalCost = GCrewCost
End Sub

Public Sub get_pareto_optimal_final(population, ParetoCount)
 ParetoFrontIndex = 1
 For X = 1 To ParetoCount
 Paretoset(X).ParetoFront = 1
 Next X
 i = 1
 Do
 For X = 1 To ParetoCount
 If Paretoset(X).ParetoFront < ParetoFrontIndex Then GoTo 110
 For Y = 1 To ParetoCount
 Count1 = 0: Count2 = 0
 If X = Y Then GoTo 100
 If Paretoset(Y).ParetoFront < ParetoFrontIndex Then GoTo 100
 If Paretoset(X).TotalCost >= Paretoset(Y).TotalCost Then Count1 = Count1 +
1
 If Paretoset(X).TotalDelays >= Paretoset(Y).TotalDelays Then Count1 =
Count1 + 1
 If Paretoset(X).TotalDuration >= Paretoset(Y).TotalDuration Then Count1 =
Count1 + 1
 If Paretoset(X).TotalIntrruptions >= Paretoset(Y).TotalIntrruptions Then
Count1 = Count1 + 1

 If Paretoset(X).TotalCost > Paretoset(Y).TotalCost Then Count2 = Count2 + 1
 If Paretoset(X).TotalDelays > Paretoset(Y).TotalDelays Then Count2 = Count2
+ 1
 If Paretoset(X).TotalDuration > Paretoset(Y).TotalDuration Then Count2 =
Count2 + 1
 If Paretoset(X).TotalIntrruptions > Paretoset(Y).TotalIntrruptions Then Count2
= Count2 + 1

 If Count2 = 4 Then Paretoset(X).ParetoFront = 0: Exit For
 If Count1 = 0 And Count2 = 0 Then Paretoset(Y).ParetoFront = 0
 If Count1 = 4 And Count2 > 0 Then Paretoset(X).ParetoFront = 0: Exit For
100 Next Y

105

110 Next X
i = i + 1
ParetoFrontIndex = ParetoFrontIndex + 1
Loop Until i > ParetoCount
 NoParetoSol = 0
 For X = 1 To ParetoCount
 If Paretoset(X).ParetoFront = 1 Then NoParetoSol = NoParetoSol + 1
 Next X
End Sub

Sub selec_prob_pareto(population, ParetoCount)
totmerit = 0
 summerit = 0 'Calculate probability of selection

 For X = 1 To ParetoCount
 If Paretoset(X).ParetoFront < 1 Then GoTo 200
 Paretoset(X).InvParetoFront = (1 / Paretoset(X).ParetoFront)
200 Next X

 For X = 1 To ParetoCount 'Calculate chromosomes
relative fitness
 totmerit = totmerit + Paretoset(X).InvParetoFront
 Next X
 For X = 1 To ParetoCount
 Paretoset(X).Rel_ParetoFront = Paretoset(X).InvParetoFront / totmerit
 Next X
 For X = 1 To ParetoCount 'Calculate probability of
selection
 Paretoset(X).SumParetoFront = summerit + Paretoset(X).Rel_ParetoFront
 summerit = Paretoset(X).SumParetoFront
 Next X
End Sub

Public Sub Get_Distance(UnitDistance)
UserForm2.Caption = "Distance between units"
UserForm2.Label1.Caption = "Type distance between units"
UserForm2.Label2.Caption = "Unit: " & Y
UserForm2.Label3.Caption = "and Unit: " & X
UserForm2.Show
UnitDistance(Y, X) = UserForm2.TextBox1.Value
End Sub

Public Sub Get_Speed(CrewSpeed)
UserForm2.Caption = "Crews' Speed"
UserForm2.Label1.Caption = "Type the Crews' speed of Activity: " & Y
UserForm2.Label2.Caption = "Crew number: " & X
UserForm2.Label3.Caption = "NOTE: Crew Speed > Zero"
UserForm2.Show
CrewSpeed(Y, X) = UserForm2.TextBox1.Value
End Sub

106

Public Sub Get_TransCost(CrewTransCost)
UserForm2.Caption = "Crews' Transportation Cost"
UserForm2.Label1.Caption = "Type the Crew Transporation cost perday for Activity: " &
Y
UserForm2.Label2.Caption = "Crew number: " & X
UserForm2.Label3.Caption = ""
UserForm2.Show
CrewTransCost(Y, X) = UserForm2.TextBox1.Value
End Sub

	Front page
	Roman Numbering Pages
	Multi-objective non-unit based repetitive activities scheduling using Genetic Algorithms 2

