CB463 Design & Cons. Of Earth Struct. & Found.

COURSE INFORMATION

Prerequisites		Academic Year & Level		Теа			
		Vear	Semester	Lecture	Tutorial	Laborator	Credit Hrs.
		Tear	Jennester	Lecture	Tutonai	У	
CB354	CB362	4	8	4	2	0	3

COURSE AIM

The course aims at building up the student activities directed for the basic aspects of design, analysis and construction of retaining structures and foundations through using ;communication technologies and skills, engineering technologies, data collection and interpretation, and writing technical reports referring to the relevant literature.

COURSE WEEKLY CONTENTS

Bearing capacity: Bearing failure patterns, Prandtl's theory for ultimate bearing
capacity, bearing capacity theory of Terzaghi, Meyerhof and Hansen, and Effect of water table, bearing capacity based on standard penetration tests.

- Shallow foundations: Types of shallow foundations, application of each type,
- a design requirements, code provisions for allowable stresses and settlements
 Design of isolated footings: Design of isolated footings, safety factors against
- 3 stability and structural failure, construction considerations
- 4 Combined footings: Design of combined footings, the beam on elastic foundation approach, coefficient of subgrade reaction, computer applications
- Strap footings: Design of footings and strap, safety factors against stability and structural failure
- 6 Mat foundations: Types and usage of mat foundations, classical design approach,
- the beam on elastic foundation approach, construction considerations Retaining walls and structures: Types of retaining walls,
- vsage and limitations of each type, reinforced concrete
 (RC) cantilever retaining walls, overall and structural
 stability, construction considerations
- 8 Sheet-pile walls: Types of sheet-pile walls, applications, methods of sheet pile design, modes of sheet pile failure, design of anchored sheet-piles
- 9 Sheet-pile walls: Design of cantilever sheet-pile walls
- 10 Sheet-pile walls: Structural details, construction considerations, modes of failures
- Piles: Types and usage of piles, bored and driven piles, timber, RC and steel piles, methods of pile construction
- 12 Single piles: Design of single piles, single pile capacity, settlement of single pile
- **13** Pile groups: Pile group capacity, settlement of pile group, pile group construction
- 14 Pile-load test: Pile load test, objective, procedure, test result interpretation, pile integrity test
- **15** Pile caps: Design and construction of pile caps

STUDENT GRADING & ASSESSMENT

Weeks	Exams		Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20	Midterm	← To	1 ر be freely distril) MAF outed among p	к s possible assessr	\rightarrow nents	30
8 to 12	÷			2 () MAF	RKS	\rightarrow	20
13 to 15	÷			1 () MAF	RKS	\rightarrow	10
16 or 17	40	Final						40
Total	Exams		Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

Textbook	Analysis of Foundation Engineering, Braja M. DAS, Brooks-Cole, 6th Edition,			
	2007.			
Other	Analysis and Design, BOWLES, J. E., McGraw-Hill, New York, 5th Ed., 1996.			