CB564 Special Topics In Geotechnical Eng.

COURSE INFORMATION

	Academic	Year & Level	Tea			
Prerequisites	Year	Semester	Lecture	Tutorial	Laborator y	Credit Hrs.
CB463	5	9 – 10	2	2	0	3

COURSE AIM

The course aims at building up the student activities directed for the advanced practical topics in geotechnical engineering as well as to the fundamentals of geo-environmental engineering. Through using; communication technologies and skills, engineering technologies, data collection and interpretation, and writing technical reports referring to the relevant literature.

COURSE WEEKLY CONTENTS

Soil reinforcement: Reinforced soil properties, elements of a reinforced earth

- system, design criteria, construction considerations, foundation with soil reinforcement
- Ground modification: Ground modification concept, need for improvement. Mechanical and chemical techniques of soil stabilization
- Soil improvement: Foundations on problematic subsurface soil conditions, foundation design precautionsVibro-floatation, sand drain, pre-compression.
- Mat foundations: Types and usage of mat foundations. Classical design methods. Numerical design method
- 5 State of unsaturated soil: Suction and potential of soil water, suction regimes and soil-water characteristic curve, material variables
- State of stress in unsaturated soil: Effective stress, hysterisis in soil-water characteristic curve, representation of stress tensor
 Shear strength of unsaturated soil: Extended Mohr-Coulomb criterion, shear strength parameters. Capillary
- 7 cohesion in unsaturated soils, validity of effective stress + Midterm Exam as a state variable. Effect of suction on lateral earth pressure
 - Water flow in unsaturated soils: Hydraulic conductivity function, steady
- **8** infiltration and evaporation, measurement of hydraulic conductivity. Suction and hydraulic conductivity models
- 9 Transport of contaminants in the subsurface: Contaminant release, contaminant transport, fate of contaminants in the subsurface
- Waste treatment methods: Stabilization, solidification, mechanisms, technology, testing, field implementation, design.Case studies.
- Waste treatment methods: Stabilization, solidification, mechanisms, technology, testing, field implementation, design.Case studies.

- Land disposal of waste:Landfill operations, site selection, liner collection systems,
- 12 cover systems. Contaminant transport through landfill barriers, landfill stability, closure and post-closure care
 - Land disposal of waste:Landfill operations, site selection, liner collection systems,
- 13 cover systems. Contaminant transport through landfill barriers, landfill stability, closure and post-closure care
 - Site remediation: Site characterization, geophysics, boring and sampling,
- monitoring wells. Geographic information systemSite and subsurface characterization, methodology, planning.
- 15 Containment: Passive contaminant control systems. Ground water control technologies, active systems

STUDENT GRADING & ASSESSMENT

Weeks		Exams	Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20	Midterm	← To	1 (be freely distril		R K S possible assessn	→ nents	30
8 to 12	-			2 (D MAF	RKS	\rightarrow	20
13 to 15	←			1 (D MAF	RKS	\rightarrow	10
16 or 17	40	Final						40
Total		Exams	Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

KETEKENGES			
Textbook	Design and Construction, Tomlinson, M., Pearson Education, 2nd Edition,		
	2008.		
Other	Analysis and Design, BOWLES, J. E., McGraw-Hill, New York, 5th Edition.,		
	1996.		
	Design and Construction, TOMLINSON, M. J. and Boorman R., Longman,		
	London, 6th Edition, 1995.		