CB545 Structural Dynamics

COURSE INFORMATION

Prerequisites	Academic Year & Level		Tea			
	Year	Semester	Lecture	Tutorial	Laborator y	Credit Hrs.
CB343	5	9 – 10	2	2	0	3

COURSE AIM

The course introduces the students to the basic concepts of structural vibrations and its applications in building structures.

COURSE WEEKLY CONTENTS

- 1 Introduction to Structural Dynamics.
- **2** Equations of motion, Problem statement.
- 3 Solution methods for the calculation of the dynamic response of structure.
- 4 Undamped free vibration of single-degree of freedom systems.
- **5** Damping of structures.
- **6** Damped free vibration of single degree of freedom systems.
- Response of harmonic and periodic excitations and 7th week examination. + Midterm Exam
- 8 Inelastic systems.
- **9** Earthquake response of structures.
- **10** Earthquake Engineering and Cause of earthquakes.
- 11 Design criteria of seismic resistant structures.
- Codes of practice for the design of earthquake resistant structures and 12th week examination.
- 13 Dynamic analysis of tall buildings.
- **14** Seismic response of tall buildings.
- **15** Response spectra.

STUDENT GRADING & ASSESSMENT

Weeks	Exams	Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20 Midtern	← To	1 (be freely distrib		R K S possible assessn	→ nents	30
8 to 12	←		2 () M A	RKS	\leftarrow	20
13 to 15	←		1 () M A	RKS	\rightarrow	10
16 or 17	40 Final						40
Total	Exams	Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

Textbook

Dynamics of Structures, Anil Chopra, 5th Edition, 2016.

Other

Structural Dynamics: Theory and Computation by PAZ, M, Van Nastrand Reinhold Company, New York, 5th Edition, 2004.

Probabilistic Theory of Structural Dynamics by LIN, Y, McGraw-Hill Inc., 1976.