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Abstract 

 

Multi-Objective Non-Unit Based Repetitive Activities Project 

Scheduling using Genetic Algorithms  

 

By 

 

Mohamed Saeid Eid  

 
 

Achieving a successful construction project, one should meet decision maker 

various needs and objectives through a construction plan and schedule. A schedule 

that utilizes the use of resources to achieve minimum construction cost as well as 

minimum construction duration. In this study, a repetitive activities project 

scheduling and optimization model is developed to achieve the decision maker 

objectives. 

 

The proposed scheduling model optimizes the project cost, duration, crews’ 

interruptions and units’ delivery dates delay simultaneously. The model consists of 

two modules; a scheduling module and an optimization module. The scheduling 

module takes into consideration the logical and resource start dates, different units’ 

quantities, different production rates for assigned construction methods, as well as 

the transportation duration and cost of moving crews to schedule a repetitive 

activity project. The optimization module uses a Multi-Objective Genetic 

Algorithms to define a set of non-dominated solutions for the decision maker to 

choose from depending on the construction project conditions. 

The model is implemented a computer program and introduced to several examples 

and case studies to evaluate its fitness through analysing the results. It was found fit 

and applicable on medium size repetitive activities projects.   



II 
 

Acknowledgments  

First, I am grateful to Allah for aiding and supporting me throughout my carrier and 

studies, for my deeds are by him and for him to aid my brothers and sisters of 

humanity.   

I would like to thank everybody by their names that supported me physically and 

mentally through the years and through this research. My family, the big loving and 

caring home that gives a lot and asks for few. My professor and teachers of ethics 

and manners, Prof. Mona Eid, Prof. Emad Elbeltagi, Prof. Mohamed Emam, Prof. 

Sanad, Prof. Mostafa Khalifa, Prof. Lobna Elsherif. Eng. Mohamed El-Abbassy. 

And many thanks to friends that helped me to excel, and special thanks to Ehab 

Amer for the effort that aided me a lot.  

Last, but not in any means the least, I would love to thank my Country, Egypt, and 

my fellow countrymen, for I learnt the best in this land, and to you I present this 

thesis.  

  



III 
 

 

TABLE OF CONTENTS 

 

ABSTRACT ..................................................................................................................I 

ACKNOWLEDGMENTS ................................................................................................II 

TABLE OF CONTENTS .................................................................................................II 

LIST OF TABLES .........................................................................................................VI 

LIST OF FIGURES ........................................................................................................VII 

 

1.  CHAPTER 1: INTRODUCTION 

 

1.1 Research Motivation ............................................................................................2 

1.2 Research Objectives and Scope ...........................................................................3 

1.3 Research Methodology ........................................................................................3 

1.4 Thesis Organization .............................................................................................4 

 

2.   CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction .........................................................................................................5 

2.2 Network Techniques (CPM/PDM) ......................................................................5 

2.3Linear Scheduling Technique ...............................................................................8 

2.4 Line of Balance Scheduling Technique ...............................................................12 

2.5 Genetic Algorithms .............................................................................................18 

2.5.1 GAs Structure.................................................................................................19 

2.5.2 Genetic Operations .........................................................................................21 

2.6 Multi-Objective Optimization .............................................................................22 

2.6.1 Simple aggregation ........................................................................................23 

2.6.2 Weighted aggregation ....................................................................................23 

2.6.3 Pareto Front  ...................................................................................................24 

2.7 Summary and Conclusions ..................................................................................26 

 

 



IV 
 

3. Chapter3: MULTI-OBJECTIVES REPETITIVE ACTIVITIES PROJECT 

SCHEDULING MODEL DEVELOPMENT  

 

3.1Introduction ..........................................................................................................27 

3.2 Model Overview ..................................................................................................27 

3.3 Model Development  ...........................................................................................28 

3.3.1 Scheduling module.........................................................................................28 

3.3.2 Multi-objective optimization module ............................................................38 

3.3.2.1Optimization function ...............................................................................38 

3.3.2.2 Optimization variables .............................................................................40 

3.3.2.3 Optimization Constraints  ........................................................................41 

3.3.2.4 Convergence criterion ..............................................................................41 

3.4 Summary and Conclusions ..................................................................................44 

 

4. CHAPTER 4: MODEL IMPLEMENTATION 

 

4.1 Introduction .........................................................................................................45 

4.2 Implementation Media ........................................................................................45 

4.3 Implementation Details .......................................................................................46 

4.4 Example Application and Validation  .................................................................49 

4.4.1 Scheduling module ........................................................................................51 

4.4.2 Optimization module .....................................................................................53 

4.4.3 Analysis of results  .........................................................................................54 

4.5 Further Experimentations  ...................................................................................56 

4.6 Compromise Solution ..........................................................................................61 

4.6.1 Experimental example’s compromise solution ..............................................65 

4.7 Another Example Application and Validation ....................................................66 

4.8 Summary and Conclusions ..................................................................................69 

  



V 
 

 

5. CHAPTER 5: REAL LIFE CASE STUDY 

 

5.1 Introduction .........................................................................................................70 

5.2 Case Study  ..........................................................................................................70 

5.2.1Project overview .............................................................................................70 

5.2.2 Project data  ....................................................................................................71 

5.2.3 Project Scheduling .........................................................................................76 

5.3 Summary and Conclusions ..................................................................................78 

 

6. CHAPTER 6: SUMMARY, CONCLUSIONS AND  RECOMMENDATIONS 

 

6.1 Summary  .............................................................................................................79 

6.2 Conclusions .........................................................................................................80 

6.3 Recommendation and Future Work ....................................................................80 

 

7. REFERENCES  ......................................................................................................81 

8. APPENDIX I – MS PROJECT VBA SCHEDULING AND OPTIMIZATION  MODEL 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



VI 
 

List of Tables 

CHAPTER 4: MODEL IMPLEMENTATION 

 

4.1 The Example Application Activities and Predecessors .......................................49 

4.2 Quantities of Activity in Each Units  ...................................................................50 

4.3 Construction Methods’ Production Rates ............................................................50 

4.4 Construction Methods Duration in Each Unit .....................................................51 

4.5 Assigned Construction Methods Indices of Each Activity ..................................55 

4.6 Results Comparison .............................................................................................55 

4.7 Activities’ Direct Costs .......................................................................................57 

4.8 Distance Between Repetitive Units .....................................................................57 

4.9 Construction Methods’ Crews’ Transportation Speed  .......................................58 

4.10 Construction Methods’ Crews’ Transportation Cost .........................................58 

4.11 Model Results for Full Scale Experimentation  ................................................59 

4.12 Pareto Compromise and Best Alternative Solution ...........................................65 

4.13 Second Example’s Activities  ............................................................................66 

4.14 Quantities of Activities In Each Unit ................................................................67 

4.15 Construction Methods Details  ..........................................................................68 

4.16 Model Results for Second Validation Example ................................................68 

4.17 Pareto Compromise and Best Alternative Solutions for Second Validation 

Example  ....................................................................................................................69 

 

CHAPTER 5: REAL LIFE CASE STUDY 

 

5.1 Repetitive Activities of The Case Study ..............................................................74 

5.2 Project Data .........................................................................................................74 

5.3 Construction Methods’ Production Rates and Costs ...........................................76 

5.4 Construction Methods’ Speeds and Costs ...........................................................76 

5.5 Case Study Selected Results ................................................................................76 

5.6 Case Study Pareto-Compromise and Best-Alternative Solutions ........................77 

 

  



VII 
 

List of Figures 

CHAPTER 2: LITErature REVIEW 

 

2.1Network Technique Representation for Repetitive Activities Project  ................8 

2.2 Linear Schedules Example (Matlia 1997)  ..........................................................9 

2.3 Line of Balance Representation (Arditi Et. Al 2002) ..........................................13 

2.4 Flowchart of Gas Procedure ................................................................................20 

2.5 Crossover and Mutation  .....................................................................................22 

2.6 Pareto Front .........................................................................................................25 

2.7 Pareto Front Sorting .............................................................................................26 

 

Chapter3: MULTI-OBJECTIVES REPETITIVE ACTIVITIES PROJECT 

SCHEDULING MODEL  

 

3.1 Activities Start Time ............................................................................................29 

3.2 Determination of Previous Unit...........................................................................31 

3.3 Crews’ Start Time ...............................................................................................32 

3.4 Adjusting The Crew’s Earliest Possible Start Time For The Next Units ............33 

3.5 Calculating Units Delivery Dates Delay .............................................................35 

3.6 Schedule Module Overview .............................................................................. 36-37 

3.7 Pareto Front Sorting ............................................................................................39 

3.8 Chromosome Representation Example ...............................................................40 

3.9 Normalized Eculidean Norm for Non-Dominated Solutions ..............................42 

3.10 Multi-Objective Optimization Module ..............................................................43 

 

CHAPTER 4: MODEL IMPLEMENTATION 

 

4.1 Model Implantation Process ................................................................................47 

4.2 Project Data Entry ...............................................................................................48 

4.3Startup of Schedule and Optimization Modules ...................................................49 

4.4 Selection Probability Calculation Process ...........................................................54 

4.5 Results Comparison: The Proposed Model Vs. Hyari And El-Rayes(2006) ......56 



VIII 
 

4.6-A Distance Between Units  .................................................................................58 

4.6-B Crews’ Transportation Speed  .........................................................................58 

4.6-C Crews’ Transportation Cost .............................................................................59 

4.7 Results Comparison .............................................................................................60 

4.8 Optimum Set Wider View ...................................................................................60 

4.9 Original Pareto Front (N=2) (Elbeltagi Et Al. 2010)  ..........................................62 

4.10 Normalized Pareto Front (N=2) (Elbeltagi Et Al. 2010) ...................................63 

4.11 Unique Pareto Trade Off Point Eo (N=2) (Elbeltagi Et Al. 2010)  ....................65 

 

CHAPTER 5: REAL LIFE CASE STUDY 

 

5.1 Cross Section of Water Channel for Type 1 and 2  .............................................72 

5.2 Cross Section of Water Channel for Type 3 and 4 ..............................................73 

 



1 

 

Chapter 1 

Introduction 

 

 “He who every morning plans the transactions of the day and follows out that 

plan, caries a thread that will guide him through the most busy life. But where 

no plan is laid, where the disposal of time is surrendered merely to the chance 

of incidence, chaos will soon reign.” Victor Hugo – French poet & Novelist 

 

Planning and scheduling are the essence of project management and control, 

without them any project manager will be lost in a sea of activities that can‟t 

be controlled. Many methods have been proposed to schedule construction 

projects and representing them, starting from bar charts, time-scaled diagrams 

to precedence diagrams and the most commonly used Critical Path Method 

(CPM) scheduling technique, as well as PERT. 

 

However, due to the diversity in construction projects‟ types, one can‟t always 

use the same scheduling techniques to all types of construction projects.  One 

of those types is the repetitive activities projects. The repetitive activities 

projects are characterized by the repetition of sets of activities through the 

projects‟ units. The repetition of activities can be linear, (e.g. pipeline, 

railway, highway constructions) or non-linear, (e.g. high rise building, 

housing compounds) (Moselhi and Hassanein 2003).  

 

The repetition of the activities requires a scheduling technique that utilizes the 

resources assigned for the activities. Traditional network techniques, such as 

CPM, have been introduced to repetitive activities projects to schedule and 

control them. However, network techniques have been showing major 

drawbacks in repetitive activities projects (Stradel and Cacha 1982, Reda 

1990, Suhail and Neale 1994, and Hegazy and Kamarah 2008). These 

drawbacks have encouraged the researchers to develop a number of 

specialized scheduling techniques for the repetitive activities projects. These 

scheduling techniques take into consideration several parameters:  

1. Utilization of assigned resources. 
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2. Maintaining work continuity from one unit to another  

3. Meeting projects‟ deadline through achieving a proper production rates 

for the crews.  

4. Accounting for transportation of crews.  

5. Different quantities for the different units.  

 

However, most of these scheduling techniques didn‟t take into consideration 

optimizing all these factors simultaneously through one model.  

 

1.1 Research Motivation 

This research has been motivated by the lack of two aspects as follows: 

 Inadequacy of Traditional Network Scheduling Techniques 

As mentioned earlier, traditional network scheduling techniques lack the 

ability to schedule the repetitive activities projects properly. These 

techniques can be implemented to limited amount of repetitive activities, 

but in a large scale repetitive activities project, it shows a lot of 

drawbacks as criticized by many researchers. The large amount of 

activities and their relationships makes it difficult for users to understand 

and control the project through visualizing it on a PDM. Also, traditional 

network scheduling techniques doesn‟t take into account the resources 

assigned to the activities, but uses resource management techniques that 

doesn‟t guarantee work continuity or meeting the deadline using the 

required production rates of activities. Moreover, traditional network 

scheduling techniques don‟t take into consideration the location of units 

or the transportation time of crews.  

 

 Inefficient Optimization Techniques 

The need of optimization tools for construction projects is getting stronger 

as the diverse and opposing objectives of planners and project managers 

are increasing in an attempt to deliver the repetitive activities projects 

successfully. Several traditional mathematical optimization models have 

been introduced to the repetitive activities projects by researchers like 

linear programming and dynamic programming (El-Rayes and Moselhi 
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1998; and Moselhi and Hassanein 2003). However, the mathematical 

techniques don‟t ensure a global optimum solution for a multi-objective 

problem and may be trapped into local optimum solutions. Moreover, 

mathematical techniques don‟t give a set of schedules for the planner to 

choose from, but rather give one solution. 

 

1.2  Research Objectives and Scope 

The scope of this research is to schedule and optimize repetitive activities 

projects to achieve a set of optimum solutions that meets the planner 

requirements. The research aims to achieve the following objectives: 

1- Develop a flexible resource driven model to schedule the repetitive 

activities projects that: 

a. Use multiple construction methods assignment strategy  

b. Determine the transportation duration and cost of crews moving 

from one unit to the other. 

c. Determine the duration of each unit separately depending of the 

quantities and assigned crew‟s production rate. 

d. Determine the total project cost, duration and takes into account 

decreasing the total crews‟ interruption and meeting the units‟ 

delivery dates. 

2- Use a multi-objective non-traditional optimization technique, Genetic 

Algorithms, to determine the set of optimum schedules for a repetitive 

activities project. 

3- Implement the scheduling and optimiztion model to a commercially wide 

spread and friendly interface computer program to be easily used by 

planners.  

 

1.3  Research Methodology 

The methodology used to achieve the research objectives involves the 

following: 

1- Review of the recently developed repetitive activities projects‟ 

scheduling models and optimization techniques. 

2- Develop a model that takes into consideration the repetitive activities 

projects nature, i.e. transportation of construction crews, distances 
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between units, different quantities in each unit …etc. Sets of feasible 

solutions will be created and optimized through the model to 

determine the start and finish dates of activities determining the 

project total duration and cost as well as the crew interruptions and 

units‟ delivery dates delays.  

3- Apply Genetic Algorithms technique to the model to determine the set 

of optimum solution through optimizing the solution to achieve the 

multi-objective criteria needed by planners. 

4- Integrate the model with a commercial project management software – 

MS Project – using VBA macros.  

5- Apply the developed model on a case study project to validate the 

model in real life construction projects.  

 

1.4  Thesis Organization  

The research composed of four chapters in addition to the current one, and 

they are as follows: 

Chapter two (Literature Review): presents a literature review of the recent 

repetitive activities projects‟ scheduling models and optimization techniques. 

 

Chapter three (Proposed Model): presents the mathematical formulation of 

the proposed model and the factors affecting the scheduling model are stated 

and analyzed. The chapter also discusses the optimization technique used in 

this model.  

 

Chapter four (Implementation and Case Study): presents the integration 

of the developed model into a computer program and the implementation on 

a validation example drawn from the literature.  

 

Chapter five (Case Study): presents a real life case study to verify the 

model‟s effectiveness.  

  

Chapter six (Summary, Conclusion and Recommendations): presents the 

thesis conclusions and discuss the recommendations for further studies on the 

current research.  



5 

 

Chapter Two 

Literature Review 

2.1 Introduction 

Construction projects always face several challenges; completing the project on 

time, keeping the project expenses to minimum, increase the utilization of 

resources…etc. However these challenges increase with repetitive activities 

projects.  

 

Repetitive activities projects are those projects where a set of activities are 

repeated through the whole project. Repetition can be due to geometric and 

location layouts or due to multiplications of units. Repetitive activities projects 

can be classified into two main categories: linear projects, such as pipe lines, 

highway, and railways, and nonlinear such as: multiple housing and high rise 

buildings (Moselhi and Hassanein 2003). 

  

Repetition of activities requires from the project managers and planners to find 

the optimum plan and schedule that meets the project objectives through 

optimum utilization of their available resources.  

 

Through this chapter, a discussion is made on the use of commercially wide 

spread critical path method (CPM) technique and precedence diagram method 

representation (PDM) in the repetitive activities projects and its limitation. 

Additionally, a review of the latest researches on the scheduling techniques for 

the repetitive activities projects is presented.  

 

2.2 Network Techniques (CPM/PDM) 

 

Network based methods, such as the critical path method (CPM), are proven to 

be powerful scheduling and progress control technique (Arditi et al. 2002). The 

critical path method have been used in the construction projects for decades, and 

have been proven to be easy to apply to most of the construction projects types. 

It is now widely known with the help of commercial application and computer 

programs that uses the CPM technique (Mattila and Park 2003). In addition, 
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aggressive marketing by CPM software developers has also helped CPM 

dominate the market (Duffy et. al 2011). 

 

While CPM has been used on countless projects, it has been found inadequate 

when scheduling repetitive activities projects (Mattila and Park 2003). It has 

been reported that the CPM based on the network diagrams applied on the 

repetitive activities projects has many drawbacks. It was observed the inability 

of CPM to model the repetitive nature of linear construction (Stradel and Cacha 

1982, Reda 1990, Cole 1991, Rahbar and Rowings 1992, Suhail and Neal 1994, 

and Harmelink 1995).  

 

The CPM technique is a duration oriented technique that doesn‟t take into 

consideration the resources as an input drive the project schedule. A scheduling 

technique, as such, does not maintain the work continuity of resources. 

Maintaining the work continuity in a repetitive activities project is highly 

significant for the planner on moving the resources from one unit to the other 

without creating idle time to optimize the project schedule. Maintaining work 

continuity decreases the project total cost, avoiding idle time costs, as well 

decreasing the total project duration on keeping all the resources working to 

achieve the least project duration. Some limitations have been identified for 

CPM technique when scheduling continuous projects regarding the difficulty to 

maintain continuity in crew utilization (Yamin and Harmelink 2001). This 

makes the CPM scheduling techniques less effective for repetitive activities 

construction projects (Huang and Sun 2006). To maintain work continuity, 

repetitive units must be scheduled in such a way as to enable timely movement 

of crews from one unit to the next, avoiding crew idle time. (Ammar and 

Elbeltagi 2001).  

 

Moreover, CPM technique doesn‟t takes into consideration the required output 

rate of each activity type to meet the delivery dates of units since it is duration 

oriented technique. CPM technique schedules the activities of each unit as soon 

as possible dates (early start dates) based only on the logical relationships with 

preceding activities (Wassef and Hegazy 2001) regardless of the desired 

production rates required for each activity type or the resources assigned to the 
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activity. Thus may fail the project manager to deliver the units on time and 

might create idle time for the resources.  

 

In addition, CPM technique uses resource management techniques - after 

scheduling - to manage the resources assigned to activities with the priorities 

only given to the critical activities. This will result into variation delivery dates 

of project units as well as creating idle time for resources that are not on the 

critical path. Resource management with CPM is commonly done by plotting 

resource usage per day in a bar chart diagram. This graph must be viewed 

together with the CPM network to understand how moving resources from one 

activity could affect other activities (Yamin and Harmelink 2001). In addition, 

such a technique initially assume unlimited availability of resources in the 

development if a project schedule and through resource allocation require 

revision of the project schedule to comply with resource availability (El-Rayes 

and Moselhi 1998).  

 

CPM doesn‟t have any consideration for location of work in schedule (Hegazy 

and Kamarah 2008). Location of units are key items in repetitive activities 

projects, as it aids the planner to determine the transportation duration and cost 

of crews undertaking the units. 

 

Also, considering that the CPM technique is usually applied to precedence 

diagram method PDM, it shows a great drawback in representing the repetitive 

activities projects. Repetitive activities project may consists of thousands of 

activities and representing them and their relationships using PDM technique 

makes it difficult for users and planners to visualize projects‟ schedules and 

manage the work in progress as shown in Fig. 2.1.  
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Fig. 2.1: Network Technique Representation for Repetitive Activities Project 

 

On recognizing the drawbacks of applying the CPM technique to repetitive 

activities projects, a number of resource driven techniques have been developed 

to overcome these drawbacks taking into account the repetitive activities projects 

special nature. Some of these techniques are presented in the next sections. 

 

2.3 Linear Scheduling Technique 

 

A linear schedule is a visual representation for a repetitive activities project‟s 

plan. It shows the plan‟s logic and the relationships between activities. The 

schedule is displayed on a time-location diagram, with time on one axis and 

location on the other axis. Time and location can be on either axis, depending on 

which makes more sense to the construction project type. For a high-rise 

building, putting location on the vertical axis coincides with the building rising 

from floor to floor. For a highway project, putting location on the horizontal axis 

coincides with the dimensional nature of the project (Mattila and Park 2003). 

Fig. 2.2 illustrates an example of a linear schedule for a rural highway project.  
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Fig. 2.2: Linear Schedule Example (Mattila 1997) 

 

Vorester et al. (1992) suggested that there are three types of activities that can 

appear in linear schedule: linear, block and bar. However, Harmelink and 

Rowings (1998) refined the linear activity types into the following six specific 

subtypes: 

1. Continuous full-span linear (CFL) 

2. Intermittent full-span linear (IFL) 

3. Continuous partial-span linear (CPL) 

4. Intermittent partial-span linear (IPL) 

5. Full-span block (FB) 

6. Partial-span black (PB) 

 

Linear scheduling has long been regarded as a technique that provides 

significant advantages when applied to linear construction (Johnson 1981). LSM 

is also very easy to understand, and it can be used at every level of the repetitive 

activities construction projects (Yamin and Harmelink 2001). However, it has 

been viewed essentially as a graphical technique that is not as easily adaptable to 

computerization as network models (Chrzanowski and Johnston 1988). At the 

heart of network model-based scheduling methods is the ability to determine the 
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critical path. This path identifies those activities that, if their duration changes, 

the duration of the entire project changes. For linear scheduling to be accepted as 

a viable tool in project planning and management, it also must be able to 

determine a set of controlling activities (Harmelink and Rowings 1998). 

 

Harmelink and Rowings (1998) proposed an analytical basis for formulation of 

computer-based linear scheduling algorithms through determination of the 

controlling activity path from a linear schedule. The procedure to determine the 

controlling activity path in a linear schedule involves the following three steps: 

 

1) Activity sequence list: 

The activity sequence list identifies all of the possible logical sequences through 

the activities on a linear schedule. The controlling activity path is defined as the 

continuous path of longest duration through the project and defines the sequence 

of activities that must be completed as planned to finish the project within the 

overall planned duration. The activity sequence with the longest duration (or the 

least free time) contains all of the activities on the controlling activity path. 

 

2) Upwards pass 

The goal of the upward pass is to determine which activities or portions of 

activities could potentially be controlling. The process starts with the beginning 

of the project and progresses upward, identifying the path with the least free time 

between each pair of continuous full-span activities. The potential controlling 

segment of the origin activity can be determined by examining the relationship 

between these two activities. 

 

3) Backward pass 

The purpose of the backward pass is to determine which portions of the potential 

controlling segments are actually on the controlling activity path. This step can 

be compared with the backward pass used in CPM scheduling, which identifies 

activities that do not have any float.  

 

Ammar and Elbeltagi (2001) introduced an effective scheduling algorithm for 

linear and repetitive projects using CPM technique for the scheduling of 
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activities considering logic constraints while satisfying resource continuity and 

to define the controlling path.  The model benefits from an earlier analysis by 

Harris and Ioannou (1998) to determine the controlling path. The model assumes 

a constant production rate along the different repetitive units of each activity and 

calculated as follows: 

ri = 1 / di                                                                                                 (2.1) 

Where ri and di denote production rate and duration of activity i respectively. 

The model also assumes that only the most significant resource will be 

considered and initially requires the following data:  

 A precedence network for a typical unit. 

 Unit duration for each activity in the network (d). 

 The number of repetitive units (n). 

 

The algorithm is carried out by three steps:  

 Step 1: Specifying relationship type:  

This step specifies the relationship type among different activities, which 

is considered the most important aspect to maintain the resource 

continuity usage. To specify the relationship between two consecutive 

activities, the production rate of each activity is compared with that of its 

successors. The production rate of the successor can be one of the 

following cases: 

o Greater than the current activity‟s production rate, thus will create 

a Start-to-Start (SS) relationship with a lag time equals to the 

current activity‟s duration.  

o Less than the current activity‟s production rate, thus will create a 

Finish-to-Finish (FF) relationship with a lag time equals to the 

successor activity‟s duration. 

o Equal to the current activity‟s production rate. In this case, any of 

the above cases can be used with a FF or SS relationship with 

consideration to the lag time.  
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 Step 2: Network scheduling 

After obtaining the data from the previous step, network calculations 

similar to that of CPM technique are done. Forward path calculations are 

done to determine the early times of each activity, while the backward 

path determines the late times. Also the critical activities are specified. 

The critical activities will be checked in Step 3 to specify logic and 

resource critical units.  

 

 Ste 3: Determining controlling path 

After timing all activities are determined, the critical units (logic and 

resource) are specified based on the activities‟ production rates. The 

production rate of each activity is compared with that of its preceding and 

succeeding activities and by applying a set of rules the controlling path 

can be easily determined.  

 

 

2.4  Line of Balance Scheduling Technique 

 

Line of balance (LOB) is one of the earliest scheduling techniques created for 

repetitive activities projects. It was first used by the US Navy in early 1940‟s as 

a graphical scheduling technique to control the production of warships. Several 

researchers have been attempted to implement it in the construction industry.  

 

Line of balance is a graphical resource oriented scheduling technique that takes 

into consideration the special nature of the repetitive activities projects, 

respecting the units‟ locations, usage of multiple crews and shows the production 

output rate of each activity in the project. The LOB chart also shows the crew 

movement from one unit to other.   

 

Line of balance scheduling chart consists of two axes, on the horizontal axis the 

duration of the project, and on the vertical axis the units repeated through the 

project. Each activity repeated through the units - using one or more crew - is 

connected together forming the activity line as shown in Fig. 2.3.  
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Fig. 2.3: Line of Balance Representation (Arditi et al. 2002) 

 

Lumsden (1968) incorporated the network logic by linearly propagating the 

CPM start and finish dates for the activities of the first repetitive unit with a rate 

that would achieve the project completion date. The schedule is obtained through 

three steps: 

1. Calculate the start and finish dates of the first repetitive unit using the 

CPM technique. 

2. Calculate the required progress rate based on the competition date of the 

first unit and project deadline as given in Eq. (2.2);  

R = units – 1 / (Deadline-CPM Duration)                             (2.2) 

3. Apply the same progress rate to all activities.  

 

To achieve the required progress rate for each activity through the different 

units, it is required to determine the number of crews needed to be assigned to 

these activities. The number of crews (C) is determined by multiplying the 

progress rate (R) by the units‟ duration (d) as presented in Eq. 2.3;  

C = R X d                                                        (2.3) 

 

However, on calculating the number of crews required for each activity type, the 

number might needs to be rounded up and thus creating a new progress rate that 

may interfere with the project required rates. Lumsden suggests that each project 

has a “Natural Rhythm, and that any deviation from that rhythm results in a less 

than full utilization of resources. Also, in the previous Eq. (2.2), it was assumed 
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that the quantities through the units are the same and the duration would be the 

same, while in practice, the quantities in each repetitive activity is not the same 

and the production rate of each crew is not equal, and this assumption limits the 

applicability of the LOB method (Huang and Sun 2006).  

 

Moselhi and Hassanein (2003) presented a model to optimize repetitive activities 

projects and overcoming the regular LOB drawbacks by employing a resource 

driven and traditional network scheduling techniques. The proposed model 

calculates quantities of each unit and the duration corresponding to the assigned 

crew‟s production rate.  

 

The proposed model is flexible with the number of predecessors of each activity 

and their relationships. As well as it calculates the transportation duration and 

cost of each crew moving from one unit to the other. 

 

The proposed model consists of four main steps: 

1. Dividing the project into sections based on the location of units and the 

possible start time of each unit.  

2. Determining the quantities of each section. 

3. Determining the optimum crew to be assigned to this location based on a 

series of pre-entered indices. 

4. Calculation of the section duration.  

 

The model is said to be very efficient, yet it‟s a single objective model, and deals 

with the multi-objective requirements as a function in the duration criteria, 

which may give local optimum solutions. 

 

Hegazy et al. (2004) developed a LOB model for scheduling infrastructure 

projects. The model created in this work used Genetic Algorithms as an 

optimization tool. The model allows for up to three construction methods, each 

consists of different crew, material and sub-contractors formation.  

 

The model allows for site order change, which can improve the overall project 

duration concerning the transportation time, as well as decreasing the crews‟ 
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interruptions to increase production rate. It takes into consideration the seasonal 

changes and its effects on the production rate of the crews at each construction 

site. 

 

However, the model objective function is to minimize the total construction cost, 

thus it‟s a single objective model, even though the total construction cost 

includes direct cost, indirect cost, liquidated damage, incentive for early 

completion and crew moving costs but it neglected the project total duration as a 

main objective.  This may give a local optimum or a vague output and will not 

give the project managers and planners the flexibility of choosing a plan that 

meets their project‟s requirements.  

 

Hyari and El-Rayes (2006) introduced a model based on linear scheduling 

technique (LSM) and Genetic Algorithms as an optimization tool to find the 

optimum set of plans in a tradeoff between total project duration and work 

continuity.  The model used the date entered by the user to determine the logical 

relationship between repetitive activities, the quantities of work for each unit and 

the available crew formations and their corresponding production rates.  

 

The model consists of four main steps:  

1. Calculating the duration of the activity depending on the quantities of the 

unit and the production rate of the crew. 

2. Determination of the earliest possible start time for a crew to be assigned 

to a unit. 

3. Determination of the activities earliest possible start time depending on 

the crew start time and logical start time.  

4. Determination of project total duration and project total interruptions 

 

The model can be easily implemented to most of the repetitive activities 

projects, however it didn‟t consider transportation duration of crews from one 

unit to the other. Also, due to the research scope, the model doesn‟t represent all 

the parameters a project manager requires like cost, delivery dates…etc.  
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Huang and Sun (2006) introduced a practical non-unit based repetitive activities 

scheduling model, as it is very rare to have identical repetitive units in a 

repetitive activities project. They organized the project into activity groups and 

resources to be assigned to each group.  

 

Huang and Sun identified, as well, the need to reconsider the hard relationship 

between activities in the same activity group. For example, there shouldn‟t be 

any hard relationship between foundations activities in different spans, the 

relationship should be more generalized to give a more realistic schedule. This 

means that in an activity group there‟s no specific order to undertake them. 

  

The proposed model also allows assigning more than one resource to the activity 

group to carry out different units in the activity group. Moreover, the model 

maintains the work continuity of the resources assigned to decrease the idle time 

of resources. The model as well takes into consideration the mobilization and 

demobilization of crews moving from one unit to another unit.  

 

The scheduling model is carried out in three steps: 

1. Identify activity groups 

2. Development of resources chains 

3. Position resources chains for project scheduling. 

 

However, they considered only single objective for the model, accounting only 

for total project duration and neglecting other objectives that may change the 

optimum solution.  

 

Ipsilandis (2007) presented a multi-objective programming model for repetitive 

linear projects. Defining the complex nature of linear repetitive projects and the 

various objectives a project manager needs for his project. Ipsilandis defined the 

five objectives needed for this type of construction projects to minimize total 

project duration, total work-break time, unit completion time, total cost of work-

break time, and delay cost in unit completion. 
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Ipsilandis also defined some general parameters that are common for repetitive 

linear projects: all tasks are performed in all units; set of dependencies are fixed 

in all the units, and a task can‟t be performed in any project unit before the same 

task is completed in the previous unit. This means that the model doesn‟t take 

into consideration assigning more than one resource to more than one unit in an 

activity group. In addition, the model solves the multi-objective criteria in a 

single objective cost function. 

 

Elbeltagi and ElKassas (2008) developed a cost optimization scheduling model 

for repetitive activities projects. The model consists of two modules; a 

scheduling module and a cost optimization module. the model is capable to (1) 

schedule repetitive activities projects with typical and non-typical repetitive 

activities, (2) calculate the total project cost including direct, indirect and 

interruption costs and (3) generate optimum or near optimum project schedule.  

 

In their work, the scheduling module consists of two stages; an initial stage and a 

refinement stage. In the initial stage, the scheduling module creates a schedule 

that respects the logical start time of the activity from the relationship with other 

activities, and the start time of the earliest possible available crew. After 

scheduling, it calculates the interruptions of each activity. In the refinement 

stage, the scheduling module shifts the activities with crew interruptions to 

minimize the interruptions in an attempt to maximize the work continuity. The 

cost optimization module used the genetic algorithms to determine a near 

optimum solution for the project schedule.  The variables for the genetic 

algorithm optimization module are the construction indices assigned to the 

activities.  

 

One notable effort was developed by Duffy et al. (2011) in creating a linear 

scheduling technique that takes into consideration the production rate variability 

based on working windows. The proposed model is an addition to a previous 

research proposed by Yamin and Harmelink (2001).  

 

Understanding that construction crews have variable production rates depending 

on the changing conditions of the location of units, an adjustment on the duration 
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of each unit should be calculated depending on the activity performance index in 

the corresponding working window.  

 

Working windows are a grid approach to organize the project units based on 

their locations and time. Each working window has its variables that affect the 

production rate of the activities. Duffy et al. (2011) classified the variables that 

affect the production rate into four categories: 

 General variables; that are not related to either time or location. For 

example; number of workers, construction methods.  

 Time variables 

 Location variables 

 Time-location variables: like weather, and site conditions. 

 

Determining the activity performance index depending on the working window 

variables, the model can not obtain the actual production rate of a crew assigned 

to an activity as well as determining the time remaining and distance traveled for 

each activity in the grid. 

 

The model is very easy and can be implanted in commercial software as it is 

easy for the planners to use. However, it optimizes only a single objective 

function. Also it only used production rates with linear quantities only (m and 

feet), while there are other production rates that will give an error or illogic 

calculations like m
3
 and kg etc… Moreover, not all crews for each activity are 

affected with the same variables (location, time, general or time-location 

variables) in the same way. 

 

2.5 Genetic Algorithm 

Through the researches made in the last decade, it was found the need of an 

optimization tool to deal with the complex, diverse and conflicting variables and 

objectives. Different tools are used to find the optimum solutions for the 

repetitive activities project scheduling. These tools varied from dynamic 

programming to the use of Artificial Intelligence (AI) models. With the recent 

implementations of AI in construction management problems, Genetic 
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Algorithms (GAs) showed great efficiency in searching for global optimum 

solutions for the complex problems. (Li and Love 1997, Feng et. al. 1997, 

Hegazy and Ayed 1999, Hyari and El-Rayes 2006, Elbeltagi et. al. 2005).  

 

Genetic Algorithms (GAs) are inspired by biological systems‟ improved fitness 

through evolution (Holland 1975). GAs form a set of random solutions that 

search the solution space for the optimum set of solutions through evaluating the 

solutions depending on their fitness.  

 

2.5.1 GAs structure 

 

Genetic Algorithm is a metaheuristic that simulates Darwin's theory of evolution 

and the survival of the fittest. The solutions in GA are subject to evolution like in 

nature through crossover of inherited genes and mutation. These solutions are 

called chromosomes, and each chromosome consists of numbers of genes which 

carries the values of the problem‟s decision variables. Genes‟ values can be 

binary or real number depending on the problem at hand. The chromosomes‟ 

length is equal to the number of decision variables in the problem. (Elbeltagi et 

al. 2005). 

 

Each chromosome is evaluated to calculate its fitness depending on the objective 

function(s). Good chromosomes are the ones that have high fitness value in case 

of maximization problems, or low fitness value in case of minimization 

problems. Those good chromosomes (solutions) have a higher probability to 

create offspring chromosomes that may have better fitness. 

 

The number of chromosomes generated represents the population size. The population 

size usually affects both the run time and the precision of the solution. It is determined by 

trial and errors. A whole complete cycle of creation of chromosomes, their evaluation 

against the fitness function and finally the selection of the fittest, is referred to as one 

generation (iteration). The number of generations also affects both the run time and the 

precision of the solution, and likewise the population size. The appropriate number of 

generation is determined experimentally (Elbeltagi et al. 2005). 
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The first generation of chromosome yield a number of offspring generation. Only good 

ones are selected and the rest are discarded. The offspring generation then undergoes 

reproduction, crossover and mutation operations in an attempt of enhancing the solution. 

This process continues until the termination condition satisfied as shown in Fig. 2.4. 

(Elbeltagi et al. 2005). 

 

Selection utilizes roulette wheel to contain all individuals in the population and their slots 

in the wheel are sized in proportion to their relative fitness values. When each time a 

decision has to be made, a simple spin of the wheel yields the selected candidate. In this 

way, the random nature of GAs is maintained and chromosomes with a high degree of 

fitness can still have a higher chance to survive in succeeding generations. Once the 

selection is made, an exact replica of the string is entered into a mating pooling, waiting 

for further genetic operations (Elbeltagi et al. 2005).  

 

Fig 2.4: Flowchart of GAs Procedure 

 

Defining the fitness functions (Objective functions) 

Generate initial population 

Determining the fitness of each chromosome 

Select parents 

Crossover 

Mutation 

Convergence check 

Done  
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2.5.2 Genetic operations 

 

Crossover is the main genetic operator in GAs which passes the genes from 

two parents chromosomes to two new offspring chromosomes mimicking 

marriage in nature. Randomly choosing the parents as the best of the 

population will most likely yield to have a better offspring through crossover.  

The randomizing of selecting the parents chromosomes is guided by their 

fitness; the fittest chromosomes are more likely to be selected as parents for 

the next population. However, not all the chromosomes in the population will 

be subjected to crossover operation; this is controlled by a crossover 

probability (Pc). This crossover probability defines the number of 

chromosomes that will undergo crossover (population size X Pc), and the 

priority is given to the most fit parents chromosomes. However, the more the 

crossover probability index is the more the time it will take to complete the 

computations, which might be wasted in discovering undesired solution 

space. In the other hand, the less the crossover probability index is the more 

probability the solution will be trapped into local optimum region (Elbeltagi 

et al. 2005). 

 

Mutation is another genetic operation that helps avoiding local optimum 

solutions by suddenly and randomly altering the genes value between its 

upper and lower bounds in some of the chromosomes. Although mutation can 

be considered a secondary GAs operation, it is essential to ensure discovering 

more into the solution space.  Moreover, mutation prevents premature 

convergence by increasing the population diversity (Elbeltagi et al. 2005). 

 

Like the crossover process, only a number of chromosomes will undergo the 

mutation process, these chromosomes are selected depending to the mutation 

probability (Pm). Thus, the number of chromosomes that will undergo 

mutation is equal to the multiplication of the population size by the mutation 

probability (population size X Pm). However, the more the mutation 

probability index is the more computation time it will take the processor, and 

also the more likely the process yield into losing vital and fit solutions. In the 

other hand, the less the mutation probability index, the more likely the 
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problem will face a premature convergence and local optimum solutions 

(Elbeltagi et al. 2005). Fig. 2.4 illustrates the overall GA‟s operations, while 

Fig. 2.5 illustrates the crossover and mutation process. 

 

Figure 2.5: Crossover and Mutation  

 

2.6 Multi-Objective Optimization 

 

Single objective problems optimization can easily be achieved through one 

maximum/minimum objective function. However, for a multi-objective 

optimization problem, the functions can be conflicting and diverse. Thus, 

there is no single optimum solution, and instead there are a set of optimum 

solutions for planner to choose from. Decision makers desire solutions that 

simultaneously optimize multiple objectives and obtain an acceptable trade-

off amongst objectives (Dehuri and Cho 2009).  

 

Conventional mathematical optimization techniques such as dynamic 

programming and linear programming are not suitable for solving a multi-

objective problem. These techniques solve an optimization problem by one 

point (one answer). Also, conventional mathematical techniques can‟t 

discover a disconnected feasible region and would be trapped in a local 

optimum solution.  

 

To solve a multi-objective optimization problem, different methods have 

been used such as; simple aggregation, weighted aggregation and Pareto 

optimal solution set. 
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2.6.1 Simple aggregation 

 

Simple aggregation methods converts a mutli-objective problem to a single 

objective one by aggregating all objective in a single objective function as 

shown in Eq. (2.4) 

Min (max): F = f1 + f2 + ….. + fn                                                            (2.4) 

 

Optimization using simple aggregation gives a single optimal solution. 

However, the relative importance of the objectives is not considered in this 

approach. Beside this, one of the objective functions may be, especially if its 

value is large, the dominant in the over objective function and the smallest 

objectives may be ignored (Elbeltagi et al. 2010). 

 

2.6.2 Weighted aggregation 

 

Weighted aggregation is a modified simple aggregation method, where a 

multi-objective problem is transformed into a single objective function by 

applying a function operator to the objective vector (Baumgartner et al. 

2004). These functions are designed by the decision maker to achieve his/her 

preferences. A linear combination of the objective functions sample is shown 

below: 

 

Min (max): F = w1f1 + w2f2 + …. + wnfn                             (2.5) 

 

Where the weights (wi) indicate the relative importance of the function vector 

to the decision maker and the sum of weights are equal to unity. The values 

of the weights are problematic, and can‟t be determined without prior 

information and parameters of the problem at hand.   

 

This method is simple, and achieves an optimum solution for the planner 

with much less programming effort. Also, achieve the solution that is more 

likely to be preferred to the planner if the weights are entered properly. 
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However, both of the above mentioned multi-objective optimization methods 

have several drawbacks (Elbeltagi et al. 2010): 

 Only a single optimal solution can be obtained due to the use of a 

single objective function. 

 Trade-offs between objectives can‟t be evaluated in aggregation 

objective functions 

 For weighted aggregation, the solution is highly dependent on the 

weights, and any lack of information may lead to improper weights 

and undesirable optimal solution.  

 If the feasible region is discontinuous, these methods will be trapped 

in local optimum solution. 

 Objectives are usually of different measuring units which may give a 

vague solution.  

 

2.6.3 Pareto Front 

 

The Pareto Front concept is to find a set of optimum solutions so the decision 

maker can choose from the most desirable. A solution belongs to a Pareto set 

(set of non-dominated solutions) if there is no other solution that can improve 

at least one of the objectives without degradation of any other objective.   

 

Using Pareto Front sets has several advantages; (1) it gives the decision 

maker a set of optimum and desirable solutions to choose from, (2) unlike the 

other methods, it doesn‟t ignore the trade-off between objective functions, (3) 

it discovers more of the solution space with respect to the objective functions 

which avoids local optimum solutions, and (4) it can discover a 

discontinuous feasible solution space.   

 

Figure 2.6 shows the concept of Pareto optimality considering two 

minimization objective functions; duration and cost. All the solutions in the 

feasible region space - marked by dashed line - satisfy the problem 

constraints. But only the Pareto optimum solutions are on the Pareto Front 
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marked by solid line in the left lower corner. The set of Pareto optimal 

solutions are called Pareto Front.   

 

 

To measure the fitness of solutions in any GAs iteration, the Pareto Front 

Sorting may be used efficiently (Fig. 2.7). Pareto Front sorting sorts different 

feasible solutions into fronts that determine their ranks. In Pareto Front 

sorting, the set of non-dominated solutions defining the first Pareto Front is 

identified and assigned a rank of unity. This set is then isolated and the other 

solutions are compared to determine their non-dominated solutions and this 

new set is ranked by two. The sorting process is repeated until the entire 

population is ranked.  

 

The rank obtained from Pareto Front sorting helps to determine the fitness of 

the solution. The fitness of each solution i is calculated by Eq. (2.6) 

(Elbeltagi et al. 2010). 

Fitnessi = 1 / ranki                                          (2.6) 

Where fitnessi and ranki are the new fitness value and rank number for the 

solution i.                                

Duration 

Cost  

Fig. 2.6: Pareto Front 

Feasible Region 

Pareto Front 
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2.7  Summery and Conclusions  

 

This chapter presented a review of the repetitive activities projects and their 

need for a scheduling technique that suits their nature. The use of traditional 

network techniques has been presented and their drawbacks have been 

annotated in this chapter. The use of line of balance scheduling technique is 

also presented along with some of the latest researches made in this area to 

optimize the use of line of balance combined with CPM technique. The use 

of genetic algorithms has been noticed to be used efficiently in the 

optimization of the repetitive activities project scheduling. However, the 

usages of multi-objective evaluation of solutions have been needed.  

 

  

Duration 

Cost  

Fig 2.7: Pareto Front Sorting 

First Front 

Third Front 

Second Front 

Fourth Front 
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CHAPTER 3 

MULTI-OBJECTIVIES REPTIVITE ACTIVITIES PROJECT 

SCHEDULING MODEL DEVELOPMENT 

 

 

3.1 Introduction  

This chapter presents the development of a multi-objective scheduling model for 

repetitive projects. The proposed model consists of two modules; scheduling and 

optimization modules. In this chapter, an explanation of the proposed model is 

presented. The mathematical formulation and logic of the scheduling module, as 

well as the optimization module are explained. The objectives of the model and 

factors are also shown.   

 

3.2 Model Overview 

The proposed model comprises of a scheduling and optimization modules that 

takes into consideration several factors that affect the schedule. These factors 

are; assigned construction method, duration, cost, work continuity and delivery 

dates of units. On meeting the delivery dates of units, the total project duration 

might decrease, however it might as well create interruptions and affect the work 

continuity as well as increasing the cost. Also, decreasing project cost might 

produce a slow progress rate and increase the total project duration. In an 

attempt to overcome such problems, a new model is proposed to assign 

appropriate construction methods to different activities to achieve the following 

objectives: 

 Minimization of total project duration. 

 Minimization of total project cost. 

 Minimization of total project interruptions (maximum work 

continuity). 

 Minimization of units‟ delivery dates delays.  

The scheduling module of the proposed model is a resource driven module that 

develops a schedule for a repetitive activity project while respecting logical 
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relationship constraints as well as other practical factors taken into consideration 

as follow:  

 The ability to have different quantities to be undertaken at each 

unit for the same activity.  

 Each activity type can have different construction methods; each 

construction method has its own production rate and direct cost.  

 The ability to start two or more units of the same activity type at 

the same time using different construction methods.  

The optimization module utilizes a multi-objective genetic algorithm through 

assigning the different construction methods to the project activities.  

 

3.3 Model Development 

 

The proposed model, as mentioned before, consists of scheduling and 

optimization module. In the scheduling model, each activity (i) can have 

different number of construction methods (m) that can be assigned to the activity 

in any unit (j). These construction methods are associated with different direct 

costs and production rates, thus creating different activity durations when 

assigning them to different units. Accordingly, by assigning different 

combination of construction methods to different activities‟ units, different 

schedules are developed. 

 

3.3.1 Scheduling Module 

The scheduling module consists of four coherent stages that aim to create a 

schedule depending on the assigned crews‟ to the different activities in each unit.  

The scheduling module also calculates: 

 The total project duration 

 The total project cost 

 The total project crews‟ interruptions 

 The total units‟ delivery delays  
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1) calculating the activities‟ scheduling dates 

This step determines the activity‟s start (Si,j) and finish (Fi,j) dates 

depending on the assigned construction method and the logical 

relationship with preceding activities.  

 

The start date (Si,j) is obtained using Eq. 3.1 by determining the latest of 

both logical relationship start date (SLi,j), calculated from a regular CPM 

calculations in Eq. 3.2, and the earliest possible start date of the crew 

(SCi,j). 

Si,j = Max [SLi,j , SCij ]                                               (3.1) 

SLi,j = Fi-1, j   ± lag                                                  (3.2) 

In figure 3.1, two activities are carried out using two crews. Crew one is 

assigned for activity two in the third unit. The start time of this activity 

(S2,3) will be the latest of the predecessor finish date, or the logical start 

time (SL2,3) and the crew start time (SC2,3). Although the preceding has 

finished early, the activity will not start until the assigned crew is 

available to work on the current activity.  

 

 

 

Time 

 Crew 2 

 Crew 1 

 Crew 2 

Unit  

1 

2 

3 

4 

8 

7 

6 

5 

Fig. 3.1: Activities‟ Start time  

 Crew 1 

Activity’s start date (S2,3) is the latest of 
logical start time (SL2,3) and  crew start time 

(SC2,3) 

 Crew 1 

 Crew 1 

 Crew 2 

 Crew 
2 

Legend: 
Activity 1 
Activity 2 
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The crew‟s earliest possible start (SCi,j) is obtained through determining 

the previous unit (PU) finish date (Fi,PU) that the crew have undertook, in 

addition to its corresponding transportation duration (TDPU,j) from the 

previous unit (PU) to the current one, the crew‟s earliest possible start 

date can be obtained using Eq. 3.3. 

SCi,j = Fi,PU + TDm Pu,j                                                                            (3.3) 

Depending on the construction method, assigned to activity, production 

rate and the quantities of work to be undertaken, the duration of the 

activity can be calculate using Eq. 3.4.  

 

Di,j = Qi,j / Pm,i                                                                   (3.4) 

 

Where Di,j is the duration of activity (i) in unit (j). Qi,j, is the quantity of 

work of activity (i) in unit (j), Pm,i is the production rate for construction 

method crew (m) that can be assigned to activity (i). 

 

The finish date is calculated by adding the duration of the activity to its 

start date as shown in Eq. 3.5.  

Fi,j = [Si,j + Di,j ]                                         (3.5) 

2) detection of the previous unit 

Determination of the previous unit that the construction method‟s crew 

has been working at before the current one aids the module to determine 

the transportation duration (TD) and cost (TC) for the assigned crew. This 

step objective is to determine the previous unit (PU), if it exists. 

 

Detection of the previous unit is obtained through the following two 

steps: 

a. determining if the assigned crew have been working at any unit 

before the current one using a Crew Start Check index (CSCm) 

 

b. If the previous step equal “Started” then by checking backward 

through the preceding units determining their finish dates (Fi,j) and 

compare them with the current unit‟s crew‟s earliest possible start 
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date (SCi,j), if the two dates are equal then the preceding unit will 

be the previous unit (PU) that the crew has been working at.  

 

These steps are illustrated in a flow chart in the following Fig. 3.2. 

 

 

Fig. 3.2: Determination of Previous Unit (PU) 

 

3) Transportation duration and cost 

Transportation from one unit to the other is a crucial element in 

scheduling a repetitive activity project. Thus, it must be 

calculated according to the assigned construction method‟s crew 

type (m) and the previous unit (PU) it worked at before, for each 

two units have different distances, so there would be different 

transportation duration (TD) and cost (TC). 

No 
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X = j 
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PU = X 
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End 

CSCm = Started 
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X = X - 1 
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The transportation duration (Fig. 3.2) of any crew is obtained 

through Eq. 3.6 by dividing the distance travelled between the 

two units by the average speed of the crew. 

TDm PU,j  = DS PU,j / SPm                                                             (3.6) 

 

Where, m is the construction method‟s crew index, j is the current unit, (PU) is 

the previous unit, (DS) is the distance to be travelled by the crew from one unit to 

the other and (SP) is the average speed of the construction method‟s crew (m).  

The transportation cost (TCm PU,j) of any crew (m) from one unit (PU) to 

the other (j) is obtained through multiplying the transportation distance 

(TS) between the two units by the cost of transportation per unit distance 

as shown in Eq. 3.7. 

TCm PU,j  = TS PU,j * CTm                                                          (3.7) 

Where, (m) is the construction method‟s crew index, (j) is the 

current unit, (PU) is the previous unit and (CT) is the cost of 

transportation of the construction method‟s crew (m) per unit 

distance.  
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Fig. 3.3: Crews‟ Start Time 

 Crew 1 

Transportation duration (TD1 1,3) 

from unit one to three for crew 1 
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4) Adjusting the crew‟s available start dates in the upcoming units 

After scheduling an activity (i) in unit (j) using the assigned 

construction method‟s crew (m), the earliest possible start dates 

for the following units of the same activity using the same 

construction method should be adjusted.  

 

The adjustment is obtained through checking the upcoming units of the 

same activity type and changing their earliest possible start date (SCi,j) for 

the same construction method‟s crew (m) to the finish date of the current 

activity (Fi,j) as shown in Fig. 3.4. 

 

Fig. 3.4: Adjusting The Crew‟s Earliest Possible Start Time for the Next Units 

 

At this point, the scheduling module have created a practical plan that takes into 

consideration the production rate of the assigned construction method‟s crew, its 

transportation duration and cost, detection of the previous unit that crew have 

been undertaking and changing the crew‟s earliest possible dates for the same 

activity in the next units.  

The scheduling module also calculates: 

 Total project duration 

 Total project cost 

 Total project crews‟ interruptions 

 Total units‟ delivery delays  

 

Yes 

No 

X = I + 1 

SCi,x = Fi,j 

X>= I 

End 

X = X + 1 
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1) Total project duration  

The total project duration equals to the maximum finish date of the last 

activity in each unit. This can be represented as in Eq. 3.8:  

TPD = Max [Fi,J ]                                                 (3.8)            

 Where, TPD is the total project duration.  

2) Total project cost 

The total project cost consists of three parts: direct cost, indirect cost and 

transportation cost. Both the direct and transportation cost are 

construction method‟s dependent, while the indirect cost is a duration 

dependent cost as shown in Eq. 3.9.  

TPC = ∑[ CCm,i,j   + TCmPU,j  ] + TPD * IC                     (3.9) 

 Where, (TPC) is the total project cost, (CC) is the construction 

methods (m) cost assigned to activity (i) in unit (j), (IC) is the indirect 

cost index per day.  

 

3) Total project interruptions 

Interruptions may occur due to the difference between the logical 

start time (SLi,j) and the crew‟s earliest possible start date (SCi,j). 

It needs to be calculated and minimized (through the optimization 

module) to increase the utilization of resources.  

 

Interruptions are only found when the resources are idle, and not 

being used or undertaking activities. This may happen as the 

logical start date is greater than the crew‟s earliest possible start 

date. The module first check if there would be interruptions in the 

first place, and then calculates the interruptions as shown in Eq. 

3.10.  

If SLi,j > SCij then Interi,j  = [SLi,j - SCij ]                    (3.10) 

Where Interi,j  is the interruption in activity (i) at unit (j).  

The total project interruption is calculated using Eq. 3.11. 

TPI = ∑ Interi,j                                                                      (3.11) 

   Where, TPI is the total project interruptions. 
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4) Total project units delivery delays 

Meeting Delivery dates of project‟s units is an important key in a 

successful repetitive construction project. Thus, it is important to 

calculate any units‟ delivery delays.   

 

 

First, the module check for each activity if there‟s a required 

finish date. If the check is true, then it checks if there‟s any 

delivery delay and calculates it as shown in Fig. 3.5. 

 

 

Fig. 3.5: Calculating Unit‟s Delivery Dates Delays 

 

 

Where, ADDi,.j is the activity (i) at unit (j) required delivery date, DDi,.j is 

the delivery delay for activity (i) in unit (j).  

 

The total project delivery delay is then calculated through Eq. 

3.12.  

TPDD = ∑ [ DDi,.j ]                                     (3.12) 

 

 

A flow chart showing an over view on the scheduling module is presented Fig. 

3.6.   
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No 
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Fig. 3.6: Scheduling Module Overview 
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Fig. 3.6: Scheduling Module Overview (Continued) 
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3.3.2 Multi-Objective Optimization Module 

The proposed scheduling module formulation is suitable for generating repetitive 

activities projects‟ schedules depending on the indices of the construction 

methods assigned to the activities in the different units. However, due to the 

great number of feasible solutions (schedules) depending on the combinations of 

construction methods assigned to different activities each has its own outputs 

(duration, cost, interruptions and units delivery delays), An optimization module 

is necessary to select the optimum set of schedules for the project manager to 

choose from. The optimization module as such requires identifying the objective 

function, the optimization variables and the optimization constraints.  

 

3.3.2.1 Objective functions 

The optimization of the proposed model is carried out through a four objective 

functions; (1) minimize total project duration, (2) minimize total project cost, (3) 

minimize total project interruptions, and (4) minimize total project units‟ 

delivery delays. These objective functions are all calculated from the scheduling 

module for each schedule as mentioned in the previous section. The solutions 

(schedules) are evaluated through multiple dimensions, multi-objective 

optimization functions as given in Eq. 3.13. 

Min. Total Project Duration: FI,J 

Min. Total Project Cost: ∑[ ACCm,i,j   + TCmPU,j ] + TPD * IC            (3.13) 

Min. Total Project Interruptions: ∑ Interi,j  

Min. Total Project‟s Units‟ Delivery Dates Delays: ∑ DDi,j 

 

In order to evaluate the solutions (schedules) based on the four objectives, the 

Pareto-Front sorting concept (Fig. 3.7) is used. The Pareto-Front sorting process 

starts by identifying a set of non-dominated solutions, which will be ranked as 

the first Pareto Front. Then the process continues to rank the other schedules to 

the second Pareto Front and so on till all the solutions are ranked to their fronts. 

Consequently, the fitness of any solution equals the inverse of its rank (Pareto 

Front index) (Beradi et al. 2009, Li and Zhang 2009, Elbeltagi et al. 2010).  
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A solution (schedule) with a lower-numbered rank is assigned a higher fitness 

than that for a solution with a higher-numbered rank. Accordingly, for a 

minimization problem, the fitness of each solution i is calculated by Eq. 3.14 

(Elbeltagi et. al. 2010). 

Fitnessi = 1 / ranki                                          (3.14) 

Where fitnessi and ranki are the fitness value and rank number for the solution 

i. 

The main goal of the multi-objective optimization process is to achieve a 

continuous improvement of the solutions quality within successive iterations.  

 

 

 

 

 

 

 

 

 

 

 

       f1 

     

f2  

Fig. 3.7: Pareto Front Sorting 
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3.3.2.2 Optimization variables 

As earlier mentioned, the independent variables in the proposed model are the 

construction methods assigned to each activity. Each construction method‟s crew 

has its own production rate, direct cost, and available start date. The number of 

variables for each solution (schedule) is I * J, where I is the number of activities 

types and J is the number of units. For example, a project consisting of five 

activities repeated in four units will produce twenty variables. Assuming a four 

construction methods available for each activity type will result to a solution 

space of 4
20

 possible schedules (four construction methods assigned to the 

twenty activities). Therefore, a manual optimization attempt for a small 

repetitive activity construction project will result to an enormous number of 

solutions and very tedious work to determine the optimum solution due to the 

highly dynamic nature of the model. Optimization variables‟ values are 

represented in genetic algorithm by the genes‟ values, and the space where the 

gene is found is the activity, and the chromosome length is the total number of 

genes (decision variables) as shown in Fig. 3.8.  

 

Fig. 3.8: Chromosome Representation Example 
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Activity 
 Gene 

value 
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3.3.2.3 Optimization constraints 

Three constraints have been introduced to the model to keep the solutions 

(schedules) feasible, these constraints are as follows: 

1. The construction methods‟ indices are limited to the positive integer 

number of methods available to each activity. 

2. The actual number of crews used in each activity is limited to the number 

of repetitive units, since this model assumes that only one crew works in a 

single unit. 

3. Precedence constraint; the start time of an activity must be greater than or 

equal to the finish date of the predecessor.  

 

3.3.2.4 Convergence criterion 

In order to determine the convergence of the optimization process, the following 

mechanism is proposed. After sorting all solutions in generation t, the 

normalized Euclidean norm (NEN) of the non-dominated solutions (First Pareto 

Front) is calculated to determine the nearest solution to the origin. For each non-

dominated solution k in generation t, the NEN value is calculated using Eq. 3.15 

and Fig. 3.9 for a two criteria optimization problem (Sanad 2011). 
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TPDD

TPDD

TPI

TPI

TPD

TPD

TPC

TPC
NEN

kkkkt

k
                   (3.15) 

Where: TPCk, TPDk, TPIk, and TPDDk are the cost, duration, interruption, and 

units delivery dates delays objective function values of solution k respectively. 

TPCmax, TPDmax, TPImax, and TPDDmax are the maximum cost objective, the 

maximum duration objective, the maximum interruption objective, and the 

maximum delivery dates delay objective in the non-dominated solutions 

respectively. 
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Fig. 3.9: Normalized Euclidean Norm for Non-Dominated Solutions (Sanad 2011) 

 

For each generation, the nearest non-dominated solution to the origin (the non-

dominated solution with the minimum NEN) is already identified. Then, the 

difference between the nearest solution of the current generation and the nearest 

solution of the previous generation (
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) is calculated using Eq. 3.16 (Sanad 

2011). 
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where: t

n
TPC , t

n
TPD , t

n
TPI , and t

n
TPDD  are the cost, duration, interruption, and 

delivery dates delays objective function values, respectively, of the nearest 

solution in generation t. 1t

n
TPC , 1t

n
TPD , 1t

n
TPI , and 1t

n
TPDD  are the cost, 

duration, interruption, and delivery dates delays objective function values, 

respectively, of the nearest solution in the previous generation t-1. 

Convergence of the evolutionary process occurs when the 
1t

t
Diff

 value has not 

changed or changes by not more than 1% for a consecutive ten generations. 

An overview flow chart of the proposed multi-objective model is presented in 

Fig. 3.10.  
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Fig. 3.10:  Multi-Objective Optimization Module 
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3.4 Summary and Conclusions 

 

The development of a multi-objective scheduling and optimization model for a 

repetitive activity project has been presented in this chapter. The scheduling 

module takes into consideration the construction methods‟ crew assigned to each 

activity and their corresponding production rates, direct costs, transportation 

durations and costs from one unit to another. The scheduling module handles 

multi construction methods assignment strategy. The module also calculates the 

project‟s total project duration, the project‟s total cost including the indirect cost, 

the project‟s total crews‟ interruptions and the project‟s total units‟ delivery 

dates delays.  

 

The multi-objective optimization module selects combinations of the appropriate 

construction methods assigned to the different activities to determine the 

optimum set of schedules through a four multi-dimensional objective functions.  
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CHAPTER 4 

 
MODEL IMPLEMENTATION   

 

4.1 Introduction 

 

In this chapter, the implementation of the proposed model is presented along 

with an example application of repetitive units construction project to validate 

the model and show its capabilities in scheduling repetitive activities projects. 

The optimization module using genetic algorithm will also be implemented to 

determine the optimum sets of plans considering the number of construction 

methods for each activity type, construction methods‟ costs, production rate, 

project‟s indirect cost, interruptions of working construction methods‟ crews, 

and delays in units‟ delivery dates.  

 

4.2 Implementation Media 

 

The proposed model is implemented on a commercially available and widely 

spread scheduling software (MS Project 2007) for its ease of use and simple 

interface. Also, for its wide use by construction practitioners. The software 

provides the planner with simple data entry of the activities; dependencies, 

relationships, duration…etc. The software performs CPM calculations on the 

project as well as representing the project schedule in bar chart and network 

diagrams. MS Project, also, allows modeling more complex algorithms by 

implementing the model through Visual Basic Application macro tool (VBA 

macro). VBA allows dynamically altering the schedule depending on the inputs 

given to the model. The implementation for scheduling and optimizing repetitive 

activities projects will follow the same steps as the formulation explained in 

Chapter three.  
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4.3 Implementation Details 

 

The implementation of the model on MS Project (2007) starts by creating a 

regular construction plan through data entry of the activities –  repeated 

according to the number of repeated units – and their relationships through the 

same unit along with their corresponding available construction methods‟ 

crews‟ duration, direct costs as well as the required delivery date of the unit if 

needed. An example of five activities repeated through five different units is 

presented in this and the following sections to illustrate the implementation of 

the model.  

 

As shown in Figs. 4.1 and 4.2, a data entry of the construction repetitive project 

is completed through the four units with their dependencies and relationships. 

Each of the five repetitive activities can have up to four different construction 

methods. Each construction method has its own duration to undertake the 

activity as well as its direct cost and the available start time to be assigned to 

this activity. The required units‟ delivery dates are also entered in their 

corresponding column. For the VBA implementation purpose, any unavailable 

data will be entered as 0 days, NA, and $0 for no construction method‟s 

duration, start time, and direct cost, respectively. For example, the first activity 

- excavation1 - has only one available construction method, thus the duration 

for the available three other methods are 999days, their corresponding start time 

are NA, and their costs are $0. As well as the delivery date of this activity is NA 

as there is no required delivery date.  

 

The data entered are then used by the MS Project regular CPM calculation to 

calculate the project duration. On starting the proposed model implemented on 

VBA macros, the user will be asked to enter six inputs that start up both the 

scheduling and optimization modules as shown in Fig. 4.3:  

 Number of activities 

 Number of Units  

 Project indirect cost per day 

 Initial population size 
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 Crossover probability rate 

 Mutation probability rate 

 

These data entered aids the VBA macros to create a data base for the proposed 

repetitive activity project in addition to guidance for the GA‟s optimization 

process. The VBA macros then starts to create an initial random solutions 

(chromosomes) depending to the population size desired, schedule these 

solutions, evaluate them and starts optimizing them through evolution process 

described in chapter three. VBA code of MS Project is provided in Appendix I.  

 

Fig. 4.1: Model Implementation Process 
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Fig. 4.3: Start up of Scheduling and Optimization modules 

 

4.4 Example Application and Validation 

In order to validate the proposed model and demonstrate its capabilities in 

scheduling and optimizing multi-objective repetitive activities projects, an 

example of a three span concrete bridge drawn from literature (Hyari and El-

Rayes 2006) is analyzed. The project consists of five activities; excavation, 

foundations, columns, beams and slabs that are repeated in four sections of the 

project which would generate a solution alternatives of 4
20

 possible schedule. 

The precedence relationships among these five successive activities are finish to 

start with no lag time as shown in Table 4.1.  

 

Table 4.1: The Example Application Activities and Predecessors. 

ID Activity Description Predecessor 

1 Excavation - 

2 Foundation 1 

3 Column 2 

4 Beam 3 

5 Slab 4 

   

The activities‟ quantity of the example project in each unit is presented in Table 

4.2 below. For example, the quantities of foundation for units 1, 2, 3 and 4 are 

1032, 1077, 943 and 898 m
3 

respectively.  
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Table 4.2: Quantities of Activity in Each Unit 

Repetitive Activities 

Repetitive 
units (j) 

Excavations 
Quantities 
(Qij) 
m

3 

Foundations 
Quantities 
(Qij) 
m

3 

Columns 
Quantities 
(Qij) 
m

3 

Beams 
Quantities 
(Qij) 
m

3 

Slabs 
Quantities 
(Qij) 
m

3 

1 1147 1032 104 85 0 

2 1434 1077 86 92 138 

3 994 943 129 101 114 

4 1529 898 100 80 145 

 

The module takes into account up to four construction methods per activity 

type, and as provided from the example. Table 4.3 shows the given production 

rate for each construction method while Table 4.4 shows the duration needed 

for each construction method to undertake each activity in the four units 

depending on their quantities.  

 

Table 4.3: Construction Methods Production Rates 

Activity 

Description 

Construction 

Method 1 

(m
3
/day) 

Construction 

Method 2 

(m
3
/day) 

Construction 

Method 3 

(m
3
/day) 

Construction 

Method 4 

(m
3
/day) 

Excavation 91.75 NA NA NA 

Foundation 89.77 71.81 53.86 NA 

Column 5.73 6.88 8.03 NA 

Beam 9.9 8.49 7.07 5.66 

Slab 28.73 7.76 NA NA 
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All the data of this example are entered to MS Project plan as earlier stated in 

section 4.3. The example drawn from the literature doesn‟t take into 

consideration the transportation duration of construction methods‟ crews, also it 

has only two objectives; (1) minimize project duration and (2) minimize crews‟ 

interruptions. For this reason, through the first trial of validation, construction 

methods‟ crews‟ transportation durations and costs as well as two of the 

proposed objectives; (1) minimize total project cost and (2) minimize the units‟ 

delivery delays, are neglected and will be studied in the later sections to 

compare the results obtained with the results from the literature.  

 

4.4.1 Scheduling module 

 

By pressing the start button, the developed system reads the data entered and 

then determines the maximum number of construction methods available for 

each activity. Then, it reads the duration of each activity in respect with the 

available construction methods and their corresponding costs, the delivery dates 

required for each activity (if any).  

 

The model, then randomly creates the initial set of chromosomes depending on 

the population size as predefined by the user. The chromosome length equals 

the multiplication of number of activities by the number of units. In the current 

example, the chromosomes length equals to twenty genes. 

 

Each gene value (variable) is the index of the construction method assigned to 

an activity. These variables are limited to the maximum number of construction 

methods available for this activity type. For example, the gene number 2 – 

foundation in the first unit – can have a value from one to three, as there are up 

to three different construction methods available for this activity type. 

 

Upon creating a given chromosome the scheduling module calculates the total 

project duration proposed by this chromosome, depending on the genes values 

(construction method assigned to the activities), as well as the total project 

interruption. 
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The scheduling module - as presented in Appendix I - starts by determining the 

construction method index (gene value), then determines if the assigned 

construction method‟s crew has been assigned to any other units before the 

current one so as to determine the previous unit and the corresponding 

transportation duration and cost. The module then calculates the assigned crew 

available start date, and compares it with the logical start date to determine the 

activity‟s start date and crew‟s interruption, if any.  

 

After scheduling an activity, the module compares the finish date with the 

required delivery date of the activity, and calculate the delivery date delay if 

any. Then the module adjusts the assigned construction method‟s crew available 

start date for the next units to the finish date of the current activity. The 

scheduling module finishes its role after calculating the chromosome‟s total 

project duration and total project interruption as well as total project delivery 

delays and total project cost. However the last two criteria are neglected for 

comparison purposes with the example drawn from the literature.  

 

4.4.2 Optimization module 

 

The optimization module starts by evaluating the chromosomes depending on 

their results achieved from the scheduling module through sorting these 

chromosomes into Pareto Fronts from 1 to n, where n is the number of fronts 

created and 1 is the highest rank. Each chromosome is then given its fitness by 

calculating the inverse of the rank as mentioned in Chapter three.  

 

To calculate the selection probability of each chromosome, the optimization 

module first calculates the relative fitness of each chromosome using Eq. 4.1. 

 

           ( )         ( ) ∑        ( )
 

   
                                        (4.1) 

Where (i) is the number of chromosome.  

The relative fitness of each chromosome is then cumulatively added through the 

whole population to obtain the selection probability for each chromosome as 

illustrated in Fig. 4.4, creating higher probability for the chromosomes with the 



54 

 

higher fitness. The selection of the parents chromosomes are carried out using a 

“Roulette Wheel” selection criteria, where a series of randomly created number 

are compared with the parent chromosomes‟ selection probabilities to introduce 

them to GAs operations or else will be inserted to upcoming generation as they 

are.  

Fig. 4.4: Selection Probability Calculation Process 

 

4.4.3 Analysis of results  

 

Sample solutions of the proposed model results are analyzed and compared to 

the solutions drawn from the literature. The population proposed is 200 

chromosomes and with a crossover and mutation probability indices of 0.85 and 

0.2 respectively. A sample of the Pareto Front solutions (schedules) are shown 

in Table 4.5. 

 

i = 1 

Fitness(i) = 1 / Rank(i) 

i = I 

i = i + 1 

i = 1 

           ( )         ( ) ∑       ( )

 

   

 

i = I 

i = i + 1 

i = 1 

                     ( )             ( ) ∑           ( )
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i = i + 1 

End 
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Table 4.5: Assigned Construction Methods‟ Indices for Each Activity  

 Schedule1 Schedule2 Schedule3 Schedule4 Schedule5 Schedule6 

Excavation1 1 1 1 1 1 1 

Foundation1 3 3 3 3 3 3 

Columns1 1 2 1 2 1 1 

Beams1 3 4 4 4 4 2 

Slabs1 2 2 2 2 2 2 

Exavation2 1 1 1 1 1 1 

Foundation2 2 1 1 3 1 1 

Columns2 1 2 3 1 2 1 

Beams2 2 4 2 2 2 4 

Slabs2 1 1 2 1 2 1 

Excavation3 1 1 1 1 1 1 

Foundation3 1 1 1 2 1 1 

Columns3 3 3 3 3 2 2 

Beams3 3 2 3 1 3 3 

Slabs3 1 1 2 1 2 1 

Excavation4 1 1 1 1 1 1 

Foundation4 1 1 1 1 2 2 

Columns4 3 3 3 3 3 3 

Beams4 1 1 1 1 1 1 

Slabs4 1 1 1 1 1 1 

Project Duration 91 92 92.5 93 93.5 94 
Project Interruptions 12 6 5 4 3 0 

 

 

Table 4.6: Results Comparison 

Comparison 

element 
Proposed model Sample solutions Hyari and El-Rayes (2006)  Sample solutions 

Project 

Duration 
91 92 92.5 93 93.5 94 106.8 107 108.5 110.9 114.3 117.9 

Project 

Interruption 
12 6 5 4 3 0 15 14 11 8 4 0 

 

The gap between the proposed model results and the example drawn from 

literature results (as shown in Table 4.6) are due to the ability to use more than 

one construction method for the same activity type creating flexibility when 

dealing with large number of repetitive units. Through analyzing the results 

obtained from the proposed model and results by Hyari and El-Rayes (2006), it 

is observed that the current model‟s project duration varied between a maximum 

value of 94 days and minimum value of 91 days, while Hyari and El-Rayes 

(2006) minimum project duration is 106.8 days and expanded to 117.9 days. 

However, both models reached a zero project interruption, yet the current 

model‟s maximum project interruption is 12 days while Hyari and El-Rayes 
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(2006) project interruption reached 15 days. Fig. 4.5 shows a comparison 

between the proposed model‟s results and the results drawn from the literature.  

 

  

Fig. 4.5: Results Comparison: Proposed Model Vs. Hyari and EL-Rayes (2006)  

 

4.5  Further Experimentations 

 

This section presents the proposed model full ability to optimize the four 

objectives simultaneously; (1) minimization of project duration, (2) 

minimization of project cost, (3) minimization of project total interruptions 

and (4) minimization of units‟ delivery dates delays.  

 

The example drawn from literature didn‟t take into account the project cost; 

direct cost, indirect cost and transportation cost. The example, also, didn‟t 

consider the units‟ delivery dates required. For this purpose, some 

assumptions have been taken into account to experiment the model by 

adding costs for the construction methods undertaking each activity, as well 

as their transportation costs and delivery dates of each activity if required as 

shown earlier in Fig. 4.1. 

Table 4.7 shows the direct cost of each activity with respect to the different 

construction methods that can be assigned to them. The indirect cost for this 

experimentation is assumed to be LE200 per day with a population size of 

200 and crossover and mutation probability of 0.85 and 0.15 respectively.    
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Table 4.7: Activities Direct Costs 

Activity 
Repetitive 

Unit 

Construction 

Method1 ($) 

Construction 

Method2 ($) 

Construction 

Method3 ($) 

Construction 

Method4 ($) 

Excavation 

1 1000 0 0 0 

2 1200 0 0 0 

3 4700 0 0 0 

4 4700 0 0 0 

Foundation 

1 3200 3000 2500 0 

2 3400 3100 3000 0 

3 3500 3150 3000 0 

4 3500 3200 3000 0 

Columns 

1 3700 3900 4000 0 

2 3500 3750 3900 0 

3 4500 3300 3200 0 

4 5000 5200 5600 0 

Beams 

1 4500 4000 3900 3700 

2 4300 3800 3600 3500 

3 4500 4300 4000 3800 

4 4700 4500 4100 3900 

Slabs 

1 0 0 0 0 

2 8000 6000 0 0 

3 8100 6500 0 0 

4 8000 6100 0 0 

  

Table 4.8 illustrates the assumed distances between repetitive units in KM. Table 

4.9 shows the assumed speeds for each construction method‟s crew as well as 

transportation cost for each crew in Table 4.10 to experiment the impact of 

crews‟ speeds and transportation on a repetitive activities project. These data are 

introduced to the VBA macros using data entry windows as shown in Fig. 4.6 

(A, B, and C).  

 

Table 4.8: Distance between Repetitive Units 

                To 

   From 
Unit2 Unit3 Unit4 

Unit 1 0.5 1 1.25 

Unit 2 -- 0.5 .75 

Unit 3 -- -- 0.25 

Unit 4 -- -- -- 
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Table 4.9: Construction Methods‟ Crews‟ Transportation Speeds 

              Crews 

Activities  

Construction 

Method1(Crew1) 

Construction 

Method2(Crew2) 

Construction 

Method3(Crew3) 

Construction 

Method4(Crew4) 

Excavations 1km/day NA NA NA 

Foundations 3km/day 5km/day 5km/day NA 

Columns 5km/Day 5km/day 6km/day NA 

Beams 3km/day 5km/day 5km/day 6km/day 

Slabs 3km/day 5km/day NA NA 

 

Table 4.10: Construction Methods‟ Crews‟ Transportation Cost 

           Crews 

Activities 

Construction 

Method1(Crew1) 

Construction 

Method2(Crew2) 

Construction 

Method3(Crew3) 

Construction 

Method4(Crew4) 

Excavations $1000/day NA NA NA 

Foundations $1500/day $1500/day $1300/day NA 

Columns $1400/day $1300/day $1300/day NA 

Beams $1600/day $1500/day $1500/day $1300/day 

Slabs $1300/day $1300/day NA NA 

 

 

Fig. 4.6-A: Distance between units 

 

 

Fig. 4.6-B: Crew‟s Transportation Speed 
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Fig. 4.6-C: Crew‟s Transportation cost/day 

The Pareto optimum solution set expanded to 121 optimum solutions. Selected 

results from the optimum set obtained from the model are shown in the 

following Table 4.11.  

 

Table 4.11: Model Results for Full Scale Experimentation 

 Sample Schedules Outputs 

 1 2 3 4 5 6 7 8 9 10 

Total Cost 96807 97129.8 97109.8 97799 97513 96918 99055 96744 96799 99813 

Total Delays 0.93 0 0.93 0 6.3 3.9 4 2.8 3.2 0 

Total 

Duration 
94.3 98.1 94 93.24 91 94 93.27 97 94 91 

Total 

Interruption 
28 20 13 34 36 10 10 57 35 13 

 

A quick comparison between the optimum 10 solutions is shown in the 

following figure (Fig 4.7) on a radar chart. A wider look on the First Pareto 

Front (optimum set) is shown in Fig. 4.8 
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Fig 4.7: Results Comparison 

 

 

 
 

Fig. 4.8: Optimum Set Wider View 
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4.6 Compromise Solution 

 

On reaching convergence in a GA problem and determining the set of optimized 

solutions, the decision maker will have to choose the preferable solution for the 

current project. However, decision makers, in some cases, have no certain 

criterion facilitates the selection of their preferred solution among the optimized 

solution set. A “compromise solution” is then preferred for the decision maker to 

determine the best solution of the optimized set of solutions. In order to 

determine the compromise solution among the set of Pareto optimal solutions, 

the procedure introduced by Elbeltagi et al. (2010) is adopted.  

 

Elbeltagi et al. (2010) introduced the following mechanism to determine a single Pareto-

compromise solution of the optimization problem with multiple objectives. Concisely 

presented in the following are the step-by-step mathematical and graphical details of the 

selection procedure to find the mutually agreeable objective criteria values defining a 

unique Pareto-compromise solution to a given multi-objective optimization problem with 

n objectives: 

 

Step 1: Determine the solutions of the Pareto optimization problem defining the 

Pareto front, and identify extreme objective values 
max

i

f
and

min

i

f
 (i=1, n). For 

example, suppose n=2 so that the problem is, 

 

Minimize 
    zfzf

21
,

                                           (4.2) 

 

Further suppose f1 = - (criterion 1) and f2 = criterion 2, and that the solution to Eq. 

(4.2) is represented by two criteria vectors 
*

1
f and 

*

2
f  having m=10 entries and 

extreme values
max

1
f , 

min

1

f
 and

max

2
f ,

min

2
f , defining the original Pareto front 

shown in Fig. 4.9. 
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Step 2: Normalize the objective criteria vectors 
*

i
f

 (i=1, n) defining the Pareto 

front to find the normalized objective criteria vectors, 

 

   minmaxmin*

iiiii
ffffX 

;      (i=1, n)                      (4.3) 

 

having extreme entry values 
max

i
X

= 1 and 
min

i
X

= 0 (i=1, n). For n=2 and the 

Pareto front in Fig. 4.10, for example, the corresponding normalized vectors X1 and 

X2 from Eq. (4.3) define the normalized Pareto front in Fig. 4.10. 

 

Step 3: Reorder the normalized vectors i
X

 from Eq. (4.3) to form the primary 

objective criteria vector, 
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T
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xxx 1,...,0,...,

maxmin
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Fig. 4.9: Original Pareto Front (n=2) (Elbeltagi et al. 2010) 
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Fig. 4.10: Normalized Pareto Front (n=2) (Elbeltagi et al. 2010) 

 

so that each pair of primary-aggregate criteria vectors (xi , yi) defines a 2-

dimentional subspace of the n-dimensional objective space, where (x1 , y1) = (x2 , 

y2) = (X1 , X2) when n=2. From Fig. 4.9, for example, the aggregate vectors are, y1 

= reordered [(x2 + x3)/2], y2= reordered [(x1 + x3)/2], and y3 = reordered [(x1 + 

x2)/2].  

 

Step 4: Uniformly translate and re-normalize each pair of primary-aggregate 

objective criteria vectors (xi , yi), to create a corresponding translated Pareto front 

defined by the vectors,  

 

   xxxx
ii

  1
*

; 
   yyyy

ii
  1

*

;    (i=1, n) 

           (4.6) 

 

where δx and δy are m-dimensional vectors of translation parameters δx=δy=√2-1. 

For n=2, for example, the normalized Pareto front in Fig. 4.10 is translated to the 

Pareto front indicated by the dashed curve in Fig. 4.11. 
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Step 5: For the translated Pareto front defined by each pair of vectors (xi
*
, yi

*
) from 

Eq. (4.6) determine the 45° radial distance to the centre point Ei(0.5,0.5) of the 

corresponding 2D-subspace as,  

 

∆ri= √2(0.5-(xj
*
+xj+1

*
)(yj

*
+yj+1

*
))/(xj

*
+xj+1

*
+yj

*
+yj+1

*
);   (i=1, n) 

       (4.7) 

 

where vector index j is such that xj
*
/yj

*
 ≤1 whereas xj+1

*
/yj+1

*
 ≥1, and ∆r1 =  ∆r2 

(=∆r0) when n=2. As shown in Fig. 4.11 for n=2, for example, Eq. (4.7) determines 

the 45° radial distance from the Pareto front (x
*
, y

*
) to the centre point Ei(0.5,0.5) to 

be ∆r0, where the radial-shifted Pareto front (x
°
 , y

°
) passing through point Eo is 

circular. 

 

Step 6: For the extreme vector
max

i
f

, 
min

i
f

 from step 1, and the radial distance ∆ri, 

from step 5, evaluate the function, 

 

  











2
2minmaxmax

iiii
rffff

i

;       (i=1, n)        (4.8) 

 

To find n criteria values 


i

f
(i=1, n) that collectively define a unique compromise 

solution that represents a mutually agreeable Pareto-tradeoff between all n criteria.  

 

As shown in Fig. 4.9 for n=2, for example, Eq. (4.8) determines the Pareto-

compromise solution to be at point 0 on the original Pareto front. 
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Fig. 4.11: Unique Pareto Trade-off Point Eo (n=2) (Elbeltagi et al. 2010) 

 

4.6.1 Experimental example’s compromise solution 

  

The experimental example‟s Pareto optimum solution set expanded to 121 solutions as 

previously mentioned in section 4.4. Selecting a single solution from the presented 

solutions is a difficult task. In order to help the decision maker to select a single solution 

among the set of Pareto-optimal solutions, the procedure introduced by Elbeltagi et al. 

(2010) is applied. The resulted Pareto-compromise solution and its theoretical objective 

values are listed in Table 4.12. The best-alternative solution among the Pareto-optimal 

solutions is found to be the solution number 18 in Fig. 4.8. 

 

 

Table 4.12: Pareto-Compromise and Best-Alternative Solutions  

Solution 
Project 
Duration 
(days) 

Project 
Cost ($) 

Project 

Interruptions 

(days) 

Delivery Dates 

Delays 
(days)  

Pareto-Compromise 
Solution 

91.96 97529.63 24.56 12.96 

Best-Alternative 

Solution 
100 95953 23 12.58 
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4.7 Another Example Application and Validation 

 
In order to increase the proposed model‟s credibility, an example of highway 

project drawn from the literature (Moselhi and Hassanain 2003) is analyzed for 

validation. The project involves the construction of a three-lane-highway of 

stretch of 15 Km and consists of five activities as follows: 

 

Table 4.13: Second Example‟s Activities 

ID Activity Description Predecessor 

1 Cut and Chip Trees - 

2 Grub and Remove Stumps 1 

3 Earthmoving 2 

4 Base 3 

5 Paving 4 

  
The project is divided into 15 repetitive units each of length 1 Km and each of 

the five activities is repeated at each of the 15 segments or units of the project. 

The precedence relationships among these sequential activities are finish to start 

with no lag time as given in Table 4.13. The data of quantities for each activity is 

shown in Table 4.14 

Three alternative construction methods were introduced into the model, every 

construction method may represents different production rates and/or different 

cost. This approach gives the planner flexibility in creating alternative 

construction methods by changing one of the three parameters mentioned above 

and check which schedule is suitable to the project or the planner can use the 

optimization part of this model to optimize the schedule taking into 

consideration the relationship between time, cost and interruption. The methods 

of construction data are shown in Table 4.14. 
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Table 4.14: Quantities of Activities s in Each Unit 

 

Cut and 

Chip 

Trees 

Grub and 

Remove 

Stumps 

Earthmoving Base Paving 

Repetitive 

units (Km) 

Quantities 

m
2
 

Quantities 

m
2
 

Quantities 

m
3
 

Quantities 

m
2
 

Quantities 

m
2
 

1 12000 12000 7000 32000 32000 

2 12000 12000 6000 32000 32000 

3 18000 18000 6000 32000 32000 

4 12000 12000 6000 32000 32000 

5 18000 18000 8600 32000 32000 

6 30000 30000 7000 32000 32000 

7 36000 36000 6500 32000 32000 

8 30000 30000 6000 32000 32000 

9 24000 24000 6000 32000 32000 

10 24000 24000 6000 32000 32000 

11 18000 18000 6000 32000 32000 

12 12000 12000 6000 32000 32000 

13 12000 12000 6000 32000 32000 

14 12000 12000 6000 32000 32000 

15 12000 12000 6000 32000 32000 

. 
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Table 4.15: Construction Methods Details 

ID 
Activity 

Description 

Method 1 Method 2 Method 3 

Rate 

(unit/day) 

Cost 

(LE/day) 

Rate 

(unit/day) 

Cost 

(LE/day) 

Rate 

(unit/day) 

Cost 

(LE/day) 

1 
Cut and Chip 

trees 
3000 2000 2500 1250 3500 1500 

2 
Grub and remove 

stumps 
4000 2000 3000 1500 3500 1750 

3 Earthmoving 1000 1700 1000 2500 900 1600 

4 Base 3200 3000 3200 3000 3000 3800 

5 Paving 4000 3000 4000 3000 4000 3500 

 

In order to investigate the models validation the indirect cost was estimated for 

LE3000/day as well as some delivery dates were required for the “Grub and 

Remove Trees” activity at 9
th

 and 15
th

 unit to finish after 35 and 87 days 

respectively. The model reached to a Pareto optimum solution set of 16 

schedules. Selected schedules from the Pareto optimum solution set is shown in 

Table 4.15. 

 

Table 4.16: Model Results for Second Validation Example 

 Sample Schedules Outputs 

 1 2 3 4 5 6 7 8 9 

Total 

Cost 
1351503 1381597 1332308 1383930 1355062 1380989 1348082 1351142 1378152 

Total 

Duration 
99 97 89 90 89 95 91 100 88 

Total 

Delays 
5 7.9 0 0.9 0 1 8.7 0 8.8 

 

 

Through the analysis of the model‟s results in comparison to the proposed model 

by Moselhi and Hassanein (2003), it was observed that the model minimum 

duration and maximum total project duration was 88 and 100 days respectively, 

while the model proposed by Moselhi and Hassanein (2003) minimum and 

maximum project duration were 87 and 97 days respectively. However the 
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proposed model gave variant schedules with respect to total project cost and 

respecting the units‟ delivery dates required.    

 

Table 4.16 illustrates the Pareto compromise solution and best alternative for the 

Pareto optimum scheduling set.  

 

Table 4.17: Pareto-Compromise and Best-Alternative Solutions  for Second Validation 

Example 

Solution 
Project 
Cost ($) 

Project 
Duration 
(days) 

Delivery Dates 

Delays 
(days)  

Pareto-Compromise 
Solution 

1355230 88.5 4.4 

Best-Alternative 

Solution 
1332308 89 0 

 

 

4.8 Summary and Conclusions 

 

The implementation of the multi-objective non-unit based repetitive activities 

project scheduling model have been presented in this chapter. The model is 

implemented on a MS Project with VBA macros to enable flexible data entry 

and efficient calculations. The model is capable to generate a number of 

schedules as predefined by the user and optimize them through the application of 

genetic algorithm to determine a set of optimum schedule for the user to choose 

from. Compromise solution has also been presented to an experimental example 

to aid the decision maker to choose a solution (schedule) from a large number of 

optimum solutions.  
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CHAPTER 5 

 
REAL LIFE CASE STUDY 

 

 
5.1 Introduction 

In the previous chapter, the model ability was compared to previous work drawn from the 

literature review. It has been proved the flexibility of the model in scheduling and 

optimizing repetitive activities projects. In this chapter, real case study shall be presented 

to prove the applicability of the model for real projects. The case study is representing a 

project has five serial repetitive activities for constructing water channel in Riyadh city in 

King of Saudi Arabia.      

 

5.2 Case Study  

5.2.1     Project Overview  

The case study has been implemented in this research is "Wadi Hanifa Restoration 

Project" in Saudi Arabia in Riyadh extracted from Masters of Science thesis by Al-

Taweel, S. (2007). The project client is ArRiyadh Development Authority and the 

designer is Buro Happold from Brittan and the architecture from Canada "Moriyama and 

Teshima ". Wadi Hanifah is deemed as the most important natural landmark in Riyadh 

area. It spreads over an area exceeded 120 sq-km penetrating Riyadh-city. The valley is 

flowing down from northwestern towards southeastern. More than forty rivers are pouring 

on this Wadi which is still contains the remains of traditional environment features at the 

area, such as villages, parks, and farms. This valley is overflow with agricultural, 

inheriting, entertaining ingredients that assist in its developing as entertaining, 

agricultural and cultural center for the city-dwellers.  

The higher commission for Riyadh development has established a strategy for investing 

and developing Wadi Hanifah since 1407H for the sake of maintaining its natural 

environment and prohibiting human destructive activity and preparing it as a natural 

drainage for water. It could also be used as an entertaining summer resort. The 

commission considers the valley as an environmental protectorate as well as developing 

area under its supervision. According to above mentioned, the commission performed 

visibility study including water resources, land, wildlife, land ownership and its 

employment, the existing farms in the valley, inheriting and entertaining ingredients, 
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traffic, air and water pollution and water livings. The study resulted in creation of a 

comprehensive strategy for developing the valley. Finally this strategy approved by the 

commission in 1415H. The strategy is based on a number of policies, organizations, 

procedures and works in order to achieve the goals above mentioned. The strategy aims to 

cease environmental destruction to the valley by maintaining and developing its resources 

as well as establishing organizational diagrams for the usage of the land in the valley, 

providing entertaining facilities and completing the basic structure in the valley area in 

order to encourage investment in developmental projects. Accordingly, HRH, the chief of 

higher commission for developing Riyadh-city order to constitute several committees for 

studying the destructive factors that affect the environment of the valley and suggesting 

adequate solutions. Now, most of the committees has achieved their successfully. In 

1419H the commission has decided to form a committee to set up a joint venture to 

develop the valley. The project consist of four zones, zone 3 was awarded to Al-Mashric 

Company. Zone 3 has been divided to three Areas (Area A, Area B and Area C). Area A 

and C consist of Excavation of water channel and Area B represent the bioremediation 

structure. In this research Area A and B water channel stage shall be scheduled as 

repetitive project.  

5.2.2 Project Data  

Project activities for water channel stage consist of repetitive activities that are repeated 

for all units. The channel is divided into four types relating to their dimension, (type 1, 

type 2, type 3 and type 4). The cross sections details for all channels are shown in Figs. 

5.1 & 5.2.  In channel construction stage, there are five activities repeated in 21 units as 

shown in Table 5.1. The quantities for activities in all units are shown in Table 5.2. 
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                                           Figure 5.1: Cross Section of Water Channel for Type 1 and 2. 
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Table 5.1: Repetitive Activities of the Case Study 

 

 

 

 

 

 

 

Table 5.2: Project Data 

 Repetitive Activities 

Repetitive Unit Data  Site Clearance  Channel 

Excavation 
Geotextile laying 

Chainage 

Stations 

Repetitive 

Units No. 
Channel  Quantities Units Quantities Units Quantities Units 

Ch.36.38 to 

Ch.37.00 
1 Type 1 19000 

2
M  

7500 

3
M  

6200 

2
M  

Ch.37.00 to 

Ch.38.00 
2 Type 2 20000 7600 6200 

Ch.38.00 to 

Ch.39.00 
3 Type 2 20000 7000 6200 

Ch.39.00 to 

Ch.40.00 
4 Type 2 19000 7600 6200 

Ch.40.00 to 

Ch.41.00 
5 Type 2 19000 7500 6200 

Ch.41.00 to 

Ch.42.00 
6 Type 2 20000 7500 6300 

Ch.43.00 to 

Ch.44.00 
7 Type 3 19000 7500 6200 

Ch.44.00 to 

Ch.45.00 
8 Type 3 20000 7500 6200 

Ch.45.00 to 

Ch.46.00 
9 Type 3 19000 7500 6200 

Ch.46.00 to 

Ch.47.00 
10 Type 3 19000 7500 6200 

Ch.47.00 to 

Ch.48.00 
11 Type 3 19000 7400 6300 

Ch.48.00 to 

Ch.49.00 
12 Type 3 18000 7500 6200 

Ch.49.00 to 

Ch.49.50 
13 Type 3 19000 7500 6200 

Ch.49.50 to 

Ch.50.00 
14 Type 4 19000 7500 6200 

Ch.50.00 to 

Ch.50.50 
15 Type 4 20000 7500 6200 

Ch.50.50 to 

Ch.51.00 
16 Type 4 19000 7600 6200 

Ch.51.00 to 

Ch.51.50 
17 Type 4 19000 7500 6200 

Ch.51.50 to 

Ch.52.00 
18 Type 4 19000 7500 6200 

Ch.52.00 to 

Ch.52.50 
19 Type 4 19000 7600 6200 

Ch.52.50 to 

Ch.53.00 
20 Type 4 19000 7500 6300 

Ch.53.00 to 

Ch.53.50 
21 Type 4 20000 7600 6300 

 

 

 

ID Activity Description Predecessor 

1 Site Clearance  - 

2 Channel Excavation  1 

3 Geotextile Laying 2 

4 Stone Laying  3 

5 Mulshstone Laying  4 
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Table 5.2: Project Data (Continued) 

 Repetitive Activities 
Repetitive unit data  Stone laying Mulshstone laying 

Chainage 

Station 

Repetitive 

units No. 

Channel 

Type 
Quantities Units Quantities Units 

Ch.36.38 to 

Ch.37.00 
1 Type 1 3300 

3
M  

3500 

3
M  

Ch.37.00 to 

Ch.38.00 
2 Type 2 3400 3600 

Ch.38.00 to 

Ch.39.00 
3 Type 2 3400 3600 

Ch.39.00 to 

Ch.40.00 
4 Type 2 3300 3500 

Ch.40.00 to 

Ch.41.00 
5 Type 2 3300 3500 

Ch.41.00 to 

Ch.42.00 
6 Type 2 3300 3600 

Ch.43.00 to 

Ch.44.00 
7 Type 3 3300 3500 

Ch.44.00 to 

Ch.45.00 
8 Type 3 3400 3500 

Ch.45.00 to 

Ch.46.00 
9 Type 3 3300 3500 

Ch.46.00 to 

Ch.47.00 
10 Type 3 3300 3400 

Ch.47.00 to 

Ch.48.00 
11 Type 3 3300 3500 

Ch.48.00 to 

Ch.49.00 
12 Type 3 3300 3500 

Ch.49.00 to 

Ch.49.50 
13 Type 3 3300 3400 

Ch.49.50 to 

Ch.50.00 
14 Type 4 3400 3500 

Ch.50.00 to 

Ch.50.50 
15 Type 4 3300 3500 

Ch.50.50 to 

Ch.51.00 
16 Type 4 3300 3500 

Ch.51.00 to 

Ch.51.50 
17 Type 4 3300 3500 

Ch.51.50 to 

Ch.52.00 
18 Type 4 3300 3500 

Ch.52.00 to 

Ch.52.50 
19 Type 4 3300 3500 

Ch.52.50 to 

Ch.53.00 
20 Type 4 3300 3500 

Ch.53.00 to 

Ch.53.50 
21 Type 4 3300 3500 

 

 

5.2.3 Project Scheduling    

To implement the case study, four construction methods was applied that can be assigned 

to each activity. All construction methods have the different production rates and direct 

costs as shown in Table 5.3. Through implementing the model in this research, best 

combination of construction methods which are assigned to the different activities shall 

be obtained achieving minimum project duration, cost, interruptions and units delivery 

dates.  
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Table 5.3: Construction Methods Production Rates and Costs 

  Method 1 Method 2 Method 3 Method 4 

ID Activity description P.R. 
Cost
($) 

P.R. 
Cost
($) 

P.R. 
Cost
($) 

P.R. 
Cost
($) 

1 Site clearance 2000 1850 1900 1650 1900 1600 1800 1500 

2 Channel excavation 700 3900 700 3800 700 3700 700 3300 

3 Geotextile laying 600 1100 650 1000 550 900 550 850 

4 Riyadh lime Stone laying 300 2500 300 2300 300 2200 300 2000 

5 Gravel mulch laying 300 1650 300 1500 280 1400 270 1300 

 

Table 5.3 illustrates the transportation speed (Km/day) and cost per Km for each 

construction method.  

 Table 5.4: Construction Methods Transportation Speed and Costs 

  Method 1 Method 2 Method 3 Method 4 

ID Activity description Speed 
Cost 

($) 
Speed 

Cost

($) 
Speed 

Cost

($) 
Speed 

Cost

($) 

1 Site clearance 8 10 10 11 8 9 9 10 

2 Channel excavation 5 10 5 9 6 10 6 8 

3 Geotextile laying 10 5 10 6 8 5 9 7 

4 Riyadh lime Stone laying 9 7 10 7 10 6 8 6 

5 Gravel mulch laying 8 10 10 10 9 7 10 8 

The project indirect cost was 3000 $ / day and the data have been entered to the model by 

the same way as example in chapter 4. Then scheduling and optimization model was 

applied to the project. Selected results obtained are shown in Table 5.5. The model 

proposed various schedules with maximum and minimum project total duration of 211 

and 194 days respectively. Also with maximum and minimum project total cost of 

LE3237487 and LE3164646 respectively. Finally with maximum and minimum total 

project interruptions of 130 and 60 days respectively.   

 

Table 5.5: Case Study Selected Results 

 1 2 3 4 5 6 7 8 9 

Total Cost 

(LEX1000) 
3179 3216 3614 3218 3221 3216 3217 3209 3237 

Total Duration 211 194 207 204 189 207 200 200 208 

Total 

Interruption 
91 109 130 88 84 106 102 113 60 

  

The total crews‟ interruptions for the proposed solution are relatively high; this is due to 

the large number of possible schedules with different crews assigned to different units 
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minimizing the total project schedule as much as possible. Table 5.6 shows the Pareto-

compromise solution and best alternative for the case study.  

 

Table 5.6: Case Study Pareto-Compromise and Best-Alternative Solutions  

Solution 
Project 

Duration 
(days) 

Project 
Cost ($) 

Project 

Interruptions 

(days) 

Pareto-Compromise 
Solution 

202 3216573 94 

Best-Alternative 

Solution 
211 3179204 91 

  

It is significantly important to annotate that the computer model calculations 

took more than 96hours; this is due to the large solution space for the case study 

which expands to 4^105 possible solution. This vast feasible solutions space 

takes more time for the GA‟s calculation to reach convergence and define the 

Pareto optimum scheduling set. This can be overcome by using parallel 

computation or coarse grain computation approaches in larger projects.  

 

Moreover, the optimum solution set outcome depends on the initial population 

and the mutation probability, thus it may reaches a local optimum solution in 

larger problems with low mutation probability. To avoid local optimum 

solutions, the mutation probability was increased to 0.85-0.9. However, some 

other related techniques (i.e. Ant Colony or Particle Swarm) can be used to reach 

the optimum set more effectively avoiding local optimum solutions and with 

much less calculation time.  

 

 

5.3 Summary and Conclusions  

 

In this chapter, real case study was implemented by the model for the two parts of the 

model, scheduling and optimization. It was observed the flexibility of the model in 

dealing with the data of the case study. It is noted that optimization process is very 

important help decision maker to choose between different schedules that minimize total 

project duration, total project cost and total project interruptions.   
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

6.1  Summary 

In this research, a flexible and dynamic model for scheduling and optimizing repetitive 

activities project has been developed. The model has been implemented on MS Project 

with VBA macro program. The model provides a schedule complies with precedence 

relationship using different relationship types and assigned construction method 

constraints. In addition, it considers the impact of following practical factors: 

 Assigned construction methods transportation duration. 

 Assigned construction methods transportation cost. 

 Multiple crews assigned to work simultaneously. 

 Accounting for project total cost and duration. 

 Accounting for interruption for crews assigned to repetitive activities. 

 Accounting for units‟ delivery dates delays.  

 Optimization among several alternatives construction methods for each activity. 

 

For each activity in a repetitive unit, the model identifies the scheduled start and finish 

times depending on the assigned construction methods‟ crew for each unit in every 

activity and interruption days for each crew, if any, as well as transportation duration and 

costs from the previous unit to the current one. The model also identifies the project 

duration, total direct cost and total indirect cost. The model has been developed on a MS 

Project by using Visual Basic Application (VBA) macros. The model employs non-

traditional optimization technique, Genetic-Algorithm, that has powerful random search 

capabilities. The model sorts the output possible schedules to Pareto Fronts to determine 

the optimum set of schedules for the decision maker to choose from. The optimization 

process identifies the combination of construction methods that achieves the following 

objectives: 

1- Minimize the total project cost. 

2- Minimize the total project duration. 

3- Minimize the total project interruptions. 

4- Minimize the total units‟ delivery date delays. 
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6.2 Conclusions 

In this research, a scheduling and optimization model for repetitive activities projects 

was developed. The developed model can be used to optimize construction schedules 

based on multiple objectives. Some remarks were concluded and listed below:  

 Using different construction methods for the same activity type strategy creates a 

more flexible schedule that respects resource and precedence relationship, 

especially in large number of repetitive units.  

 Transportation duration and cost of construction methods can affect the selection 

of the optimum schedule significantly.  

 Multi-objective optimization for repetitive activities projects can be highly 

beneficial for the construction industry, avoiding future problems such as project‟s 

cost, duration and units‟ delivery dates delays.  

  Genetic Algorithms technique is efficient in solving multi-objective optimization 

problems when it is integrated with Pareto Front sorting. It showed in the research 

its capability to search for the optimum solution set in a moderate large solution 

space in an efficient manner.  

 

6.3 Recommendations and Future Work  

The Proposed model can be implemented to different construction repetitive activities 

projects effectively. It can aid the decision maker with proposing different repetitive 

activities project schedules to select the most appropriate one with respect to the project at 

hand.  

 

The presented model in this research could be improved considering the following points: 

 Integrate the non-repetitive activities and repetitive activities in one Scheduling and 

Optimization model.  

 Integrate the ability to change the work order among repetitive units.  

 Experiment different evolutionary algorithms optimization techniques that discover 

the solution space more effectively and efficiently (Particle Swarm Optimization, Ant 

Colony and Shuffled Frog Leaping algorithms).  
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Appendix I – MS Project VBA Scheduling and Optimization 

Model 
 

Dim AllTasks(1 To 2000) As ProjectTask 
Dim AllChromosomes As Collection 
Dim AllChr(1 To 1001) As ChromosomInfo 
Dim Paretoset(1 To 20000) As ChromosomInfo 
Dim AllChild(1 To 1000) As ChromosomInfo 
Dim PrevParetoSet(1 To 20000) As ChromosomInfo 
Dim ParetoFrist(1 To 20000) As ChromosomInfo 
Public NChild As Integer 
Public ts As Tasks 
Public Acrew As CrewInfo 
Public X As Integer 
Public Y As Integer 
Public CN As Integer 
Public i As Integer 
Public Agene As GeneInfo 
Public GN As Integer 'Gene number 
Public GC As Double 'Gene cost 
Public GCrewCost As Double 'Crew Cost 
Public TotalGenesCrewCost As Double 'total genes crew cost 
Public ChrTotalCost As Double 
Public K As Integer 
Public Interruption As Variant 
Public DeliveryDelay As Date 
Public Act As Integer 
Public Unit As Integer 
Public MinCost As Double 
Public MinInt As Double 
Public DefStartDate As Date 
Public Trail As Integer 
Public TrailMax As Integer 
Public NoSolutionS As Collection 
Public Indirect_cost As Double 
Public ActivityIndex As Integer 
Public TotalTransportationCost As Double 
Public PrevUnit As Integer 
Public MaxDD As Double 
Public MaxDur As Double 
Public MaxInter As Double 
Public MaxCost As Double 
Public NENCurrent As Double 
Public NENPrev As Double 
Public Best1 As Integer 
Public Best2 As Integer 
Public MC As Integer 
Public MD As Integer 
Public MI As Integer 
Public MDD As Integer 
Public CrossoverValue As Integer 
Public ParetoOpt As Integer 
Public paretoValue As Double 
Public paretoCheck As Double 
Public NoParetoSol As Integer 
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'CROSSOVER 
Public SinglePoint As Integer 
Public Parent1 As Integer 
Public Parent2 As Integer 
Public Parent3 As Integer 
Public Parent4 As Integer 
Public Offspring1 As Integer 
Public Offspring2 As Integer 
Public population As Integer 
Public CopyChromo As Integer 
Public PasteChromo As Integer 
Public MO As Double 
Public CrossIndex As Double 
Public A As Double 
Public B As Double 
Public Identical As String 
Public Identical_ChecK As String 
Public mutationindex As Double 
Public ConverIndex As Double 
Public ParetoIndex1 As Double 
Public Paretoindex2 As Double 
Public ParetoCount As Integer 
Public PrevParetoCount As Integer 
Public PGC As Double 
Public PDD As Double 
Public PD As Double 
Public PI As Double 
Public PGN As Integer 
Public AllSolutions As Integer 
Public Count1 As Integer 
Public Count2 As Integer 
Public Count3 As Integer 
Public Count4 As Integer 
Public ParetoFrontIndex As Integer 
Public Rel_ParetoFrontIndex As Double 
Public Distance As Long 
Public CostDistance As Double 
Public CDistanceCheck As Double 
Public InterDistance As Double 
Public IDistanceCheck As Double 
Public DurDistance As Double 
Public DDistanceCheck As Double 
Public DelayDistance As Double 
Public DDDistanceCheck As Double 
Public CounterStop As Integer 
Public checkCounter As Long 
Public Max_Reached As String 
'selection probabilities 
Public totmerit As Double 
Public summerit As Double 
Public Deadline As Integer 
Public R As Variant 
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Public Sub CommandButton1_Click() 
 
Randomize 
Dim PauseTime, Start, Finish, TotalTime 
Dim CrewStart(1 To 5, 1 To 4) As Date 
Dim CrewStartCheck(1 To 5, 1 To 4) As String 
ParetoCount = 1 
Dim M As Integer 
Dim N_Gener As Integer 
NChild = 0 
checkCounter = 0 
MinCost = 1E+16 
MinDur = 1E+17 
MinDD = 1E+16 
MinInt = 1E+16 
 
Start = Timer 
 
Act = TextBox1.Value 
Unit = TextBox2.Value 
population = TextBox4.Value 
mutationindex = TextBox6.Value 
CrossIndex = TextBox5.Value 
Indirect_cost = TextBox3.Value 
 
 
TrailMax = 500 
 
Set ts = ActiveProject.Tasks 
 
Application.SelectAll 
Application.SaveSheetSelection 
DefStartDate = ts(1).Start1 
 
ReDim TransportationDuration(1 To Act, 1 To Unit, 1 To 21, 1 To 21) As Double                
' (activity, crew#, current Unit, Prev Unit) 
ReDim TransportationCost(1 To Act, 1 To Unit, 1 To 21, 1 To 21) As Integer 
 
 
X = 1 
Do 
'read aTask (copy of project data base) 
Set AllTasks(X) = New ProjectTask 
AllTasks(X).Name = ts(X).Name 
AllTasks(X).FixedCost = ts(X).Cost 
If ts(X).Finish1 <> "NA" Then 
AllTasks(X).RequiredEndDate = ts(X).Finish1 
End If 
Set AllTasks(X).CrewData = New Collection 
If ts(X).Duration1 <> "0" Then 
Set Acrew = New CrewInfo 
Acrew.Duration = ts(X).Duration1 
Acrew.Cost = ts(X).Cost1 
AllTasks(X).CrewData.Add Acrew 
End If 
If ts(X).Duration2 <> "0" Then 
Set Acrew = New CrewInfo 
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Acrew.Duration = ts(X).Duration2 
Acrew.Cost = ts(X).Cost2 
AllTasks(X).CrewData.Add Acrew 
End If 
If ts(X).Duration3 <> "0" Then 
Set Acrew = New CrewInfo 
Acrew.Duration = ts(X).Duration3 
Acrew.Cost = ts(X).Cost3 
AllTasks(X).CrewData.Add Acrew 
End If 
If ts(X).Duration4 <> "0" Then 
Set Acrew = New CrewInfo 
Acrew.Duration = ts(X).Duration4 
Acrew.Cost = ts(X).Cost4 
AllTasks(X).CrewData.Add Acrew 
End If 
AllTasks(X).CrewNumber = AllTasks(X).CrewData.Count 
X = X + 1 
Loop Until X > Act * Unit 
 
 
„Determine transportation distance, duration and cost        
Dim UnitDistance(1 To 21, 1 To 21) As Double 
Dim CrewSpeed(1 To 5, 1 To 4) As Double 
Dim CrewTransCost(1 To 5, 1 To 4) As Double 
 
For Y = 1 To Unit 
For X = Y + 1 To Unit 
Call Get_Distance(UnitDistance) 
Next X 
Next Y 
 
For Y = 1 To Act 
For X = 1 To AllTasks(Y).CrewNumber 
Call Get_Speed(CrewSpeed) 
Next X 
Next Y 
 
 
For Y = 1 To Act 
For X = 1 To AllTasks(Y).CrewNumber 
Call Get_TransCost(CrewTransCost) 
Next X 
Next Y 
 
 
 
For Y = 1 To Act 
For X = 1 To AllTasks(Y).CrewNumber 
For K = 1 To Unit 
For i = K + 1 To Unit 
TransportationDuration(Y, X, K, i) = UnitDistance(K, i) / CrewSpeed(Y, X) 
Next i 
Next K 
Next X 
Next Y 
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For Y = 1 To Act 
For X = 1 To AllTasks(Y).CrewNumber 
For K = 1 To Unit 
For i = K + 1 To Unit 
TransportationCost(Y, X, K, i) = TransportationDuration(Y, X, K, i) * CrewTransCost(Y, 
X) 
Next i 
Next K 
Next X 
Next Y 
 

 
            'Creating new Chromosmes :) 
X = 1 
 
Do 
Set AllChr(X) = New ChromosomInfo 
Set AllChr(X).Genes = New Collection 
ChrTotalCost = 0 
GCrewCost = 0 
TotalGenesCrewCost = 0 
Y = 1 
i = 1 
ActivityIndex = 1 
Do Until Y > Act * Unit 
If ActivityIndex > Act Then ActivityIndex = 1 
 
i = Alltasks(x).Crewnumber 
 
Set Agene = New GeneInfo 
GN = Int((i * Rnd) + 1) 
Agene.GeneValue = GN 
GCrewCost = AllTasks(Y).CrewData(GN).Cost 
Agene.CrewCost = GCrewCost 
AllChr(X).Genes.Add Agene 
 
TotalGenesCrewCost = TotalGenesCrewCost + GCrewCost 
ActivityIndex = ActivityIndex + 1 
Y = Y + 1 
Loop 
 
AllChr(X).TotalCost = TotalGenesCrewCost 
X = X + 1 
Loop Until X > population 
 
                                 
                                 
' Creating dummy child pool 
 
X = 1 
Do 
Set AllChild(X) = New ChromosomInfo 
Set AllChild(X).Genes = New Collection 
ChrTotalCost = 0 
GCrewCost = 0 
TotalGenesCrewCost = 0 
Y = 1 



90 

 

i = 1 
Do Until Y > Act * Unit 
i = AllTasks(Y).CrewNumber 
Set Agene = New GeneInfo 
GN = Int((i * Rnd) + 1) 
Agene.GeneValue = GN 
GCrewCost = AllTasks(Y).CrewData(GN).Cost 
Agene.CrewCost = GCrewCost 
AllChild(X).Genes.Add Agene 
TotalGenesCrewCost = TotalGenesCrewCost + GCrewCost 
Y = Y + 1 
Loop 
AllChild(X).TotalCost = TotalGenesCrewCost 
 
X = X + 1 
Loop Until X > population 
 
Label4.Caption = "Scheduling" 
 
' Initial schedule 
 
X = 1 
Do 
Call Schedule 
Call Restore_Data 
X = X + 1 
Loop Until X > population 
 
 
 
'pareto set 
 
ParetoCount = 0 
Call get_pareto_optimal(population) 
 
   For X = 1 To population 
        If AllChr(X).ParetoFront = 1 Then 
              If ParetoCount > 0 Then   'check identical paretoset 
        For i = 1 To ParetoCount 
        GN = 1 
          For Y = 1 To Act * Unit 
         If Paretoset(i).Genes(Y).GeneValue = AllChr(X).Genes(Y).GeneValue Then GN 
= GN + 1 
         Next Y 
        If GN = Act * Unit Then GoTo 121 
        Next i 
        GoTo 111 
        End If 
     
111      ParetoCount = ParetoCount + 1 
            Set Paretoset(ParetoCount) = New ChromosomInfo 
            Set Paretoset(ParetoCount).Genes = New Collection 
                Y = 1 
                Do Until Y > Act * Unit 
                Set Agene = New GeneInfo 
                GN = AllChr(X).Genes(Y).GeneValue 
                Agene.GeneValue = GN 
                GC = AllChr(X).Genes(Y).CrewCost 
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                Agene.CrewCost = GC 
                Paretoset(ParetoCount).Genes.Add Agene 
                Paretoset(ParetoCount).PretoSol = Pareto 
                Y = Y + 1 
                Loop 
            Paretoset(ParetoCount).TotalCost = AllChr(X).TotalCost 
            Paretoset(ParetoCount).TotalDelays = AllChr(X).TotalDelays 
            Paretoset(ParetoCount).TotalDuration = AllChr(X).TotalDuration 
            Paretoset(ParetoCount).TotalIntrruptions = AllChr(X).TotalIntrruptions 
            Paretoset(ParetoCount).Note = AllChr(X).Note 
            Paretoset(ParetoCount).ParetoFront = 1 
         
        End If 
121   Next X 
 
Call selection_prob 
 
M = 0 
N_Gener = M 
 
Trail = 1 
 
Label4.Caption = "Optimizing" 
 
 
„Optimization Module 
 
Do While Trail < TrailMax 
NChild = 0 
M = M + 1 
120     Call chro_select(Parent1, Parent2) 
NChild = NChild + 1 
MO = Rnd 
If MO > CrossIndex Then 
    If AllChr(Parent1).InvParetoFront > AllChr(Parent2).InvParetoFront Then 
        Set AllChild(NChild) = New ChromosomInfo 
        Set AllChild(NChild).Genes = New Collection 
         
            For Y = 1 To Act * Unit 
                Set Agene = New GeneInfo 
                GN = AllChr(Parent1).Genes(Y).GeneValue 
                Agene.GeneValue = GN 
                GC = AllChr(Parent1).Genes(Y).CrewCost 
                Agene.CrewCost = GC 
                AllChild(NChild).Genes.Add Agene 
            Next Y 
        AllChild(NChild).TotalCost = AllChr(Parent1).TotalCost 
        AllChild(NChild).Note = "None" 
    Else 
        Set AllChild(NChild) = New ChromosomInfo 
        Set AllChild(NChild).Genes = New Collection 
         
            For Y = 1 To Act * Unit 
                Set Agene = New GeneInfo 
                GN = AllChr(Parent2).Genes(Y).GeneValue 
                Agene.GeneValue = GN 
                GC = AllChr(Parent2).Genes(Y).CrewCost 
                Agene.CrewCost = GC 
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                AllChild(NChild).Genes.Add Agene 
            Next Y 
        AllChild(NChild).TotalCost = AllChr(Parent2).TotalCost 
        AllChild(NChild).Note = None 
    End If 
If NChild < population Then GoTo 120 
Else 
 
Call CrossOver(Parent1, Parent2, NChild) 
Call Mutation(mutationindex, NChild) 
If NChild < population Then GoTo 120 
End If 
 
 
For X = 1 To population                 'empty parents 
    For Y = 1 To Act * Unit 
        AllChr(X).Genes(Y).GeneValue = 0 
    Next Y 
Next X 
 
For X = 1 To population                 'copy offspring 
     
    For Y = 1 To Act * Unit 
        AllChr(X).Genes(Y).GeneValue = AllChild(X).Genes(Y).GeneValue 
        AllChr(X).Genes(Y).CrewCost = AllChild(X).Genes(Y).CrewCost 
    Next Y 
     
    AllChr(X).TotalCost = AllChild(X).TotalCost 
    AllChr(X).Note = AllChild(X).Note 
Next X 
 
For X = 1 To population                                         'Empty children pool 
            For Y = 1 To Act * Unit 
            AllChild(X).Genes(Y).GeneValue = 0 
            Next Y 
Next X 
 
For X = 1 To population 
Call Schedule 
Call Restore_Data 
Next X 
Call get_pareto_optimal(population) 
Call selection_prob 
 
 
    For X = 1 To population                             ' add pareto front 1 to pareto set 
        If AllChr(X).ParetoFront = 1 Then 
        If ParetoCount > 0 Then   'check identical paretoset 
        For i = 1 To ParetoCount 
        GN = 0 
        For Y = 1 To Act * Unit 
        If Paretoset(i).Genes(Y).GeneValue = AllChr(X).Genes(Y).GeneValue Then GN = 
GN + 1 
        Next Y 
        If GN = Act * Unit Then GoTo 122 
        Next i 
        GoTo 112 
        End If 
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112            ParetoCount = ParetoCount + 1 
            If ParetoCount > 20000 Then 
            ParetoCount = 1 
            Max_Reached = True 
            End If 
             
            Set Paretoset(ParetoCount) = New ChromosomInfo 
            Set Paretoset(ParetoCount).Genes = New Collection 
                Y = 1 
                Do Until Y > Act * Unit 
                Set Agene = New GeneInfo 
                GN = AllChr(X).Genes(Y).GeneValue 
                Agene.GeneValue = GN 
                GC = AllChr(X).Genes(Y).CrewCost 
                Agene.CrewCost = GC 
                Paretoset(ParetoCount).Genes.Add Agene 
                Paretoset(ParetoCount).PretoSol = Pareto 
                              
                Y = Y + 1 
                Loop 
 
            Paretoset(ParetoCount).TotalCost = AllChr(X).TotalCost 
            Paretoset(ParetoCount).TotalDelays = AllChr(X).TotalDelays 
            Paretoset(ParetoCount).TotalDuration = AllChr(X).TotalDuration 
            Paretoset(ParetoCount).TotalIntrruptions = AllChr(X).TotalIntrruptions 
            Paretoset(ParetoCount).Note = AllChr(X).Note 
            Paretoset(ParetoCount).ParetoFront = 1 
             
        End If 
122    Next X 
 
 
Call get_pareto_optimal_final(population, ParetoCount) 
 
 
'Concervgence Check 
 
If M = 1 Then 
PrevParetoCount = 0        'Create Prev. Pareto Set 
 
For X = 1 To ParetoCount 
            
            
        If PrevParetoCount > 0 Then   'check identical 
       For i = 1 To PrevParetoCount 
        GN = 0 
        For Y = 1 To Act * Unit 
        If PrevParetoSet(i).Genes(Y).GeneValue = Paretoset(X).Genes(Y).GeneValue Then 
GN = GN + 1 
        Next Y 
        If GN = Act * Unit Then GoTo 123 
        Next i 
        GoTo 113 
        End If 
         
113        PrevParetoCount = PrevParetoCount + 1 
            Set PrevParetoSet(PrevParetoCount) = New ChromosomInfo 



94 

 

            Set PrevParetoSet(PrevParetoCount).Genes = New Collection 
                Y = 1 
                Do Until Y > Act * Unit 
                Set Agene = New GeneInfo 
                 
                GN = Paretoset(X).Genes(Y).GeneValue 
                Agene.GeneValue = GN 
                GC = Paretoset(X).Genes(Y).CrewCost 
                Agene.CrewCost = GC 
                PrevParetoSet(PrevParetoCount).Genes.Add Agene 
                PrevParetoSet(PrevParetoCount).PretoSol = Pareto 
                 
                 
                Y = Y + 1 
                Loop 
            PrevParetoSet(PrevParetoCount).TotalCost = Paretoset(X).TotalCost 
            PrevParetoSet(PrevParetoCount).TotalDelays = Paretoset(X).TotalDelays 
            PrevParetoSet(PrevParetoCount).TotalDuration = Paretoset(X).TotalDuration 
            PrevParetoSet(PrevParetoCount).TotalIntrruptions = 
Paretoset(X).TotalIntrruptions 
            PrevParetoSet(PrevParetoCount).Note = Paretoset(X).Note 
            PrevParetoSet(PrevParetoCount).ParetoFront = Paretoset(X).ParetoFront 
         
123 Next X 
 
GoTo 130 
End If 
 
 
 
Distance = 9999            'Distance calculations 
CostDistance = 0 
DelayDistance = 0 
InterDistance = 0 
DurDistance = 0 
checkCounter = 0 
 
MaxCost = 0 
MaxDur = 0 
MaxInter = 0 
MaxDD = 0 
 
NENCurrent = 999999 
NENPrev = 999999 
 
For X = 1 To ParetoCount     'determine the max value 
If Paretoset(X).ParetoFront <> 1 Then GoTo 610 
 
If Paretoset(X).TotalCost > MaxCost Then MaxCost = Paretoset(X).TotalCost 
If Paretoset(X).TotalDelays > MaxDD Then MaxDD = Paretoset(X).TotalDelays 
If Paretoset(X).TotalDuration > MaxDur Then MaxDur = Paretoset(X).TotalDuration 
If Paretoset(X).TotalIntrruptions > MaxInter Then MaxInter = 
Paretoset(X).TotalIntrruptions 
 
610 Next X 
 
For X = 1 To ParetoCount  'determine current NEN 
If Paretoset(X).ParetoFront <> 1 Then GoTo 710 
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If MaxCost > 0 Then CostDistance = (Paretoset(X).TotalCost / MaxCost) ^ 2 
If MaxDD > 0 Then DelayDistance = (Paretoset(X).TotalDelays / MaxDD) ^ 2 
If MaxInter > 0 Then InterDistance = (Paretoset(X).TotalIntrruptions / MaxInter) ^ 2 
If MaxDur > 0 Then DurDistance = (Paretoset(X).TotalDuration / MaxDur) ^ 2 
  
If Sqr(CostDistance + DelayDistance + InterDistance + DurDistance) < NENCurrent 
Then NENCurrent = Sqr(CostDistance + DelayDistance + InterDistance + DurDistance) 
Best1 = X 
710 Next X 
 
 
For Y = 1 To PrevParetoCount    'determine max value for prev. pareto 
If PrevParetoSet(Y).ParetoFront <> 1 Then GoTo 810 
 
If PrevParetoSet(Y).TotalCost > MaxCost Then MaxCost = PrevParetoSet(Y).TotalCost 
If PrevParetoSet(Y).TotalDelays > MaxDD Then MaxDD = 
PrevParetoSet(Y).TotalDelays 
If PrevParetoSet(Y).TotalDuration > MaxDur Then MaxDur = 
PrevParetoSet(Y).TotalDuration 
If PrevParetoSet(Y).TotalIntrruptions > MaxInter Then MaxInter = 
PrevParetoSet(Y).TotalIntrruptions 
 
810 Next Y 
 
For Y = 1 To PrevParetoCount  'determine prev NEN 
If PrevParetoSet(Y).ParetoFront <> 1 Then GoTo 910 
 
If MaxCost > 0 Then CostDistance = (PrevParetoSet(Y).TotalCost / MaxCost) ^ 2 
If MaxDD > 0 Then DelayDistance = (PrevParetoSet(Y).TotalDelays / MaxDD) ^ 2 
If MaxInter > 0 Then InterDistance = (PrevParetoSet(Y).TotalIntrruptions / MaxInter) ^ 2 
If MaxDur > 0 Then DurDistance = (PrevParetoSet(Y).TotalDuration / MaxDur) ^ 2 
  
If Sqr(CostDistance + DelayDistance + InterDistance + DurDistance) < NENPrev Then 
NENPrev = Sqr(CostDistance + DelayDistance + InterDistance + DurDistance) 
Best2 = Y 
 
910 Next Y 
 
CostDistance = 0 
DurDistance = 0 
InterDistance = 0 
DelayDistance = 0 
 
If PrevParetoSet(Best2).TotalCost > 0 Then CostDistance = 
((PrevParetoSet(Best2).TotalCost - Paretoset(Best1).TotalCost) / 
PrevParetoSet(Best2).TotalCost) 
If PrevParetoSet(Best2).TotalDelays > 0 Then DelayDistance = 
((PrevParetoSet(Best2).TotalDelays - Paretoset(Best1).TotalDelays) / 
PrevParetoSet(Best2).TotalDelays) 
If PrevParetoSet(Best2).TotalDuration > 0 Then DurDistance = 
((PrevParetoSet(Best2).TotalDuration - Paretoset(Best1).TotalDuration) / 
PrevParetoSet(Best2).TotalDuration) 
If PrevParetoSet(Best2).TotalIntrruptions > 0 Then InterDistance = 
((PrevParetoSet(Best2).TotalIntrruptions - Paretoset(Best1).TotalIntrruptions) / 
PrevParetoSet(Best2).TotalIntrruptions) 
 
Distance = CostDistance + DelayDistance + DurDistance + InterDistance 
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If Distance < 0.0001 Then CounterStop = CounterStop + 1 Else CounterStop = 0 
If CounterStop = 10 Then Trail = TrailMax 
 
i = 1 
For X = 1 To ParetoCount                                 'new prev. paretoset 
        For i = 1 To PrevParetoCount                      'check identical 
        GN = 0 
        For Y = 1 To Act * Unit 
        If PrevParetoSet(i).Genes(Y).GeneValue = Paretoset(X).Genes(Y).GeneValue Then 
GN = GN + 1 
        Next Y 
        If GN = Act * Unit Then GoTo 124 
        Next i 
        GoTo 114 
         
114        PrevParetoCount = PrevParetoCount + 1 
            Set PrevParetoSet(PrevParetoCount) = New ChromosomInfo 
            Set PrevParetoSet(PrevParetoCount).Genes = New Collection 
                Y = 1 
                Do Until Y > Act * Unit 
                Set Agene = New GeneInfo 
                 
                GN = Paretoset(X).Genes(Y).GeneValue 
                Agene.GeneValue = GN 
                GC = Paretoset(X).Genes(Y).CrewCost 
                Agene.CrewCost = GC 
                PrevParetoSet(PrevParetoCount).Genes.Add Agene 
                PrevParetoSet(PrevParetoCount).PretoSol = Pareto 
                 
                 
                Y = Y + 1 
                Loop 
            PrevParetoSet(PrevParetoCount).TotalCost = Paretoset(X).TotalCost 
            PrevParetoSet(PrevParetoCount).TotalDelays = Paretoset(X).TotalDelays 
            PrevParetoSet(PrevParetoCount).TotalDuration = Paretoset(X).TotalDuration 
            PrevParetoSet(PrevParetoCount).TotalIntrruptions = 
Paretoset(X).TotalIntrruptions 
            PrevParetoSet(PrevParetoCount).Note = Paretoset(X).Note 
            PrevParetoSet(PrevParetoCount).ParetoFront = Paretoset(X).ParetoFront 
         
124 Next X 
 
 
     
130 Trail = Trail + 1 
 
Loop 
N_Gener = M 
 
X = 1 
For Y = 1 To ParetoCount 
If Paretoset(Y).ParetoFront = 1 Then 
             Set ParetoFrist(X) = New ChromosomInfo 
            Set ParetoFrist(X).Genes = New Collection 
                K = 1 
                Do Until K > Act * Unit 
                Set Agene = New GeneInfo 
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                GN = Paretoset(Y).Genes(K).GeneValue 
                Agene.GeneValue = GN 
                GC = Paretoset(Y).Genes(K).CrewCost 
                Agene.GeneCost = GC 
                ParetoFrist(X).Genes.Add Agene 
                ParetoFrist(X).PretoSol = Pareto 
                K = K + 1 
                Loop 
            ParetoFrist(X).TotalCost = Paretoset(Y).TotalCost 
            ParetoFrist(X).TotalDelays = Paretoset(Y).TotalDelays 
            ParetoFrist(X).TotalDuration = Paretoset(Y).TotalDuration 
            ParetoFrist(X).TotalIntrruptions = Paretoset(Y).TotalIntrruptions 
            ParetoFrist(X).Note = Paretoset(Y).Note 
            ParetoFrist(X).ParetoFront = Paretoset(Y).ParetoFront 
X = X + 1 
End If 
 Next Y 
Finish = Timer 
TotalTime = Finish - Start 
Label4.Caption = "Run Time = " & TotalTime / 60 
End Sub 

 
 
 
Public Sub Schedule() 
 
' Scheduling 
 
i = 1 
Y = 1 
K = 1 
ActivityIndex = 1 
TotalTransportationCost = 0 
ReDim CrewStart(1 To 5, 1 To 4) As Date 
ReDim CrewStartCheck(1 To 5, 1 To 4) As String 
ReDim TransportationDuration(1 To 5, 1 To 4, 1 To 21, 1 To 21) As Double                 ' 
(activity, crew#, current Unit, Prev Unit) 
ReDim TransportationCost(1 To 5, 1 To 4, 1 To 21, 1 To 21) As Integer 
 
    ' Restart crew start time check 
    Do Until ActivityIndex > Act 
        For i = 1 To 4 
        CrewStartCheck(ActivityIndex, i) = "no" 
        Next i 
        ActivityIndex = ActivityIndex + 1 
    Loop 
 
i = 1 
ActivityIndex = 1 
Interruption = 0 
DeliveryDelay = 0 
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Do Until Y > Act * Unit 
        i = AllChr(X).Genes(Y).GeneValue 
    If i = 1 Then 
     
    'Check if the crew started before or not 
    If CrewStartCheck(ActivityIndex, i) = "started" Then 
        K = Y - Act 
            'Getting the previous unit and transporation cost and duration 
            Do Until K < 1 
            If ts(Y).Start1 = ts(K).Finish Then PrevUnit = K 
            K = K - Act 
            Loop 
        ts(Y).Start1 = ts(Y).Start1 + TransportationDuration(ActivityIndex, i, Int((PrevUnit / 
Act) + 0.99), Int((Y / Act) + 0.99)) 
        TotalTransportationCost = TotalTransportationCost + 
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99)) 
         
        If ts(Y).Start > ts(Y).Start1 Then 
        Interruption = Interruption + (ts(Y).Start - ts(Y).Start1) - 0.63 
         
        ts(Y).Start1 = ts(Y).Start 
        Else 
        ts(Y).Start = ts(Y).Start1 
        End If 
    Else 
    CrewStartCheck(ActivityIndex, i) = "started" 
    ts(Y).Start1 = ts(Y).Start 
    End If 
    ts(Y).Duration = AllTasks(Y).CrewData(i).Duration 
     
     
   
    'Changing the crews start time in the rest of the activities 
    K = Y + Act 
    Do Until K > Act * Unit 
        ts(K).Start1 = ts(Y).Finish 
        K = K + Act 
    Loop 
 
 
    ElseIf i = 2 Then 
         
        'Check if the crew started before or not 
    If CrewStartCheck(ActivityIndex, i) = "started" Then 
     K = Y - Act 
            'Getting the previous unit and transporation cost and duration 
            Do Until K < 1 
            If ts(Y).Start2 = ts(K).Finish Then PrevUnit = K 
            K = K - Act 
            Loop 
        ts(Y).Start2 = ts(Y).Start2 + TransportationDuration(ActivityIndex, i, Int((PrevUnit / 
Act) + 0.99), Int((Y / Act) + 0.99)) 
        TotalTransportationCost = TotalTransportationCost + 
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99)) 
             
        If ts(Y).Start > ts(Y).Start2 Then 
        Interruption = Interruption + (ts(Y).Start - ts(Y).Start2) - 0.63 
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        ts(Y).Start2 = ts(Y).Start 
        Else 
        ts(Y).Start = ts(Y).Start2 
        End If 
    Else 
    CrewStartCheck(ActivityIndex, i) = "started" 
    ts(Y).Start2 = ts(Y).Start 
    End If 
    ts(Y).Duration = AllTasks(Y).CrewData(i).Duration 
         
    'Changing the crew start time in the rest of the activities 
    K = Y + Act 
    Do Until K > Act * Unit 
        ts(K).Start2 = ts(Y).Finish 
        K = K + Act 
    Loop 
 
 
    ElseIf i = 3 Then 
        
       'Check if the crew started before or not 
    If CrewStartCheck(ActivityIndex, i) = "started" Then 
         K = Y - Act 
            'Getting the previous unit and transporation cost and duration 
            Do Until K < 1 
            If ts(Y).Start3 = ts(K).Finish Then PrevUnit = K 
            K = K - Act 
            Loop 
        ts(Y).Start3 = ts(Y).Start3 + TransportationDuration(ActivityIndex, i, Int((PrevUnit / 
Act) + 0.99), Int((Y / Act) + 0.99)) 
        TotalTransportationCost = TotalTransportationCost + 
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99)) 
         
     
        If ts(Y).Start > ts(Y).Start3 Then 
        Interruption = Interruption + (ts(Y).Start - ts(Y).Start3) - 0.63 
        ts(Y).Start3 = ts(Y).Start 
        Else 
        ts(Y).Start = ts(Y).Start3 
        End If 
    Else 
    CrewStartCheck(ActivityIndex, i) = "started" 
    ts(Y).Start3 = ts(Y).Start 
    End If 
    ts(Y).Duration = AllTasks(Y).CrewData(i).Duration 
    
    'Changing the crew start time in the rest of the activities 
    K = Y + Act 
    Do Until K > Act * Unit 
        ts(K).Start3 = ts(Y).Finish 
        K = K + Act 
    Loop 
 
    Else 
        
 
       'Check if the crew started before or not 
    If CrewStartCheck(ActivityIndex, i) = "started" Then 
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         K = Y - Act 
            'Getting the previous unit and transporation cost and duration 
            Do Until K < 1 
            If ts(Y).Start4 = ts(K).Finish Then PrevUnit = K 
            K = K - Act 
            Loop 
        ts(Y).Start4 = ts(Y).Start4 + TransportationDuration(ActivityIndex, i, Int((PrevUnit / 
Act) + 0.99), Int((Y / Act) + 0.99)) 
        TotalTransportationCost = TotalTransportationCost + 
TransportationCost(ActivityIndex, i, Int((PrevUnit / Act) + 0.99), Int((Y / Act) + 0.99)) 
     
        If ts(Y).Start > ts(Y).Start4 Then 
        Interruption = Interruption + (ts(Y).Start - ts(Y).Start4) - 0.63 
         
        ts(Y).Start4 = ts(Y).Start 
        Else 
        ts(Y).Start = ts(Y).Start4 
        End If 
    Else 
    CrewStartCheck(ActivityIndex, i) = "started" 
    ts(Y).Start4 = ts(Y).Start 
    End If 
    ts(Y).Duration = AllTasks(Y).CrewData(i).Duration 
     
    'Changing the crew start time in the rest of the activities 
    K = Y + Act 
    Do Until K > Act * Unit 
        ts(K).Start4 = ts(Y).Finish 
        K = K + Act 
    Loop 
 
    End If 
 
ActivityIndex = ActivityIndex + 1 
If ActivityIndex > Act Then ActivityIndex = 1 
Y = Y + 1 
Loop 
 
 
„Calculating Delivery Dates Delays  
For Y = 1 To Act * Unit 
  If ts(Y).Finish1 = NA Then GoTo 510 
    If ts(Y).Finish > ts(Y).Finish1 Then DeliveryDelay = DeliveryDelay + (ts(Y).Finish - 
ts(Y).Finish1) 
510 Next Y 
 
AllChr(X).TotalDuration = ActiveProject.ProjectFinish - ActiveProject.ProjectStart 
AllChr(X).TotalIntrruptions = Interruption 
AllChr(X).TotalDelays = DeliveryDelay 
AllChr(X).TotalCost = AllChr(X).TotalCost + TotalTransportationCost + (Indirect_cost * 
AllChr(X).TotalDuration) 
 
End Sub 

 
 
  



101 

 

Public Sub Restore_Data() 
Application.RestoreSheetSelection 
Y = 1 
Do Until Y > Act * Unit 
If AllTasks(Y).CrewNumber = 1 Then 
ts(Y).Start1 = DefStartDate 
ElseIf AllTasks(Y).CrewNumber = 2 Then 
ts(Y).Start1 = DefStartDate 
ts(Y).Start2 = DefStartDate 
ElseIf AllTasks(Y).CrewNumber = 3 Then 
ts(Y).Start1 = DefStartDate 
ts(Y).Start2 = DefStartDate 
ts(Y).Start3 = DefStartDate 
Else 
ts(Y).Start1 = DefStartDate 
ts(Y).Start2 = DefStartDate 
ts(Y).Start3 = DefStartDate 
ts(Y).Start4 = DefStartDate 
End If 
Y = Y + 1 
Loop 
 
Y = 1 
Do Until Y > Act * Unit 
ts(Y).ConstraintDate = "NA" 
Y = Y + 1 
Loop 
End Sub 

 
 
Public Sub CrossOver(Parent1, Parent2, NChild) 
Randomize 
                                                                'perform crossover 
 SinglePoint = Int(Rnd * (Act * Unit)) + 1                                   'Select two crossover 
points 
GCrewCost = 0 
    
 X = 1 
Do Until X > SinglePoint 
AllChild(NChild).Genes(X).GeneValue = AllChr(Parent1).Genes(X).GeneValue 
AllChild(NChild).Genes(X).CrewCost = AllChr(Parent1).Genes(X).CrewCost 
GCrewCost = GCrewCost + AllChr(Parent1).Genes(X).CrewCost 
X = X + 1 
Loop 
 
Do Until X > Act * Unit 
AllChild(NChild).Genes(X).GeneValue = AllChr(Parent2).Genes(X).GeneValue 
AllChild(NChild).Genes(X).CrewCost = AllChr(Parent2).Genes(X).CrewCost 
GCrewCost = GCrewCost + AllChr(Parent2).Genes(X).CrewCost 
X = X + 1 
Loop 
 
AllChild(NChild).TotalCost = GCrewCost 
AllChild(NChild).Note = "CrossOver" 
 
End Sub 
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Sub get_pareto_optimal(population) 
    'ReDim NoSolutionS(1) As Integer 
    AllSolutions = False 
    ParetoFrontIndex = 0 
    For X = 1 To population 
        AllChr(X).ParetoFront = 0 
    Next X 
    Count3 = 0: Count4 = 0 
    Do 
        ParetoFrontIndex = ParetoFrontIndex + 1 
        'ReDim Preserve NoSolutionS(ParetoFrontIndex) 
        For X = 1 To population 
            If AllChr(X).ParetoFront = 0 Then AllChr(X).ParetoFront = ParetoFrontIndex 
        Next X 
        For X = 1 To population 
            If AllChr(X).ParetoFront < ParetoFrontIndex Then GoTo 110 
            For Y = 1 To population 
                Count1 = 0: Count2 = 0 
                If X = Y Then GoTo 100 
                If AllChr(Y).ParetoFront < ParetoFrontIndex Then GoTo 100 
                 
                    If AllChr(X).TotalCost >= AllChr(Y).TotalCost Then Count1 = Count1 + 1 
                    If AllChr(X).TotalDelays >= AllChr(Y).TotalDelays Then Count1 = Count1 
+ 1 
                    If AllChr(X).TotalDuration >= AllChr(Y).TotalDuration Then Count1 = 
Count1 + 1 
                    If AllChr(X).TotalIntrruptions >= AllChr(Y).TotalIntrruptions Then Count1 
= Count1 + 1 
                     
                    If AllChr(X).TotalCost > AllChr(Y).TotalCost Then Count2 = Count2 + 1 
                    If AllChr(X).TotalDelays > AllChr(Y).TotalDelays Then Count2 = Count2 + 
1 
                    If AllChr(X).TotalDuration > AllChr(Y).TotalDuration Then Count2 = 
Count2 + 1 
             If AllChr(X).TotalIntrruptions > AllChr(Y).TotalIntrruptions Then Count2 = 
Count2 + 1 
                     
                If Count2 = 4 Then AllChr(X).ParetoFront = 0: Exit For 
                If Count1 = 0 And Count2 = 0 Then AllChr(Y).ParetoFront = 0 
                If Count1 = 4 And Count2 > 0 Then AllChr(X).ParetoFront = 0: Exit For 
100         Next Y 
110     Next X 
        For X = 1 To population 
            If AllChr(X).ParetoFront = ParetoFrontIndex Then Count3 = Count3 + 1 
        Next X 
        'NoSolutionS(ParetoFrontIndex) = Count3 - Count4                  'Counts number of 
solutions in each Pareto level 
        Count4 = Count3 
        If Count3 = population Then AllSolutions = True 
    Loop While AllSolutions = False 
    For X = 1 To population 
        AllChr(X).InvParetoFront = (1 / AllChr(X).ParetoFront) 
    Next X 
End Sub 
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Sub selection_prob() 
    totmerit = 0 
    summerit = 0                                      'Calculate probability of selection 
    For X = 1 To population                                              'Calculate chromosomes relative 
fitness 
        totmerit = totmerit + AllChr(X).InvParetoFront 
    Next X 
    For X = 1 To population 
        AllChr(X).Rel_ParetoFront = AllChr(X).InvParetoFront / totmerit 
    Next X 
    For X = 1 To population                                              'Calculate probability of selection 
        AllChr(X).SumParetoFront = summerit + AllChr(X).Rel_ParetoFront 
        summerit = AllChr(X).SumParetoFront 
    Next X 
End Sub 

 
 
Sub chro_select(Parent1, Parent2) 
Randomize 
'Parent1 = 0 
'Parent2 = 0 
'Y = 0 
    Do                                                              'Select two chromosomes randomly 
        A = Rnd 
        For X = 1 To population                                          'Select first chromosome 
            If A < AllChr(X).SumParetoFront Then 
                Parent1 = X 
                Exit For 
            End If 
        Next X 
         
        B = Rnd 
        For X = 1 To population                                         'Select second chromosome 
            If B < AllChr(X).SumParetoFront Then 
                Parent2 = X 
                Exit For 
            End If 
        Next X 
          
         Identical = True                                            'Check if chromosomes are identical 
         
        For Y = 1 To Act * Unit 
            If Parent1 = 0 Then Exit For 
            If Parent2 = 0 Then Exit For 
             
            If AllChr(Parent1).Genes(Y).GeneValue <> 
AllChr(Parent2).Genes(Y).GeneValue Then Identical = False: Exit For 
        Next Y 
        
    Loop While Identical = True 
    
     End Sub 
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Sub Mutation(mutationindex, NChild) 
Randomize                                                      'Perform mutation 
GCrewCost = 0 
    For X = 1 To Act * Unit 
        MO = Rnd 
        If MO < mutationindex Then 
        GN = Int(((AllTasks(X).CrewNumber) - 1 + 1) * Rnd + 1) 
        
        AllChild(NChild).Genes(X).GeneValue = GN 
        AllChild(NChild).Genes(X).CrewCost = AllTasks(X).CrewData(GN).Cost 
        AllChild(NChild).Note = "Mutation" 
        End If 
   Next X 
     
    For X = 1 To Act * Unit 
 GCrewCost = GCrewCost + AllChild(NChild).Genes(X).CrewCost 
    Next X 
AllChild(NChild).TotalCost = GCrewCost 
End Sub 

 
 
 
Public Sub get_pareto_optimal_final(population, ParetoCount) 
    ParetoFrontIndex = 1 
    For X = 1 To ParetoCount 
     Paretoset(X).ParetoFront = 1 
    Next X 
 i = 1 
 Do 
    For X = 1 To ParetoCount 
        If Paretoset(X).ParetoFront < ParetoFrontIndex Then GoTo 110 
        For Y = 1 To ParetoCount 
            Count1 = 0: Count2 = 0 
            If X = Y Then GoTo 100 
            If Paretoset(Y).ParetoFront < ParetoFrontIndex Then GoTo 100 
                If Paretoset(X).TotalCost >= Paretoset(Y).TotalCost Then Count1 = Count1 + 
1 
                If Paretoset(X).TotalDelays >= Paretoset(Y).TotalDelays Then Count1 = 
Count1 + 1 
                If Paretoset(X).TotalDuration >= Paretoset(Y).TotalDuration Then Count1 = 
Count1 + 1 
                If Paretoset(X).TotalIntrruptions >= Paretoset(Y).TotalIntrruptions Then 
Count1 = Count1 + 1 
                 
                If Paretoset(X).TotalCost > Paretoset(Y).TotalCost Then Count2 = Count2 + 1 
                If Paretoset(X).TotalDelays > Paretoset(Y).TotalDelays Then Count2 = Count2 
+ 1 
                If Paretoset(X).TotalDuration > Paretoset(Y).TotalDuration Then Count2 = 
Count2 + 1 
                If Paretoset(X).TotalIntrruptions > Paretoset(Y).TotalIntrruptions Then Count2 
= Count2 + 1 
           
            If Count2 = 4 Then Paretoset(X).ParetoFront = 0: Exit For 
            If Count1 = 0 And Count2 = 0 Then Paretoset(Y).ParetoFront = 0 
            If Count1 = 4 And Count2 > 0 Then Paretoset(X).ParetoFront = 0: Exit For 
100     Next Y 
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110 Next X 
i = i + 1 
ParetoFrontIndex = ParetoFrontIndex + 1 
Loop Until i > ParetoCount 
    NoParetoSol = 0 
    For X = 1 To ParetoCount 
        If Paretoset(X).ParetoFront = 1 Then NoParetoSol = NoParetoSol + 1 
    Next X 
End Sub 

 
Sub selec_prob_pareto(population, ParetoCount) 
totmerit = 0 
    summerit = 0                                      'Calculate probability of selection 
     
    For X = 1 To ParetoCount 
        If Paretoset(X).ParetoFront < 1 Then GoTo 200 
        Paretoset(X).InvParetoFront = (1 / Paretoset(X).ParetoFront) 
200    Next X 
     
    For X = 1 To ParetoCount                                                 'Calculate chromosomes 
relative fitness 
        totmerit = totmerit + Paretoset(X).InvParetoFront 
    Next X 
    For X = 1 To ParetoCount 
        Paretoset(X).Rel_ParetoFront = Paretoset(X).InvParetoFront / totmerit 
    Next X 
    For X = 1 To ParetoCount                                              'Calculate probability of 
selection 
        Paretoset(X).SumParetoFront = summerit + Paretoset(X).Rel_ParetoFront 
        summerit = Paretoset(X).SumParetoFront 
    Next X 
End Sub 

 
 
Public Sub Get_Distance(UnitDistance) 
UserForm2.Caption = "Distance between units" 
UserForm2.Label1.Caption = "Type distance between units" 
UserForm2.Label2.Caption = "Unit: " & Y 
UserForm2.Label3.Caption = "and Unit: " & X 
UserForm2.Show 
UnitDistance(Y, X) = UserForm2.TextBox1.Value 
End Sub 

 
 
Public Sub Get_Speed(CrewSpeed) 
UserForm2.Caption = "Crews' Speed" 
UserForm2.Label1.Caption = "Type the Crews' speed of Activity: " & Y 
UserForm2.Label2.Caption = "Crew number: " & X 
UserForm2.Label3.Caption = "NOTE: Crew Speed > Zero" 
UserForm2.Show 
CrewSpeed(Y, X) = UserForm2.TextBox1.Value 
End Sub 
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Public Sub Get_TransCost(CrewTransCost) 
UserForm2.Caption = "Crews' Transportation Cost" 
UserForm2.Label1.Caption = "Type the Crew Transporation cost perday for Activity: " & 
Y 
UserForm2.Label2.Caption = "Crew number: " & X 
UserForm2.Label3.Caption = "" 
UserForm2.Show 
CrewTransCost(Y, X) = UserForm2.TextBox1.Value 
End Sub 
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