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ABSTRACT 

Target Tracking is comprised of two stages; data association and position 

estimation. Data association in a noisy multi-target environment is one of 

the problems that need solving, for accurately tracking a target. In this 

thesis, a technique that utilizes Hidden Markov Model (HMM) is used for 

data association prior to tracking targets with a Kalman filter tracker. 

Then, multiple sensor data fusion is performed based on Bayesian 

Minimum Mean Square Error Criterion (MMSE). The fused estimates are 

considered to have correlated estimation error. Also feedback from the 

global estimate into local trackers is implemented to improve local 

tracking performance. 

Examples for maneuvering and non-maneuvering crossing targets are 

simulated. Kalman Filter is used in the second stage of the algorithm to 

provide a state estimate for a target based on the measurement associated 

to the target from the first stage. The results show an enhancement in the 

error performance as compared to data association with the Nearest 

Neighbor Standard Filter (NNSF). Comparison to perfect association 

results also shows that the algorithm performs almost as good as perfect 

association performance. The association technique withstands high 

sensor error levels. 

Multiple sensor data fusion also improves error performance. The effect 

of increasing the number of sensors is studied from two to five sensors. 

Also the effect of the variations in sensors' accuracies is simulated from 

moderate to extreme cases. In extreme cases of variations between 

sensors, performing data fusion is not recommended as it has lower 

performance than the track with the least estimation error. 
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CHAPTER 1 

INTRODUCTION 
 

1.1   Introduction 

Target tracking is the process of determining the position of a target from various 

sensor data. It is a key part in many military and civilian applications. With the 

advancement in weapons systems, robotics and computer vision, the need for 

accurately tracking multiple targets has become prominent. Ballistic Missile defense 

and Airborne Surveillance require identification and tracking of hundreds of targets at 

a time. This encompasses maneuvering and non-maneuvering targets with noisy 

sensor measurements and noise from atmospheric disturbances. The Multitarget-

Multisensor Tracking (MTMST) problem has a wide variety of applications such as 

satellite surveillance, battlefield surveillance, air defense, air traffic control and non-

military vehicle tracking system. The problem also has application to pattern 

recognition problems and robotics [1].  

The optimal solution in Bayesian sense of the MTMST problem is the Multiple 

Hypothesis Tracker (MHT), which involves calculating the probability of every 

possible track and selecting the most probable one [1,2]. The computational 

complexity of such approach makes its practical realization unfeasible using even the 

most powerful computers [1]. 

Data Association prior to tracking reduces the complexity of the problem. Various 

methods exist for assigning measurements to targets. A simple solution to the data 

association problem is the Nearest Neighbor Standard Filter (NNSF). In NNSF only 

one measurement is assigned to each target based on its proximity from the target 

estimate [3]. Other techniques, such as the probabilistic data association (PDA) and 

the joint PDA, use measurement-to-track association probabilities for the individual 

estimates as weights to combine innovations [4]. The all-neighbor fuzzy association 

approach uses the fuzzy clustering algorithm and possibility distribution to replace 

probability, thus reducing complexity [5]. 

Another category of solutions utilizes pattern recognition techniques such as neural 

networks and fuzzy logic techniques. However, neural networks require an 
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unreasonably large number of neurons and thus are difficult to train [6]. Fuzzy logic 

techniques provide approximate solutions whose accuracy depends on the choice of 

variables [7]. 

On the other hand, multisensor data fusion can be implemented to enhance 

performance further and utilize all the available information from different sensors. 

The fusion of information from different sensors to improve performance can be 

implemented in various ways, with the assumption of either correlated or uncorrelated 

estimation errors for tracks from different sensors. Also feedback of the global 

estimate into local trackers may or may not be adopted. The effect of feedback onto 

the tracking performance should also be analyzed. 

In order to find a solution to the MTMST problem; three stages have to be 

implemented. The assignment of measurements to targets needs to be resolved. Then 

the target estimate using a single measurement has to be determined. The last stage is 

combining various target estimates that originated from measurements obtained by 

various sensors. 

1.2  Objective of Thesis 

In this thesis, an approach is proposed that associates measurements to tracks based 

on likelihood calculated by projecting a short sequence of states on a hidden Markov 

model (HMM) that is previously trained to capture the dynamics of the target. The 

proposed approach is meant to provide a better metric than distance upon which 

measurements are associated. By selecting a measurement for each target rather than 

combining weighted measurements, complexity should be reduced. Tracking is then 

performed using a Kalman filter and then tracks from various sensors are combined 

based on minimum mean square error (MMSE) criterion and performance is 

simulated for different sensor conditions. Two types of tracks are simulated; 

maneuvering and non-maneuvering targets. 

 1.3 Organization of Thesis 

The organization of this thesis is as follows: Chapter 2 presents the background of the 

topics relevant to the subject of the thesis such as HMM, Kalman filter and 

multisensor  fusion. At the end of Chapter 2, the literature review is discussed. The 

suggested models of target tracks and the proposed data association and fusion 
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methods are explained in Chapter 3. Chapter 4 starts with an overview of the used 

simulator. Then, it provides the obtained results and a comparison to NNSF. Also 

complexity analysis is included in this chapter. Chapter 5 summarizes the conclusions 

and suggests recommendations for future work. Finally, a list of references and an 

Arabic summary are provided. 
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CHAPTER 2 

 BACKGROUND AND LITERATURE REVIEW ON 

MULTITARGET MULTISENSOR TRACKING 

2.1 Introduction 

The MTMST problem involves tracking multiple targets when unassigned 

(unlabelled) measurements exist that originated from various similar or dissimilar 

sensors. The problem incorporates various aspects, such as; assigning measurements 

to targets, estimating the state of a target, minimizing the estimation error and 

possibly choosing from various sensor data or the choice of combining data. Those 

aspects can be quantified as; 1) data association, 2) state estimation, and 3) data 

fusion.  

While tracking multiple objects, usually multiple measurements appear, e.g., both due 

to targets and measurement noise. The incorrect measurements are referred to as false 

measurements, clutter, or other target measurements. Data association deals with the 

problem of selecting the measurement(s) that most probably originated from the 

object to be tracked. If the wrong measurement is selected, or if the correct 

measurement is not detected at all, poor state estimates could be the result. Various 

techniques exist for data association, which are explained in the literature review later 

in this chapter. 

After selecting a measurement for the target, this measurement along with any prior 

knowledge of the target model and any prediction of its current state, are combined 

together to form the state estimate of the target. This stage is known as the state 

estimation phase. 

In the presence of multiple sensors that could each detect the same target, a method to 

make use of all the data and combine the different estimates from various sensors is 

needed to obtain a better estimate than form single sensors. In this stage data fusion 

algorithms are of great importance. 
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2.1.1 Target Model 

The target state and measurement could be represented by eq.s' (2.1) and (2.2) [8]; 

              (2.1) 

where    is the discrete time state at instant  ,   is the state transition matrix and    

is the process noise. Eq. (2.1) is assumed to be a Markov process, i.e. contains all 

measurement information up to    the measurement at time  , given by the following 

measurement model [8]: 

           (2.2) 

where   is the measurement matrix and    is the measurement noise. 

In tracking, the goal will be to recursively estimate the states i.e. position and velocity 

of a target in eq. (2.1).  

2.2 Hidden Markov Model (HMM) 

2.2.1 Discrete Markov Process  

A discrete Markov process is a system that can be described at any time as being in 

one of a set of    distinct states              
. At each sampling time the system 

undergoes a transition from one state to another according to a set of probabilities 

associated with the state called the state transition probabilities given by [9].  

                          ,                          (2.3) 

where     is the probability of transition from    to    and      is the actual state at 

time  , and     obeys standard stochastic constraints such that [8, 10]; 

       (2.4) 

     
  
      (2.5) 

The above model is observable, since the output is the set of states at each time instant 

  and each state corresponds to an observable event [11].  
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Figure 2.1: A Markov Chain with 5 states with selected state transitions [9]. 

2.2.2 Extension to Hidden Markov Model 

In this section we extend the concept of Markov model to the case where the 

observation is a probabilistic function of the states. The resulting model is a doubly-

embedded stochastic process with an underlying stochastic process that is not 

observable (hidden) but can only be observed through another set of stochastic 

processes that produce the sequence of observations [9].  

The first stochastic process is a finite set of states, the transitions between the states 

are statistically defined by a set of transition probabilities. The second stochastic 

process is the distribution of observations over a particular state (since observations 

hold no certainty to which state they belong), usually the distribution of observable 

events over a state is a multidimensional probability distribution typically a Gaussian 

mixture model (GMM) [10]. 

Thus in an HMM when observations are made, no certainty is obtained about the state 

of the system, however there is a probability distribution for each state over possible 

observations. Figure 2.2 shows a depiction of an HMM with 4 states, where the 

sequence of states is chosen through observations. 
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Figure 2.2: Example of an HMM [9]. 

2.2.3 Parameters of an HMM 

An HMM is characterized by the following parameters [9, 10]; 

a)     the number of states in the model. Generally the states are interconnected so 

that any state can be reached from any other state (an ergodic model). However, 

sometimes transitions between certain stages can be eliminated by setting the state 

transition probability between those two stages to zero. 

b) Possible observation symbols per state; the observations could be discrete in 

nature, i.e. a set of distinct alphabet                 or continuous in nature 

like a physical phenomena being modeled.  

c)  The state transition probability distribution        , where     is given in (2.3). 

For an ergodic model we would have       for all    . 

d) The observation probability distribution in state  .  

                                 (2.6) 

where   is the observation and    is the state of the model at time  . 

Usually   is a multidimensional distribution, typically a GMM. 

e) The initial state distribution       , which describes the probability that the 

model is initially in state  . 
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                             (2.7) 

Thus the model    can be described as; 

           (2.8) 

2.2.4 Gaussian Mixture Model 

Each state is a GMM that is composed of a weighted sum of Gaussian density 

functions. The probability density function of the outputs over a particular state is 

given in eq.(5) [12, 13]. 

                    
 
    (2.9) 

where    is the weight given to density function  ,   is the number of mixtures in the 

model and            is a Gaussian distribution with a mean    and a standard 

deviation   . 

2.2.5 Training  

This phase is a crucial part for most of the applications of HMM, since it allows us to 

optimally adapt model parameters to observed training data, thus creating the most 

suitable model for a real phenomena [9]. 

The main problem of an HMM is to find a method to adjust the model parameters so 

as to maximize the probability of the training observation sequences. There is no 

known way to analytically solve for the model which maximizes the probability of the 

observations [14-16]. However, an iterative procedure can be used to solve for the 

model λ that locally maximizes           such as the Baum-Welch Expectation 

Maximization (EM) algorithm [17].    

2.2.6 Likelihood Calculation 

Given an observation sequence   and a model  , the question is what is the most 

likely state sequence corresponding to this observation sequence. Using the Viterbi 

algorithm [18], the sequence with maximum likelihood can be chosen. An auxiliary 

variable is defined that gives the highest probability that a partial observation 

sequence matches a state sequence up to time   given the current state is    [10]. 
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                                                                           (2.10) 

                                                       (2.11) 

with; 

                      (2.12) 

So       is calculated and we trace back through a trellis with the states of the model 

λ as its nodes, maximizing the probability as we go backwards uncovering the 

sequence of states.  

The likelihood of this sequence is given by eq. (2.13). 

            
             (2.13) 

 

 

Figure 2.3: Trellis representation of an HMM 

 

2.3 Kalman Filter 

The Kalman filter is an optimum recursive data processing algorithm, used to estimate 

the state of a linear dynamic system perturbed by white Gaussian noise [19, 20]. One 

aspect of this optimality is that the Kalman filter incorporates all information 

available to it. It processes all available measurements regardless of their precision, to 

estimate the current value of the variables of interest with use of [19]: 

a) Knowledge of the system and measurement device dynamics. 
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b) The statistical description of the system noises, measurement errors and uncertainty 

in the dynamics model. 

c) Any available information about the initial conditions of the variables of interest. 

The solution is recursive in that each updated estimate of the state is computed from 

the previous estimate and the new input data so the Kalman filter does not require all 

previous data to be stored and reprocessed every time a new measurement is taken 

[19, 21]. This is of vital importance so as to the practicality of the filter , also the 

Kalman filter is computationally more efficient than computing the estimate directly 

from the entire past observed data at each step of the filtering process [21]. Figure 2.4 

shows a simple diagram to describe a system with the process and measurement 

noises and a Kalman filter used to estimate the system state. 

 
 

Figure 2.4: Typical Kalman filter application [19]. 

 

2.3.1 Basic Assumptions of a Kalman Filter 

Theoretically, the Kalman filter is an estimator of the linear quadratic Gaussian 

(LQG) estimation problem [20]. The Kalman filter has three basic assumptions [19]: 

a) A linear system model; which is adequate for many applications and 

mathematically more straightforward and developed than non-linear modeling.  
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b) Whiteness of noise; meaning that noise samples are uncorrelated in time and also 

have equal power over all frequencies. Figure 2.5 shows the equivalence between 

wideband noise and white noise within the pass band of the system. 

c) Gaussialy distributed noise; this assumption can be justified by the fact that noise is 

a result of many random small sources combined together. It is mathematically 

proven that when a number of random variables are added up, the resulting 

distribution can be approximated by a Gaussian distribution.  

 

Figure 2.5: Wideband noise and white noise power spectral densities [19]. 

 

2.3.2 Mathematical Derivation 

The derivation provided hereunder is from the work of Grewal and Andrews [20] and 

Haykin [21]. 

The system flow graph of a linear discrete time system is shown in Fig. 2.6 and the 

dynamical and measurement models are given by eq.s' (2.1) and (2.2). 

The process noise    in (2.1) and the measurement noise    in (2.2) are assumed to 

be additive, white and Gaussian, with zero mean and with covariance matrices defined 

by; 

            (2.14) 

            (2.15) 
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Figure 2.6: Signal-flow graph representation of a linear discrete-time system [21]. 

 

The problem of jointly solving the process and measurement equations for the 

unknown state in an optimum manner may now be formally stated as follows: 

 Use the entire observed data, consisting of the vectors            to find for 

each    the minimum mean-square error estimate of the state   . 

 The problem is called; filtering if    , prediction if      , and  smoothing 

if       . 

Let     denote the a posteriori estimate of the signal, given the observations 

          . In general, the estimate     is different from the unknown signal   . To 

derive this estimate in an optimum manner, we need a cost function for incorrect 

estimates. The cost function should satisfy two requirements: 

 The cost function is non-negative. 

 The cost function is a non-decreasing function of the estimation error     

defined by; 

            (2.16) 

These two requirements are met by the mean-square error given by eq. (2.17). 

              
   

                                          
   (2.17) 
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Principle of Orthogonality; if the stochastic processes {    and      are zero mean 

and the estimate     is restricted to be a linear function of the measurements, and the 

cost function is the mean-square error, 

Then: 

The optimum estimate     given the observations            is the orthogonal 

projection of    on the space spanned by these observations. 

With a linear estimator the a posteriori estimate may be expressed as a function of the 

a priori estimate    
  and the measurement    , as follows;  

       
   

   
       (2.18) 

Now it is required to determine the scaling factor matrices    
   

 and    to get the 

optimum estimate. To find these two matrices we apply the principle of orthogonality, 

thus; 

        
                                  (2.19) 

Using eq.s' (2.16), (2.17), (2.18) and (2.19) we obtain; 

         
   

   
               

     (2.20) 

Since the process noise    and the measurement noise    are uncorrelated, then; 

       
     (2.21) 

We may rewrite eq. (2.20) as; 

            
   

     
    

          
    

          (2.22) 

from the principle of orthogonality we know that; 

          
    

     (2.23) 

thus; 

          
          

     (2.24) 

For arbitrary values of    and    this equation could only be satisfied if; 

          
       (2.25) 

which yields the following relationship between    and   
   

 : 
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          (2.26) 

By substitution in eq. (2.18), the a posteriori estimate     can be obtained by eq. 

(2.27). 

        
            

   (2.27) 

The innovation process represents a measure of the new information contained in    

and is given by; 

            
  

                                                     
  

                                                   
     (2.28) 

              
     (2.29) 

Using eq. (2.27) and (2.28), we can express the state error as; 

                  
       (2.30) 

Substituting for eq. (2.28) and (2.30) into (2.29) we get; 

              
            

         (2.31) 

And since the measurement noise    is independent of the state    and thus of the 

state error     
 , then the above equation reduces to; 

             
    

              
     (2.32) 

Define the a priori covariance matrix   
  as; 

   
       

    
    (2.33) 

Then eq. (2.32) can be rewritten as; 

          
           (2.34) 

Finally we get the Kalman filter gain    by solving the above equation; 

      
       

       
   (2.35) 

And the covariance of the state error    is given by; 

             
  (2.38) 
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2.4 Multisensor Estimate Fusion 

Sensor fusion is the process of combining data from different sensors to form a better 

estimate than when using each sensor individually. Multisensor data fusion combines 

data from multiple sensors to perform inferences and achieve performance that may 

not be possible from a single sensor alone [22]. The concept of multisensor data 

fusion is hardly new. Humans and animals have evolved the capability to use multiple 

senses to improve their ability to survive. For example, it may not be possible to 

assess the quality of an edible substance based solely on the sense of vision or touch, 

but evaluation of edibility may be achieved using a combination of sight, touch, smell, 

and taste. Thus multisensory data fusion is naturally performed by animals and 

humans to achieve more accurate assessment of the surrounding environment and 

identification of threats, thereby improving their chances of survival [23].  

 Data fusion spans military and nonmilitary applications. Military applications include 

ocean surveillance, air-to-air and surface-to-air defense, battlefield intelligence, 

surveillance and target acquisition, and strategic warning and defense. Nonmilitary 

applications include medical diagnostic, robotics, remote sensing, and automated 

monitoring of equipments [23, 24]. 

2.4.1 Advantages of Multisensor Data Fusion 

The advantage of a multisensor system over a single sensor system can be expressed 

in terms of the improvement in the system performance. The following are some 

performance measures that show the advantages of multisensor systems [25]: 

a) Reliability:  Multisensor systems have an inherent redundancy. If one or more 

sensors fail due to interference such as jamming, the system can continue to operate at 

a reduced performance level.  

b) Coverage: Multiple sensors can observe a region larger than the one observable by 

a single sensor. 

c) Confidence:  Sensors can confirm each other’s inferences, thereby increasing 

confidence in the final system inference.  

d) Response time:  Since more data is collected by multiple sensors, a desired level of 

performance can be reached faster. 
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e) Resolution: The use of various sensors can result in an inference with better 

resolution than any of the sensors used. 

2.4.2 Processing Levels in a Data Fusion Model 

Data fusion incorporates various processing levels. Table 2.1 shows a summary of 

those levels along with their description. 

 
Table 2.1: Processing levels of a data fusion system [23]. 

 

Level Description 

Level 0: Signal Refinement Preprocessing of sensor data, e.g. amplification, de-

noising, feature extraction, etc... 

Level 1: Object Refinement Combines locational, parametric and identity 

information to produce representatives of objects, 

e.g. position, identity, etc...  

Level 2: Situation Refinement Attempts to define a relationship between groups of 

entities, it incorporates environmental information, 

observations and a priori knowledge. 

Level 3: Threat Refinement Projects the current situation into the future to draw 

conclusions about enemy threats, it involves 

knowledge and analysis of enemy data. 

Level 4: Process Refinement A meta process (i.e. a process concerned about other 

processes), which involves assessing the 

performance of lower level processes and monitoring 

the performance of data fusion. 

  

Those processing levels are incorporated in the data fusion process which is 

represented as a feedback closed loop structure shown in Figure 2.7. In this 

architecture the feedback through the sensor manager is responsible for process 

refinement. 



 17 

 

Figure 2.7: Feedback connection via sensor manager in a data fusion process [26]. 

 

2.4.3 Types of Inferences 

According to the level of processing required, high or low level inferences can be 

made through a data fusion system. Figure 2.8 shows the hierarchy of inferences from 

lowest to highest levels of inference. 

 

Figure 2.8: Hierarchy of inferences  [22]. 
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2.4.4 Positional Fusion 

Positional fusion is combining data from various similar or dissimilar sensors to 

obtain an estimate of the position of a target. Dissimilar sensors means sensors with 

different accuracies. Positional fusion is divided into two stages: (1) parametric 

association and  (2) estimation techniques. Parametric association correlates data from 

multiple sensors to multiple targets in MTMST problem. It is an important part of the 

tracking algorithm, as incorrect association might result in poor performance. 

Estimation techniques are then used to obtain a better estimate of the state vector [22, 

27].  

2.5  Data Association and Estimation Techniques 

This section contains brief description of former data association techniques, state 

estimation algorithms and data fusion approaches that guided the flow of work in this 

thesis. 

2.5.1 Multiple Hypothesis Trackers 

This technique typically works with a set of detections comprised of both noisy 

measurements of the target position, in Cartesian or polar coordinates, and false 

alarms due to clutter. The detections are then either associated with existing tracks, 

used to create new tracks, or deemed false alarms. The first step of the MHF is the 

formulation of all feasible hypotheses. Then, when new data comes available, each 

hypothesis is expanded into a set of new hypotheses. This way a tree of hypothesis 

can be generated. With the formulation of each new hypothesis the compatibility 

constraint is maintained, i.e., only feasible hypothesis are considered. The track score 

is used to assess the validity of the track. As more data is measured, the size of the 

hypothesis tree can grow exponentially, which makes the solution computationally 

unfeasible [8, 28]. 

2.5.2 Nearest Neighbor Standard Filter 

The idea of the NNSF is to select the measurement that is closest to the predicted 

estimate, i.e., it is an optimal solution in the sense that it minimizes the distance 

between predicted states and measured points. In order to do so, for each of the 

measurements the distance     between measurement j and target i is calculated using 
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eq. (2.37) and the measurement with the shortest distance is believed to be the correct 

one [29, 30]. 

                          (2.37) 

where           is the innovation calculated by eq. (2.28). 

This filter can be implemented for tracking any number of known tracks and an 

advantage is the low computational complexity. An obvious drawback is that, with 

some probability, the nearest neighbor is not the correct measurement. 

2.5.3 Measurement Gates 

A common first step in solving the data association problem is the selection of a 

validation region, sometimes called (measurement) gate. The gate is a region in which 

the next measurement is highly probable to appear. In order to define the gate, the 

target is assumed to be on a track, such that a predicted measurement and the 

measurement prediction covariance matrix are available. It is assumed that the true 

measurement at time  , conditioned on the old measurements up to time     , is 

normally distributed. Measurements that fall within the gate are called validated 

measurements. The problem of single target data association with       is 

summarized in Figure 2.9 , where the size and shape of the ellipse are determined by 

the covariance of the innovation [29].  

 

Figure 2.9: A single predicted target measurement with four validated measurements [8]. 
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When the number of objects to be tracked exceeds one, it has to be decided which 

measurement originated from which target. A data association algorithm has to 

determine whether a measurement is correct or incorrect. A more complex situation is 

summarized in Figure 2.10, where the predicted measurements for two are validated 

using measurements gates. Data association algorithms based on gates, clearly should 

include a strategy that is able to deal with the appearance and the disappearance of 

tracks [29]. 

 

Figure 2.10: Two targets and the corresponding validated measurements [8]. 

 

2.5.4 Probabilistic Data Association Filter 

The Probabilistic Data Association (PDA) Filter uses a Bayesian approach to the 

problem of data association or how to update the state when there is a single target 

and possibly no measurements or multiple measurements due to noise. Rather than 

possibly erring by choosing the nearest neighbor or data closest to what is expected in 
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order to update the state, the PDA filter hedges its bets by weighting the influence of 

the various candidate measurements based on two assumptions. First, it assumes that 

there is exactly one target giving rise to one true measurement. Second, the PDA filter 

assumes that all other measurements are false and arise from a uniform noise process. 

The relevant step in the Kalman filter is the computation of the innovation. The PDA 

filter introduces a notion of the combined innovation, computed over the 

  measurements detected at a given time step as the weighted sum of the individual 

innovations [31, 32]:  

          
 
    (2.38) 

Each    is the probability of the association that the     measurement is target-

originated. 

2.5.5 Joint Probabilistic Data Association Filter 

The Joint Probabilistic Data Association (JPDA) filter; an extension to the PDA filter, 

enforces a kind of exclusion principle that prevents two or more trackers from 

latching onto the same target by calculating target-measurement association 

probabilities jointly. Suppose that we are tracking   objects, for which a total of   

measurements have been generated. A key notion in the JPDA filter is that of a joint 

event or conjunction of association events. More specifically, the difference is that the 

measurement to target association probabilities are calculated jointly across targets. 

The probability of a particular event depends, as with the PDA filter, on the distances 

between each target's predicted state and the measurements. However, an additional 

influence on the probability of an event stems from the interaction of the various 

association events. The JPDA filter disregards infeasible joint events and, thus, avoids 

inappropriate state convergence [29, 31]. 

2.5.6 All-Neighbor Fuzzy Association 

Data association is performed by updating the predicted target state estimate using a 

fuzzy weighted sum of innovations. Unlike the joint probabilistic data association 

filter, in which the similarity measures are determined in terms of the conditional 

probability for all feasible data association hypothesis, the proposed fuzzy association 

approach determines the similarity measures between measurements and tracks in 

terms of possibility weights based on a partition matrix. The possibility weights are 

determined according to the fuzzy clustering algorithm. This approach has a lower 
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computational complexity in the expense of a little lower performance compared to 

the standard JPDA filter [5]. 

2.5.7 Viterbi Data Association 

If the sequence of measurements is set onto a trellis, the Viterbi algorithm can be used 

to solve the data association problem by finding an optimal sequence, i.e., an optimal 

track. In order to be able to find any optimal solution, some cost function has to be 

defined. The cost function that is used for Viterbi Data Association (VDA) can be 

based on similar ideas as the NNSF, explained earlier. The VDA starts with a set of 

validated measurements      , with          . Then, when a new set of 

measurements        , becomes available, the lengths of the existing tracks from 

the starting point to the new measurement         through the old measurements 

       is calculated. As a result, for each measurement,         the length of the 

shortest path to this measurement is obtained. The difference with the NNSF lies in 

the fact that the NNSF only calculates one path each recursion step [33]. 

2.5.8 Track Splitting  

The track splitting filter described in this section is a batch method, i.e., it uses a 

sequence of data obtained at multiple time instants. The main assumptions are linear 

dynamic and measurement models and Gaussian process and measurement noise. 

After the initialization, at time    , the track is split up into    tracks, one for each 

validated measurement. Then    validation regions are calculated and at time    , 

the procedure is repeated. If two measurements at successive times are close to each 

other and not associated, this could be used to initiate a new track. Clearly, this 

strategy has to deal with a rapidly increasing number of tracks and for that reason, 

likelihoods of all tracks are calculated. If the likelihood is lower than a predefined 

threshold, it will be eliminated.  

Once a track has a long history, the likelihood of the track will be dominated by this 

long history. As a result, the response will be slow and the memory and computation 

requirements will rapidly increase. This is a major drawback and, therefore, a sliding 

window can be included to ensure that only the last measurements are taken into 

account. Another disadvantage is that the track splitting filter allows shared 

measurements between tracks which may result in non-physiological tracks [34]. 
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2.5.9 Expectation Maximization 

Estimating the state of a number of unknown targets under uncertain measurement 

origin is a non-classical filtering problem, the classical filtering problem arising when 

the measurements origins are known. The non-classical filtering problem can also be 

considered an incomplete data problem. To develop the idea of complete data let Y be 

the observed or incomplete data and Z represent some unobserved data which, if 

available, simplifies the estimation problem. Then the complete data can be 

represented by X, where X = (Y, Z). In the above state estimation problem, the 

observed data, Y, are the measurement returns from sensors over the observation time 

while the unobserved data, Z, are the associations between the measurements and the 

set of possible classes from which the measurements can originate. Looking at the 

non-classical filtering problem as an incomplete data problem, we can draw upon 

solution techniques for parameter estimation from this domain. Recently, there has 

been much interest in the literature regarding the maximum-likelihood (ML) 

estimation of parameters from incomplete data by use of the Expectation-

Maximization (EM) algorithm. The EM algorithm is an iterative procedure that 

estimates both the parameters and the missing or unobservable data during an 

iteration. The approach first computes an approximation to the expectation of the log-

likelihood functional of the complete data conditioned on the current parameter 

estimate. This is called the expectation step (E-step) and here the current incomplete 

data estimate is calculated. Next, a new parameter estimate is computed by finding the 

value of the parameter that maximizes the functional found in the E-step. This is 

called the maximization step (M-step). The EM algorithm has been found to have the 

advantages of reliable global convergence properties in most instances, although it 

can exhibit seeming slow convergence in some applications [35]. 

2.5.10 Bayesian Tracking Approach 

In the Bayesian approach, the states are assumed to be random variables with a 

posterior probability density function (pdf)             which is approximated using 

(1) a prediction and (2) an update step. 

1. In the prediction step, the Chapman-Kolmogorov equation will be used to calculate 
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the prior pdf                i.e., the predicted pdf of    on the basis of measurements 

up to time    . If the system in eq. (2.1) is assumed to be Markov, then the 

Chapman-Kolmogorov equation is: 

                                                    (2.39) 

2. At time step  , a new measurement    becomes available and Bayes' rule can be 

used to update the prior pdf to the posteriori probability, using the conditional 

probability: 

            
                    

            
 (2.40) 

If this problem of recursively calculating the posterior pdf is solved exactly, the 

optimal Bayesian solution is obtained. Unfortunately, this optimal solution only exists 

in a restricted set of cases since it involves the evaluation of complex high-

dimensional integrals [8]. 

2.5.11 Linear Kalman Filter 

The Linear Kalman filter gives the optimal Bayesian solution to the state estimation 

problem, if the posterior pdf at every time step is Gaussian. Furthermore the state 

transition matrix   and the measurement matrix H should be known and linear. The 

noise vectors    and    should be drawn from zero mean Gaussian distributions with 

known covariance. The main advantages are then optimal Bayesian solution and the 

low computational complexity and memory requirements. An obvious drawback is 

the above mentioned assumptions [36]. 

2.5.12 Extended Kalman Filter 

In many practical situations, dynamical and measurement models are non-linear 

functions of the states, thus applying the linear Kalman filter directly would fail. One 

obvious sub-optimal Bayesian method is using a local linear approximation at each 

time step and then applying the linear Kalman filter. In the extended Kalman filter, 

the state transition and observation models need not be linear functions of the state but 

may instead be differentiable functions. The state transition matrix   can be used to 

compute the predicted state from the previous estimate and similarly measurement 

matrix   can be used to compute the predicted measurement from the predicted state. 

However,   and   cannot be applied to the covariance directly. Instead a matrix of 

http://en.wikipedia.org/wiki/Differentiable
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partial derivatives is computed. At each time step, the Jacobian is evaluated with 

current predicted states. These matrices can be used in the Kalman filter equations. 

This process essentially linearizes the non-linear function around the current estimate. 

If the system under consideration has weak nonlinearities, this suboptimal algorithm 

can be very effective. There are a few major drawbacks using this approach; if the 

nonlinearities become severe, the performance of the filter can decrease rapidly [37, 

38]. 

2.5.13 Unscented Kalman Filter 

A second sub-optimal Bayesian method that is based on the linear Kalman filter is the 

unscented Kalman filter, that falls within the group of Sigma-Point Kalman filters. 

The basic idea of this filter is that it is easier to approximate a probability distribution 

than it is to approximate an arbitrary nonlinear function or transformation. While 

considering the spread of a random variable the unscented Kalman filter tends to be 

more accurate than the first order Taylor series linearization used in the extended 

Kalman filter. A brief overview of the algorithm is as follows [39]: 

1. Select a minimum number of L points, called sigma points, where             

and    is the state dimension. Since this selection is made deterministically, the sigma 

points can be chosen from a Gaussian distribution with a desired mean or covariance, 

which limits the required number of sigma points. 

2. The nonlinear equation is used to transform the sigma points, leading to a set of 

transformed points. 

3. The transformed points are used to re-approximate the (nonlinearly transformed) 

mean and covariance of the Gaussian distribution. 

Contrary to the extended Kalman filter, the unscented Kalman filter can deal with 

severe nonlinearities while its computational complexity has the same order of 

magnitude. Disadvantage is that again a Gaussian distribution is assumed. If the true 

density is non-Gaussian, it is very likely that neither the unscented Kalman filter nor 

the linear Kalman filter and the extended Kalman filter are able to describe it well [8]. 
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2.5.14 Grid-Based Method 

Another way to find the optimal pdf           , is using a grid-based method. This 

method assumes a discrete state space with a finite number of states. The posterior pdf 

is written as; 

                         
            

  
  
    (2.41) 

where    is the number of states and         
  is the conditional probability. 

One of the disadvantages of this method is that the computational cost increases 

rapidly with the dimensionality of the state space, since the grid should be sufficiently 

dense to represent the continuous state space. Furthermore, the state space should be 

defined in advance and the grid should have a high constant resolution over the whole 

domain, or prior knowledge about regions with a high probability has to be used. 

Probably due to these reasons, grid-based methods are hardly used in recent literature 

[40]. 

2.5.15 Kalman Filtering Fusion 

They use a test statistic to determine whether or not two tracks are the same and solve 

the problem of track fusion assuming independent estimation errors. The fused 

estimate, which minimizes the expected mean square error, and the corresponding 

covariance are given by [22, 41]: 

        
   

        (2.42) 

        
   

   . (2.43) 

2.5.16 Fusion with Correlated Noise 

Track fusion is performed under the assumption that the estimation errors of different 

sensors are correlated. The measurement noises of two different sensors can be 

assumed independent but is not sufficient to yield the independence of their 

estimation errors. This is because the same process noise in the dynamic model makes 

the two estimation errors correlated [42, 43].     represents the cross-correlation 

between the two estimates and is given by: 

                                     (2.44) 
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2.5.17 Fusion with Feedback 

Kalman filtering track fusion formula with feedback is, like the track fusion without 

feedback, exactly equivalent to the corresponding centralized Kalman filtering 

formula. Moreover, the   matrices in the feedback Kalman filtering at both local 

trackers and the fusion center are still the covariance matrices of tracking errors. 

Although the feedback here cannot improve the performance at the fusion center, the 

feedback does reduce the covariance of each local tracking error i.e., the feedback 

improved local tracking performance [44]. 

 

It is obvious from surveying the various techniques for data association that the 

techniques that give the best performance are the ones that rely on putting more than a 

single measurement under study or combining various measurements. Where the 

techniques that select a measurement based on metrics as simple as distance have a 

much degraded performance. It is also noticed that most state estimation methods rely 

on the linear Kalman filter as linear estimation is mathematically more established 

and computationally more feasible than non-linear techniques. Were it necessary to 

have a non-linear model than locally linear techniques that linearize about a certain 

point at each time step are used. The last observation is that fusion can be 

implemented in a simple manner using Kalman filter equations or factors like 

correlated estimation errors and feedback may be considered. 
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CHAPTER 3 

 BASIC PROPOSED MODEL AND ANALYSIS 

3.1  Introduction 

In this chapter, the overall proposed tracking algorithm is discussed. The HMM-based 

data association is explained, then the Kalman filter tracker with full description of 

both maneuvering and non-maneuvering target models is shown, and, finally, Kalman 

filter data fusion with correlated estimation error and feedback is discussed.  

3.2  The Proposed System 

The proposed tracking system is composed of three main stages. The first stage is data 

association based on an HMM, which associates a single measurement to each target 

in a multitarget environment. The second stage is state estimation using a Kalman 

filter tracker to estimate  - and  - position and velocity. The final stage is combining 

estimates from various trackers through fusion based on MMSE criterion. Figure 3.1 

shows an overall view of the proposed tracking system. 

 

Figure 3.1: An overall view of the tracking system 
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3.3 Data Association Based on HMM 

3.3.1 Constructing the model 

As mentioned previously there is no optimal way for choosing an HMM's parameters, 

thus the initial parameters such as; model size and initial weights and variances of 

each mixture where chosen based upon simulation results for different model 

parameters. 

The following values are chosen for the parameters: 

 a) The number of states in the model   . This number is of great importance, as a 

model with a small    might not capture all the statistical details of the problem, and 

a large value of    would result in a model that is practically impossible to train. 

From simulation results, it is found that      is adequate.  

b) The state transition probability distribution          in our case an ergodic model 

is adopted, i.e., any state can transition to any other state.   

                      (3.1) 

c) The observation probability distribution in state    of the model; the probability 

distribution chosen for each state is a GMM, where the number of mixtures is     

of initial weights, means and variances given as: 

    
 

 
        

i
    i     (3.2) 

A large number of tracks are used to train the above HMM. Through training the state 

transition probabilities as well as the weights, means and variances of the GMMs' of 

each state are calculated. The training is performed by the Baum-Welch algorithm 

[16, 19]. The training phase is not part of the data association algorithm, rather an 

initial step to construct a model to capture the dynamics of the targets.  

3.3.2 Data Association Metric 

After the model is constructed it is used to calculate data association metrics as 

follows: 

When a number of measurements   exist for a target, each measurement    is tested 

for         . First a sequence of length    is created from the previously 

determined target states and a measurement as follows: 
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                                                    (3.3) 

The sequence length    is determined experimentally, the longer the sequence the 

better the performance is of the data association algorithm.  However, a long sequence 

would result in higher complexity and more memory being used. The sequence length 

of the work presented in this thesis is taken as     . A sliding window of length 

     is used with its center at     
  

 
  to obtain a state sequence. Then each 

measurement is added to constitute the last observation of the observation sequence 

 . The likelihood that an observation sequence was generated by our model λ is given 

by; 

           
  
             (3.4) 

Usually the likelihood is replaced by calculation of the log-likelihood given in eq. 

(3.5). 

                 
  
                 (3.5) 

While the state sequence through the model that maximizes the likelihood of an 

observation sequence is obtained using the Viterbi algorithm [18]. Figure 3.2 shows 

an illustration of the data association algorithm. 

 

Figure 3.2: Data association algorithm. 

3.3.3 Complexity Analysis 

In this section the complexity of the algorithm; in terms of required additions, 

multiplications and comparisons, is analyzed as a function of the number of targets 

and measurements under consideration. 
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Let's assume that the number of targets under consideration is    and the number of 

measurements is   . The path that maximizes likelihood is determined using Viterbi 

decoding with a trellis of    nodes at each time step (the number of nodes is 

equivalent to the number of states of the model λ).   

For a single target and a single measurement at any time step     multiplications are 

required to calculate the likelihood of all transitions.      comparisons are required 

to determine the maximum likelihood. However, as likelihood rather than path length 

is used for comparison, when the decoder terminates the data association metric 

would be already calculated. 

This procedure is repeated for all targets with all measurements, thus the total number 

of multiplications   and comparisons   required at each time step is given by: 

            (3.6) 

               (3.7) 

Note that in this implementation no additions are required at all. The total number of 

computations required for data association as a function of the number of targets and 

measurements is given by: 

                     (3.8) 

3.4  Kalman Filter Tracker 

3.4.1 State Estimation 

The target state and measurement follow the dynamical and measurement models in 

(3.9) and (3.10). 

                      (3.9) 

                    (3.10) 

The Kalman filter is used in target tracking to estimate the position of a target through 

an assumed dynamical model and noisy measurement data. This is achieved through 

three stages [27, 29]: 

a) Prediction: The state estimate of target   at     is predicted from the old state 

estimate at   using the state transition matrix   that is constructed in accordance with 

the dynamical model. 
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                      (3.11) 

                            (3.12) 

b) Correction: In this stage the Kalman filter gain and the innovation are calculated. 

                                                (3.13) 

                              (3.14) 

c) Update: Finally the state estimate and the error covariance matrix are updated. 

                                             (3.15) 

                                                (3.16) 

3.4.2 Non-Maneuvering Target Model 

A non-maneuvering target is a target moving in a straight line with constant velocity. 

The state vector is composed of the x- and y- positions and x- and y- velocities as 

follows: 

      

 
 
 
 
    
     
    
      

 
 
 

 (3.17) 

 White Gaussian noise is added to the true trajectory to compose the target 

measurements. The state transition matrix   in such case is given by:  

    

 
 
 
 

   

 
 
 
 

   

 
 
 
 

   

 
 
 
 

  (3.18) 

where   is the sampling interval. 

The measurements are the x- and y- positions for a target and thus the measurement 

matrix   is given by: 

    
   
   

    
 
 
  (3.19) 

The noise covariance matrix is given by: 

    
  

  

   
   (3.20) 
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Where   and    are the standard deviation of the noise in the x- and y- direction, 

respectively. 

3.4.3 Maneuvering Target Model 

The turning motion model is adopted in such case. The state estimate in this case is 

given by: 

                               (3.21) 

where G is the gain matrix and         is the acceleration matrix at instant    . 

     
  

  
  (3.22) 

    

     
 
 
 

    

 
 

    
 

  (3.23) 

The process noise covariance matrix   is given by [42]: 

      

    

    
 
 

   

    
 
 
 

   

 
 

    

    

   

 
 

    
 

  (3.24) 

Where   is equal to    .  

The acceleration in the x- and y- direction is calculated by: 

           
                 

 
 (3.25) 

3.5 Multisensor Estimate Fusion Based on Bayesian MMSE 

The implemented estimate fusion algorithm combines tracks from various sensors to 

obtain a global estimate of the state of a target. In our implementation, the cross-

correlation between estimation errors from different systems is taken into 

consideration. Also, feedback of the global estimate into local trackers is implemented 

and its effect is analyzed in section 3.5.2. Figure 3.3 shows an overview of the 

estimate fusion system. 
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Figure 3.3: Overview of the estimate fusion system. 

3.5.1 Cross-Covariance 

As established in [42, 45], the estimation errors of two tracks of the same target but 

from different sensors are correlated, because while the measurement noise of the two 

sensors can be safely assumed independent, the same process noise in the dynamic 

model yields the correlation of the estimation errors. 

The covariance of the difference     between two estimates form sensors   and   is 

given by: 

         
                       

 
  (3.26) 

The covariance can be rewritten as; 

         
                                   

 
               

                                                                                        (3.27) 

where     represents the cross-correlation between the two estimates and is given by: 

                                     (3.28) 

In this case, the results of the fused estimate and the corresponding covariance which 

minimize the mean square error (MSE) will be [22, 42, 46-46]: 

                              
  

  
                            (3.29) 

                            
         

                          (3.30) 

where     is determined by the following recursive equation: 
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            (3.31) 

3.5.2 Feedback 

First the effect of feedback on the fused estimate and the global estimation error is 

presented as follows: 

When feedback is performed, the local sensor predictions are given by: 

    
             (3.32) 

   
                              (3.33) 

The Kalman filter gain and the innovation can be easily computed as: 

   
                                 

                    (3.34) 

    
                    (3.35) 

The local state estimate and error covariance are given by: 

            
                                          

                            (3.36) 

  
                                        

            (3.37) 

It is logical to state that the covariance of the global estimate is lower than the 

covariance of the local estimate without feedback because more information is 

contained in the global estimate, i.e.                    . This statement 

yields;  

   
                       (3.38) 

Thus, feedback improves local tracking performance which in turn affects the global 

fused estimate without altering any of the fusion formulae at the fusion center. 

3.5.3 Sensors 

Two important aspects in multisensor estimate fusion are: (1) sensors' accuracies, and 

(2) number of sensors. 

It is safe to say that as a single sensor's accuracy increases, the overall performance of 

the tracking algorithm improves. However, the problem is whether it is more adequate 

to use sensors with similar or close accuracies, or variations in sensor accuracies have 

no severe effect on overall performance. Another problem is how to determine the 
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number of sensors to be used, as a large number will result in a huge processing load 

in the fusion center and also a vast amount of communications into and out of the 

fusion center from local trackers. Nevertheless, a small number of sensors might not 

improve performance significantly to justify carrying out the fusion process at all. The 

answers to these questions are presented in the next chapter, where different cases are 

simulated to show the effect of the number and accuracies of sensors on the error 

performance. 

3.6  Concluding Remarks 

The proposed system is in three stages. The first stage is the HMM-based data 

association, the second stage is state estimation using linear Kalman filter. Finally, 

estimate fusion among similar and dissimilar sensors is implemented using Kalman 

filter fusion with the assumption of correlated estimation errors and with feedback of 

the global estimate into local trackers. The performance of the proposed algorithm is 

evaluated using two different target models; non-maneuvering and maneuvering 

target models.  
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CHAPTER 4 

  RESULTS AND DISCUSSION 

4.1  Introduction 

Based on the described model in Chapter 3, MATLAB version 7.14 (R2012a) and 

HTK version 2.2 were used to simulate the proposed tracking algorithm. 

All the displayed results are based on a 300 run Monte Carlo simulation. Two 

examples are considered, two crossing non-maneuvering targets and two crossing 

maneuvering targets. The performance of the data association algorithm is illustrated 

in the second section. The third section focuses on results due multisensor fusion and 

the effect of the number of sensors and sensor accuracies on the results. 

4.2  HMM-Based Data Association 

4.2.1 Non-Maneuvering Targets 

The first case of two non-maneuvering crossing targets is simulated, the target 

trajectories and the measured tracks are shown in Figure 4.1. The standard deviations 

in eq. (3.20) of both target measurements are taken as              ,     

         .   
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Figure 4.1: True and measured target trajectories for non-maneuvering targets.  

Data association is performed based on the proposed HMM approach, followed by 

Kalman filter tracking. NNSF is also simulated and the results of both methods are 

shown in Figures 4.2 and 4.3. The results show better tracking performance in case of 

data association based on the proposed HMM approach. The estimated tracks in the 

case of HMM-based association are much closer to the true target trajectories. 
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Figure 4.2: Estimated target tracks with NNSF. 

 

Figure 4.3: Estimated target tracks based on HMM data association. 

Performance of both methods based on error calculation using eq. (4.1) is shown in 

Figure 4.4. 
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                                       (4.1) 

 

Figure 4.4: Estimation error for NNSF and HMM-based association for target 1.  

 

Figure 4.5: Estimation error for NNSF and HMM-based association for target 2. 
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From Figures 4.2-4.5 it is apparent that the proposed data association approach based 

on a HMM provides better performance than NNSF. The estimation error in the case 

of HMM-based association are lower than in the case of NNSF-based association for 

both targets at all times. At the crossing point of the two targets the HMM-based 

approach's performance deteriorates due to the targets being closer to each other, 

however, it decreases again after the crossing point. 

4.2.2 Maneuvering Targets 

The second example considers the case of two moving targets with acceleration, i.e. 

maneuvering targets with turn. The dynamical and measurement models are given by 

eq.s' (3.8) and (3.9), respectively. Figure 4.6 shows the actual and measured target 

trajectories. The standard deviations of both targets noisy measurements are     

        ,             . 

 

Figure 4.6: True and measured target trajectories for maneuvering targets. 

The estimated tracks with NNSF and HMM-based association are shown in Figures 

4.7 and 4.8, respectively. A comparison of the estimation errors of both methods is 

illustrated in Figure 4.9. 
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Figure 4.7: Estimated tracks based on NNSF. 

 

Figure 4.8: Estimated tracks based on HMM. 
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Figure 4.9: Estimation error for maneuvering targets with both methods. 

Figures 4.7-4.9 show the superior performance of the proposed data association 

technique over the NNSF in the case of maneuvering targets. As opposed to the 

NNSF, the performance of the HMM-based association improves from non-

maneuvering to maneuvering targets. 

An apparent advantage is the error being nearly constant at all times as it reaches its 

steady state performance quicker than other techniques due to the low complexity of 

the algorithm. 

4.2.3 Comparison with Perfect Association 

In order to further upraise performance, tracking with perfect data association is 

simulated in Figures 4.10 and 4.11, and comparisons between estimation errors with 

perfect association and HMM-based association for non-maneuvering and 

maneuvering targets are shown in Figures 4.12 and 4.13, respectively. 
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Figure 4.10: Estimated tracks with perfect association for non-maneuvering targets. 

 

Figure 4.11: Estimated tracks with perfect association for maneuvering targets. 
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Figure 4.12: Estimation error for non-maneuvering target with perfect association and the proposed 

association approach. 

 

Figure 4.13: Estimation error for maneuvering targets with perfect association and the proposed 

association approach. 
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Figures 4.12 and 4.13 show the proximity of the performance of the proposed tracking 

algorithm to tracking based on perfect association. In terms of error performance the 

proposed association approach performs almost as good as perfect association 

especially in the case of maneuvering targets. Results obtained based on perfect data 

association exclude any factors related to wrong associations among targets and 

includes only the effect of the estimation method used. This provides a good reference 

line for comparison.  

4.2.4 Effect of the Standard Deviation on Performance 

It is intuitional that as the noise standard deviation increases, the estimation error 

increases due to higher noise levels. The effect of the noise appears both in 

association phase and also during tracking. Various simulations showing the drift in 

the error performance from that of the perfect association case when the noise 

standard deviation has increased are presented in this section. Considering the perfect 

association error performance as a reference for comparison, partially eliminates the 

tracking algorithm effect and highlights the data association performance under 

different conditions.  

Figure 4.13 showed the case when the standard deviation is taken as         

    ,             . In the next example shown in Figure 4.13 the values of the 

standard deviation are              ,              . Increasing the noise 

even further so that              ,              , results in the 

estimation error shown in Figure 4.14. 
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Figure 4.14: Estimation errors for perfect association and HMM-based association when      . 

 

Figure 4.15: Estimation errors for perfect association and HMM-based association when      . 
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Figures 4.13-4.15 show the robustness of the HMM-based data association technique, 

as the drift from perfect association performance is insignificant with the increase in 

 . It is clear that the estimation error increases as the noise level increases. 

4.2.5 Computational Complexity 

An expression for the computational complexity of the data association phase in terms 

of number of calculations performed as a function of the number of targets and 

measurements under consideration is given by eq. (3.7). Table 4.1 shows a 

comparison between the complexity of the algorithm and other methods reported in 

the literature [5].  

Table 4.1: Number of operations required for data association for various techniques. 

      Standard JPDA Cheap JPDA All-Neighbor 

Fuzzy 

Association 

HMM-based 

Association 

3 6 998 546 216 252 

3 7 1,598 804 252 294 

4 4 1,155 564 240 224 

4 6 6,375 1,824 360 336 

5 6 31,204 4,200 540 420 

6 7 358,265 14,646 882 588 

 

From the above results, it is obvious that the HMM-based data association has a lower 

number of operations than other association approaches that are based on combining 

weighted measurements. This results in higher computational feasibility and faster 

performance. 

For small values of    and    only the all neighbor fuzzy association has lower 

complexity than the HMM-based association and even in this case the difference in 

the number of operations required by both techniques is not big. Generally, the 

proposed data association approach has lower computational complexity than the 

cheap JPDA, and thus lower than the JPDA, for any number of targets and 

measurements. 
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For larger values of    and    the HMM-based technique requires a lower number of 

operations than all of the other techniques shown in the table. This is mainly because 

the increase in the number of operations is a linear function of    and   and thus 

increases less rapidly than in the other techniques. The closer the number of targets is 

to the number of measurements, the better the computational complexity is. The most 

efficient performance regarding complexity is achieved when the number of targets is 

equal to the number of measurements. 

4.3  Multisensor Data Fusion Results 

Multisensor data fusion is performed based on Bayesian MMSE criterion and 

assuming correlated estimation errors for local trackers. The results displayed for non-

maneuvering and maneuvering targets with similar and dissimilar sensors. The effect 

of the variation of the sensors' accuracies and the number of sensors on performance 

is also presented. Note that at the local trackers data association is performed based on 

a HMM and tracking is carried out by the Kalman filter tracking algorithm. 

4.3.1 Performance of the Multisensor Fusion 

The first case simulated is that of five identical sensors with standard deviation 

                    Figure 4.16 shows the estimation error in the case of 

a single sensor and multiple identical sensors. In this case, the multisensor estimate 

fusion improves performance significantly. 



 51 

 

Figure 4.16: Estimation error in case of a single sensor and multiple identical sensors for a non-

maneuvering target.

 

Figure 4.17: Estimation error in case of a single sensor and multiple identical sensors for a 

maneuvering target. 

 

0 5 10 15
0

20

40

60

80

100

120

140

Time

E
s
ti
m

a
ti
o
n
 E

rr
o
r

 

 

n=1

n=5

0 5 10 15
30

40

50

60

70

80

90

100

110

120

130

Time

E
s
ti
m

a
ti
o
n
 E

rr
o
r

 

 

n=1

n=5

(m
) 

(s) 

(s) 



 51 

4.3.2 The Effect of the Number of Sensors on Performance 

To deduce the effect of the number of sensors used to perform fusion, estimation 

errors for various number of sensors from     to     are shown in Figures 4.18 

and 4.19 for both non-maneuvering and maneuvering targets, respectively. The 

sensors' accuracies in this case are identical           

 

Figure 4.18: Estimation error in case of multiple identical sensors for a non-maneuvering target. 
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Figure 4.19: Estimation error in case of multiple identical sensors for a maneuvering target. 

As the number of sensors increases the performance of multisensor fusion improves 

for both non-maneuvering and maneuvering target. However, the change is more 

significant between two to three sensors than when increasing the number of sensors 

from three to four sensors and so on. The improvement becomes less and less 

significant as we increase the number of sensors even further. As we can see from 

Figures 4.18-4.19 that increasing the number of sensors from four to five sensors 

resulted in a minor improvement in estimation error. At a certain point it would be 

unwisely to increase the number of sensors used. 

4.3.3 The Effect of Sensor Accuracies on Performance 

Figures 4.20-4.23 show estimation errors for various cases of non-identical sensor 

accuracies.  

 In the first example the sensor accuracies are                      

            and          . The results are shown in Figure 4.20. 

 In the second example the sensor accuracies are                      

            and          . The results are shown in Figure 4.21. 
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 In the third example the sensor accuracies are                      

            and          . The results are shown in Figure 4.22. 

 In the fourth example the sensor accuracies are                      

            and          . The results are shown in Figure 4.23. 

 

Figure 4.20: Estimation error for non-identical sensors and the superior track             

                                 . 
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Figure 4.21: Estimation error for non-identical sensors and the superior track             

                                 . 

 

Figure 4.22: Estimation error for non-identical sensors and the superior track             

                                 . 

0 5 10 15
10

20

30

40

50

60

70

80

90

100

110

Time

E
s
ti
m

a
ti
o
n
 E

rr
o
r

 

 

superior track

fused track

0 5 10 15
10

20

30

40

50

60

70

80

90

100

110

Time

E
s
ti
m

a
ti
o
n
 E

rr
o
r

 

 

superior track

fused track

(m
) 

(m
) 

(s) 

(s) 



 55 

 

Figure 4.23: Estimation error for non-identical sensors and the superior track             

                                 . 

As illustrated by Figures 4.20-4.23, as variations between sensor accuracies increases, 

overall performance is degraded. In the first two cases the fused track performance is 

still better than the performance of the track with the highest accuracy (least   ). 

Increasing the variations even further in the third case, the fused track and the 

superior track have almost the same estimation errors. In the last case in Figure 4.23 

the superior track performance beats the fused track performance. 

4.4  Large Number of Targets 

So far all the simulated examples contained only two targets. However, in real life 

situations the number of targets may vary. It is safe to say that a larger number of 

targets would be harder to handle and that performance will degrade as the number of 

targets increases. The question is whether the algorithm would still show acceptable 

performance in the presence of more than two targets. Figure 4.24 shows the true and 

measured trajectories of five non-maneuvering targets. The standard deviation of the 

measurement noise of the targets is shown in Table 4.2.  
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Figure 4.24:True and measured target trajectories for five non-maneuvering targets. 

 

Table 4.2: Values of Standard Deviation 

         100 m 

         150 m 

         130 m 

         130 m 

         100 m 

 

The estimated target tracks using the proposed algorithm are shown in Figure 4.25. 
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worse than the case of two targets only. The estimation error shown in Figure 4.26 is 
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each other as we get close to crossing points between targets. 
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The performance especially degrades for the target moving in a vertical line. That is 

because the data association algorithm was mostly trained with tracks that are moving 

in both x- and y- directions. The performance for this target is slightly shaky in the 

beginning of tracking, but improves and saturates by time. The results of the fifth 

target are displayed for both perfect association and HMM-based association in 

Figure 4.27 for the sake of comparison.   

 

 
Figure 4.25: Estimated target tracks for five non-maneuvering targets using the 

proposed algorithm. 
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Figure 4.26: Estimation error for the five targets. 

 
Figure 4.27: Estimation error for a vertically moving target using HMM-based 

association and perfect association. 
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CHAPTER 5 
 

CONCLUSION AND FUTURE WORK 

 

5.1  Conclusion 

In this work, an approach to solve the MTMST problem is proposed, and the 

performance of the proposed system is analyzed. From the results that have been 

obtained in this study, the following conclusions can be made: 

1. A trade-off exists between performance and computational complexity of data 

association techniques. 

2. The proposed HMM-based data association technique outperforms the NNSF 

commonly used in data association. 

3. HMM-based association significantly improves performance in maneuvering 

targets, as it is more tailored to the dynamical model than NNSF. 

4. The performance of HMM-based data association approaches perfect 

association performance especially in the case of maneuvering targets. 

5. The suggested association method withstands the increase in noise levels in 

measurements. 

6. The data association approach presented has lower number of operations than 

most of the methods reported in the literature. Also as the number of targets 

and measurements increases, the number of computations does not increase as 

rapidly as in other methods. 

7. Multisensor estimate fusion can be used to enhance error performance even 

further. 

8. Increasing the number of sensors, improves the estimation error of the fused 

track. As the number of sensors increases further, the performance starts to 

reach a saturation level beyond which performance does not significantly 

improve. 

9. Variations in sensors' accuracies affect the performance of the fused track. The 

best performance is obtained using identical sensors. 
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10.  As variations in sensors' accuracies become more severe, the performance of 

the superior track beats the performance of the fused track, and thus it is 

unjustified to adopt fusion in such case. 

11. As the number of targets increases the performance of the overall tracking 

algorithm degrades slightly. However, the performance is still within 

acceptable limits. 

12. The performance of the data association approach deteriorates in the case of a 

vertically moving target, as examples for such target were not used during 

training. 

5.2  Future Work 

In the following, we suggest some research points that are recommended for further 

investigation: 

1. Studying the problem of track initiation and track deletion using the proposed 

data association approach. 

2. Applying maneuver detection to the proposed tracking system to switch 

between multiple dynamical models. 

3. Examining more dynamical models for maneuvering targets, other than the 

turning motion model, using the proposed system. 

4. Testing the efficiency of the system in image based tracking, using features 

other than solely depending on position. 

5. Solving the MTMST problem for tracking targets in a three dimensional 

space. 
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ARABIC SUMMARY     الملخص 

ربط . ربط البيانات وتخمين الموقع: تتبع الأهداف يتكون من مرحلتين و هما

في وجود عدة أهداف هي و البيانات المقاسة بالأهداف في بيئة مليئة بالتشويش 

هذه الأطروحة . لنا تتبع الأهداف بدقةمهمة صعبة تحتاج الي حل دقيق حتي يتسني 

تتناول طريقة لربط البيانات بالأهداف باستخدام نموذج ماركوف المستتر و ذلك قبل 

بعد ذلك يتم دمج البيانات من عدة . تتبع الأهداف باستخدام مرشح كالمان للتتبع

دمج البيانات قائم علي  .أجهزة استشعار عن طريق أقل متوسط لمربع الخطأ

الموقع المحدد من كل مستشعر ية وجود رابط احصائي بين الخطأ الناتج عن فرض

الموقع الناتج عن دمج البيانات الي المستشعرات ليتم استخدامه  يتم نقل .علي حدة

 .لكل مستشعر علي حدة في الدورة القادمةفي تحسين التنبؤ 

. في بعض النقاطتتشابك مساراتها امثلة لأهداف مناورة و غير مناورة تم محاكاة 

في المرحلة الثانية يستخدم مرشح كالمان الخطي لتحديد موقع الهدف بالعتماد علي 

تظهر النتائج تحسن كبير في  . القياس الذي تم ربطه بالهدف في المرحلة الأولي

تقليل الخطأ مقارنة باستخدام مرشح معتاد يعتمد علي اختيار القياس الأقرب مسافة 

الربط المثالي قاربة لجودة م تعطي نتائج بجودة  المقترحة الطريقة .من الهدف

 .تتحمل طريقة الربط المقترحة قيم كبيرة من قيمة الخطأ للمستشعرات. للبيانات

تم  .دمج البيانات من أجهزة استشعار مختلفة يؤدي الي تحسن كبير في النتائج أيضا

تم أيضا دراسة تأثير . دراسة تأثير زيادة عدد المستشعرات من اثنين الي خمسة

، بدءا باختلافات بسيطة و وصولا الي الاختلاف في دقة المستشعرات المستخدمة

في حالة وجود اختلافات كبيرة في الدقة، يصبح أداء المستشعر . حالات أكثر تباينا

 .دمج البيانات من كل أجهزة الاستشعارالأقل خطأ افضل من الأداء في حالة 
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