CB281 Hydraulics For Civil Engineers

COURSE INFORMATION

	Academic Year & Level		Tea				
Prerequisites	Year	Semester	Lecture	Tutorial	Laborator y	Credit Hrs.	
BA114	2	4	2	2	2	3	
COURSE AI	M						

To provide the student with the basic concepts and methods of analysis of hydraulics and its applications in the sustainable design of civil engineering projects.

COURSE WEEKLY CONTENTS

- 1 Introduction to hydraulic aspects in civil engineering projects and its ecosystem environment.
- **2** Properties of fluid(s), sediment-laden liquids and units.
- **3** Behavior of real fluid flow.
- 4 Hydrostatics and fluid forces.
- **5** Hydrostatics and fluid forces.
- 6 Flow conservative equations; Mass, Momentum and Energy Equations.
- **7** Application of flow conservative equations.
- + Midterm Exam
- **8** Application of flow conservative equations.
- **9** Flow in single pipes.
- **10** Flow in pipe systems.
- 11 Pumps (in parallel and in series)
- **12** Pump-pipeline system analysis.
- 13 Free surface flow in open channels and flow types.
- 14 Introduction to basic design of uniform channel surface flow.
- 15 Introduction to main physical parameters of Ecosystems.

STUDENT GRADING & ASSESSMENT

Weeks	Exams		Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20	Midterm	← To	1 (be freely distrib		R K S possible assessn	→ nents	30
8 to 12	←			2 () MAF	RKS	\rightarrow	20
13 to 15	←			1 () MAF	RKS	\rightarrow	10
16 or 17	40	Final						40
Total		Exams	Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

Textbook	Hydraulic Engineering, HOUGHTALEN, ROBERT, Pearson Education,4th				
	Edition, 2010.				
Other	Fundamentals of Fluid Mechanics, Munson, B., Young, D. and Okiishi, T., John				
	Wiley and Sons, Inc., New Jersy, 2006.				
	Computer Applications in Hydraulic Engineering-connecting theory to				
	practice, Walski, M.T. (Ed), Haestad Press, Waterbury, CT, U.S.A, 2002.				