1.4 Semester 4

BA224 Mathematics IV

COURSE INFORMATION

	Academic Year & Level		Teaching Methods				
Prerequisites	Year	Semester	Lecture	Tutorial	Laborator y	Credit Hrs.	
BA223	2	4	2	2	0	3	
COURSE AIN	1						

This course introduces the advanced engineering mathematical concepts and methods of the vector analysis and of the complex analysis, including their physical applications.

COURSE WEEKLY CONTENTS

- **1** Vector Algebra / Dot and cross product and its Applications.
- 2 Partial Differentiation / and Derivatives of vector functions
- 3 Gradient / Divergence / Curl / Laplacian operator
- 4 Line Integrals of a scalar and a vector function
- Ine Integrals Independent of the path / conservative vector fields / Double
- Integrals in Cartesian
- 6 Double Integrals in polar coordinates / Green's Theorem
- 7 Midterm Exam
- 8 Triple Integrals
- 9 Spherical coordinates / Cylinder coordinates
- 10 Surface Integrals / Divergence (Gauss' Theorem)
- 11 Stokes' Theorem
- 12 12th Week Assessment
- Complex numbers and functions / forms of representation Analytic functions/ Harmonic functions
- 14 Zeros and poles of Analytic functions/ Residues and their evaluation Residue Theorem / Application to Real Integral
- 15 Line complex integrals / Cauchy's Integrals Theorem

STUDENT GRADING & ASSESSMENT

Weeks	Exams		Assign.	Quizzes	Reports	Present.	Lab.	Total
1 to 7	20	Midterm	← To	1 (be freely distril) MAF outed among p	к s possible assessn	→ nents	30
8 to 12	÷			2 () MAF	RKS	\rightarrow	20
13 to 15	÷			1 () MAF	RKS	\rightarrow	10
16 or 17	40	Final						40
Total	Total Exams		Assign.	Quizzes	Reports	Present.	Lab.	100

REFERENCES

TextbookRoland Minton, Robert T Smith, "Calculus: Early Transcendental Functions",
McGraw-Hill Education, 2011.

Other