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Abstract

Power systems gained their importance due to proximity to huge numbers of consumers.
Sound distribution system operation is essential for consumers and equipment safety. In
case of abnormal events, accurate and fast fault diagnosis (identifying fault and fault
type) is a vital issue to retrieve a sound distribution systems’ operation.

This thesis presents a fault diagnosis methodology for substations, using Fuzzy Cause
and Effect-Networks (FCE-Nets) and fuzzy logic. Both, fault detecting and estimating
fault’s type are identified using simple matrix operations, Fuzzy logic data base, and if-
then-rules. Four case studies are carried out to evaluate the proposed methodology. The
obtained results are compared with two different methods: Expert System (ES) with
Artificial Neural Networks (ANNs) and Cause and Effect-Network (CE-NETS) to verify
the proposed method. The comparison results are discussed and conclusions are reported.

Finally, conclusions and recommendations are presented and discussed.
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Chapter 1: Introduction

The main objective of power systems is to provide a reliable and continuous supply for
their consumers. In the event of fault occurrence, the operator/dispatcher aims to
minimize the damages to equipment in faulted areas, isolate faulted equipment and
components, and restore the system as soon as possible. However, the operator/dispatcher
may find it difficult and time consuming to provide the right decisions. This mission
becomes more complex if multiple faults occurred or some equipment malfunctioned.
Therefore, a successful decision will be achieved after recognizing and identifying the
fault’s location, characteristics, and type, which are the basic tasks of the fault diagnosis

in power systems.

1.1Motivations

Researchers investigating fault diagnosis are concerned with the data to be used for fault
diagnosis and the implemented identification methodologies to improve their accuracy
and speed. The most widely used data are the status of Circuit Breakers (CBs) and
protective relays. This data is obtained from the Supervisory Control And Data
Acquisition (SCADA) systems to improve and facilitate monitoring and operating
processes.

A fault diagnosis methodology is proposed based on a Fuzzy Cause and Effect-Networks
(FCE-Nets) technique to assist the operator/dispatcher when he faces alarm attacks due to
faults in distribution systems’ substations. This methodology is concerned with fault
diagnosis using the status of protective devices as it is commonly available in existing
SCADA systems.



1.20bjectives

The objectives of this thesis are:

1) Proposing effective real time decentralized fault diagnosis (location, type)
methodology to help operators in the control rooms of substations to make right
decisions when they face fault alarms attack.

2) Implementing this proposed methodology as a tool box. The implementation shall
be accurate, easy in establishing and forming its database, suitable for real time
detection, economical and able to deal with uncertainty events.

3) Testing this methodology on existing systems and compare results with other

methods to analyze and proof its strengths and the abilities.

1.3Thesis outline

This thesis is composed of five chapters other than this introductory chapter. It is

organized as follows:

Chapter 2
The construction, main functions and the stages of the state estimation of the SCADA
as the environment of events of this thesis are introduced. The need of methodologies,
functions and techniques of fault diagnosis are presented by discussing the main tasks

of operators /dispatchers.

Chapter3
Furthermore, literature reviews of fault allocation estimation methods and techniques
are reported showing their strength and weakness. The concepts, construction and the
mathematical operations of the proposed methodology are presented. The proposed
fault allocation estimation process is described in details.

Chapter 4
General view over fault types is introduced. The mathematical forming and the rules

construction of the proposed fault type identification process are reported in details.



Chapter 5
The procedures and the steps of the proposed methodology are presented using the of
Matlab Fuzzy toolbox. To proof the ability, accuracy and the effectiveness of the
proposed method; the obtained results from the proposed method were compared with
other methods on existing systems. The ability of the proposed methodology was
tested to deal with uncertainty situations as a real time fault diagnosis tool box.
Chapter 6
In this chapter, summary of the achievements of this work are presented. Conclusions
and recommendations are evaluated and discussed. In addition, future work is
suggested.
Appendix
Finally, the published research is introduced in the appendix.



Chapter 2: Supervisory Control and Data Acquisition (SCADA)

In this chapter, SCADA as the environment of this research will be discussed showing
the different components of the system and the stages of the state estimation process.
Then, the rule of the operator will be presented to focus mainly on the dangerous
sequence of the wrong decisions. The main purpose of this chapter is clarifying the need
of methodologies, functions and techniques to help the operator in making right decisions

during the complex fault situations of the system.

2.1SCADA architecture

The SCADA system is a set of computational tools used to monitor, control, and
optimize the performance of a power system. Initially, power systems were overseen
only by supervisory control systems. These were control systems which monitored the
status of Circuit Breakers (CBs) at substations along with generator outputs and the
overall system frequency. Later, supervisory control systems were enhanced by adding
an interconnection-wide real-time data acquisition function giving rise to the first
SCADA system [1].

Figure 2.1 shows the basic architecture of a typical power SCADA system with
centralized fault diagnosis functions. In SCADA systems, all of the field data is
collected by Remote Terminal Units (RTUs). Then the RTU transmits the collected data

to the control center through communication networks [2].

SCADA Master

Fig. 2.1 Simple SCADA System Components [2]



A SCADA system is a centralized control and monitoring system that typically consists
of a master station, communication networks, and RTUs [1]. Figure 2.2 shows the stages
of the SCADA interface.

- Man -
! PR m—
Man / Machine—> | : Interface
- ¥
Communications
& T
: ¥
Master Control Center
F T
] ¥
BTUs / Transducers
T H
i :
1 i
—_— FPower !
Process ! , *Interface
“-1 Network | _
process

Fig. 2.2 The stages of the SCADA interface [1]
2.1.1 Man Machine Interface (MMI)

It is an interface between man and technology for control of the technical process.
The computer system at Master Control Center is connected with RTU over the

communication link.
2.1.2 Master Terminal Unit (MTU)

The MTU initiates all communication, gathers data, stores information, sends
information to other systems, and interfaces with operators. The major difference
between the MTU and RTU is that the MTU initiates virtually all communications
between the two. The MTU also communicates with other peripheral devices in the
facility like monitors, printers, and other information systems [3]. The primary interface
to the operator is the monitor that portrays a representation of relays, breakers, etc.



2.1.3 Communication

There are many communication methods available. Evaluation of different
communication systems for data communication among the system elements is required
at the planning stage. The communication methods may be used individually or
combined [3]. The communication methods include the following:

a. Public Telephone Communication (PTC)

b. Power-Line Carrier (PLC)

Radio Communication

d. Fiber Optics

e. Satellite Communication

o

2.1.4 Remote Terminal Units (RTUs)

Modern RTUs are microprocessor based devices and are designed to acquire data and
transfer the same to the Master Station through a communication link.

The RTU is usually designed to monitor parameters such as: Bus-line volts, current,
active power, reactive power, status of circuit breakers, switches and isolators, fault
detection temperature, level, pressure, flow etc. [3].

RTUs collect data packets which includes any block of data sent over a network. Each
pack contains information about the sender, receiver and error control information, in
addition to the actual message [4]. The process of collecting data packets is carried out by
using the following devices:

a. Transducer

This is a measuring element that senses the external action. It gathers parameters and
supplies through remote telecommunication capabilities [3].

b. Transmitter

This provides output (transmittable) signals after converting and amplifying low level
signals of basic sensor elements [3].

Then RTUs perform analogue/digital conversions, check data-scaling and corrections
(typically at 1/O card level). Finally RTUs carry out pre-processing tasks and

send/receive messages from/to master station(s) via interfaces [3].



2.1.5 Programs

The operation of a microprocessor is affected by sequential application of a number of
instructions. Such a sequence of instructions is called a program. There are three
categories of programming:

a. Machine code

b. Assembly language

c. High level language
The computer operator, who controls the microprocessor by means of a keyboard, will
use a high level language with the help of a compiler, and assembly language with the
help of an assembler [4].
2.1.6 Protocol
It allows two computers to understand each other while transferring information between
themselves. In networking and communications, it is the specification that defines the
procedures to follow when transmitting data [4].

2.2State estimation

During normal operation, the power system is either in a secure or insecure state. The
power system is said to be in a secure state if disturbances within the power grid do not
impair system performance. State estimation is a vital component of the SCADA and it is
used to analyze the security of the power system and take corrective or preventive action
when necessary [5]. Figure 2.3 shows the relation between state estimation process and

different elements of a SCADA system.
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Fig. 2.3 Relationship between the different elements of a SCADA system [5]
2.2.1 The Processes of the state estimation

The data acquisition system obtains real-time measurement from devices like RTUs and,
more recently, Phasor Data Concentrators (PDC) scattered throughout the system. The
state estimator calculates the system state and provides the necessary information to the
supervisory control system which then takes action by sending control signals to the
switchgear [6].

The conventional state estimator built into the SCADA consists of four main processes

are shown in Figure 2.4.
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Fig. 2.4 State Estimation Block Diagram [6]



2.2.2 Topology Processing

It is the process that tracks the network topology and maintains a real-time database of
the network model. This is done by analyzing the position of CBs and other switchgear

in the substations [6].
2.2.3 Observability Analysis

This process is carried out to ensure that the measurement set is sufficient to perform

state estimation [6].

2.2.4 State Estimator

This process is run by using some kind of algorithms on the operating measurement sets
to estimate the system state [5].

2.2.5 Bad-Data Processing
This process identifies any gross errors in the measurement set and eliminates bad

measurements [6].

2.30perator rule

A fault can cause a large number of alarm messages in a short period of time in a power
SCADA system. This will impose heavy stress on operator in the control center and
hamper his decision-making during the restoration process. In [7], Figure 2.5 shows the

relation between the control center and the fields of operation:
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Fig. 2.5 Connection between Control Center and the field of operations [7]

If a SCADA system does not have a fault diagnosis function, the operator needs to use
his operation experience to estimate possible fault sections according to a large number
of alarm messages. If the operator makes a wrong decision, this may cause serious
damage to power equipment leading to a large area blackout [5].

Fault diagnosis also becomes increasing complex if some pieces of equipment fail to
operate correctly. Therefore, it is necessary to develop fault analysis tools to assist

operator in power system operation. That will be discussed in the following chapters.

2.4Literature survey on applications and functions of SCADA system

In [8], an existing application of a SCADA system was discussed of power system
network of Dhaka city, Bangladesh. The author presented SCADA in overall operation,
control and monitoring of transmission and distribution systems. The monitoring of the
daily operation, load management and system faults by a SCADA and how the
advantages of SCADA help in improving the performance of overall system operations
were presented. RTUs were considered as the back-bone of the SCADA system, as they
are placed in every substation of the electrical power system network. The focus was on
the RTUs role which is gathering operational information of switchgears of the substation
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and transfers that to the central database through microwave linkage. Furthermore, the
main functions of the SCADA system was presented as; data acquisition, data
communication, data presentation and control.

Finally, a recommendation was made to implement the SCADA system for controlling
the whole electricity network of Bangladesh to improve the overall system performance,
reliability, and stability of the whole system.

In [9], the author discussed the existing SCADA system with Wide Area Monitoring
System (WAMS) at the Power Grid Corporation of India Limited (PGCIL) Northern
Regional Load Dispatch Centre (NRLDC). The communications infrastructure that
WAMS used and the tools to monitor and archive the time-synchronized data were
discussed.

The main focus was on the problem of the slow process of retrieving data from the
devices. The cause of this problem was the asynchronous nature of the data which did not
provide accurate angle difference information from two nodes on the network. Figure 2.6

shows the SCADA system performing an asynchronous scan of RTUS.

SCADA

Asynchronous
Scan

Fig. 2.6 SCADA system performing an asynchronous scan of RTUs [9]

Using Phasor Measurement Units (PMUs) was recommended because they provide a
time- stamp samples of voltage and current accurately. Furthermore, it was mentioned
that this technology can be used to provide high-speed and coherent real-time information
of the power system and improve the ability of the SCADA system functions. Figure 2.7
shows the proposed improvements on SCADA system.

11
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In [10], the author focused on the requirements from the SCADA system to keep the
power systems stable.
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Fig. 2.8 Required functions from SCADA system [10]

The author also gave a detailed view of these functions and sorted them as follows:

a. Supervisory control and data acquisition

It supervises the status or the changes of breakers, connectors, and protective relays;
induces of charged/uncharged status of lines and buses; supervises active/reactive power

against operational/emergency limit; judges network faults.
b. State estimation and scheduling

It estimates most likely numerical data set to represent current network.

c. Load forecasting

12



It anticipates hourly total loads for a few days ahead based on the weather forecast, type
of day, etc. utilizing historical data about weather and load.

d. Power flow control

It supports operators to provide effective power flow control by evaluating network
reliability, considering anticipated total load, network configuration, load flow, and
contingencies.

e. Data maintenance

It enables operator to modify the database of power device status and network topology
by defining parameters.

f. Voltage/reliability monitoring

It monitors present voltage reliability and transient stability and predicts future status

some hours ahead.

2.5Conclusions

In this chapter, SCADA system was focused on as the environment of the proposed

methodology to show the following:

1- The construction and main functions of the SCADA system.

2- The stages of the state estimation process.

3- The main duty of operator in the control center of the SCADA system was
illustrated. Thus to improve the state estimation function of SCADA needs to

improve.
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Also a literature review was presented to show the great and complex duties and
functions of SCADA system and how to improve the ability of the SCADA system to

keep the power system stable.
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Chapter 3: Fault Identification Using fuzzy Cause and Effect Networks

In this chapter various fault diagnosis methods and techniques used in fault diagnosis
were discussed briefly. Although these methods offer powerful solutions, they still
suffers from some imperfections such as slow response time and difficulty in database
maintenance, slow convergence in the training process, and determination of the network
parameters like hidden units, layers [11]. Because of the last mentioned problems, a new
method for fault identification in substations is proposed. This proposed method based
on the Fuzzy Cause-Effect Networks (FCE-Nets), the fuzzy rule matrix and Boolean rule
matrix transformations. Since the proposed reasoning methods require only simple matrix

operations in a parallel manner, it is well suitable for on-line applications.

3.1L.iterature survey on fault diagnosis and section estimation

3.1.1 Expert Systems (ES)

Expert systems were the earliest attempt in applications of power system fault
diagnosis. In rule-based expert systems, knowledge of the power system is
represented as rules stored in the database via if-then-else form.

Although the rule-based ES offers a useful method for fault diagnosis in [12],
common drawbacks of ES-based fault diagnosis involve knowledge-based
maintenance and slow response time due to conventional knowledge

representation and inference mechanism.
3.1.2 Artificial Neural Networks (ANNSs)

The main advantages of ANN for fault diagnosis are its flexibility with noisy
data and fast response time. No explicit rules are required to precisely define
the power system configuration and protective schemes [13].

However, as in [14] it needs an additional training process and takes time to

derive the required network weights.
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When power systems become more complicated, the convergence of the
training slows down and sometimes falls in a local optimum. In addition,

when the changes in power networks occur, neural networks should be trained
again in response to each change.

Input Layer Hidden Layers Output Layer
Fig 3.1 Simple Neural Network [14]
3.1.3 Petri-Nets (PN)

The major features of the Petri net (PN)-based methods are the abilities of
graphical knowledge representation and parallel information processing [15].

- A basic PN consists of four basic elements:

A) Places

B) Arcs

C) Transitions

D) Tokens

In [16], the incidence matrix becomes large in dimension for a complex power
system, leading to the difficulty in analysis.

Fig 3.2 A Petri-Net Model [16]
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3.1.4 Cause and Effect Network

The CE-Net is a graphical tool for knowledge representation. It is easier for
human operators to understand and maintain the knowledge base in graphical
representation and as in [17] the difficulties of the knowledge acquisition from
operators in terms of detailed rules are avoided. Since CE-Nets can be easily
represented by matrices, the parallel information processing can be achieved
with fast inference speed. Compared to PNs, the CE-Nets are easier for
operators to draw and model objects. In addition, the inference procedures of
CE-Nets are more concise and need less computation in the inference process,

but it has a poor ability in dealing with uncertainty situations [18]

3.2Main concepts of the proposed fault section estimation process

After the previous survey over the used techniques and methods in fault diagnosis, the
main concepts and techniques on which the proposed fault allocation process is based;

will be explained in detail as follows:
3.2.1 Fuzzy Logic

Fuzzy logic is a convenient way to express incomplete or uncertain information. It has
been successfully applied in various fields. Many approaches hybrid with fuzzy logic
have been proposed for fault diagnosis to solve information inexactness and
uncertainties. All of the aforementioned approaches can couple with fuzzy logic to gain

the advantage in dealing with information uncertainty [19].

A. Fuzzy Data Base & Rule Base
Fuzzy sets provide a mathematical way based on the concept of possibility and defined
by a number between one and zero. In another words, for crisp sets an element x in the
universe X is either belong to the set or it is not, whereas elements of a fuzzy set may
have various degrees of belonging.
The key issue of fuzzy logic lies in the definition of membership functions which are

usually defined on a trial-and-error basis [20].
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a. Membership function
A fuzzy set can be defined as follows:
An element of a fuzzy set is an ordered pair containing a Se element and the degree of
membership in the fuzzy set. A membership function is a mapping:
p:x — [0,1] (3.1)

And for fuzzy set A:

A={(x.py(x) Il x €X (3.2)
The membership function describes the degree that the element x belongs to the fuzzy set
A. A higher value of u4(x) means a greater degree of membership. The underlying power
of fuzzy set theory is that it uses linguistic variables, rather than quantitative variables, to
represent imprecise concepts.
A linguistic variable differs from a numerical variable in that its values are not numbers
but words or sentences in a natural or artificial language. For instance, instead of
describing the value of the faulted currents or voltages in terms of their exact magnitude
we could just say that the currents or voltages are high or low, which is more uncertain

and less precise but more useful [21].

b. Fuzzy rule base
A rule consists of prior parts describing causes and the resultant parts describing effects.
The general formulation of a fuzzy implication rule can be denoted as:
R; : IFC;ThenC; (CF = ;) (3.3)
This infers that the truth of condition C; implies the truth of condition C; with a certainty

factor CF = ;. So the larger the value of a certainty factor is, the more reliable the rule

is [22]. Figure 3.3, shows the fuzzy rule base inference as follows:

e ——

1. 0f and then
2. 0f | and | then

input 1| [input 2 |

%

Fig. 3.3 Fuzzy Inference Diagram
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3.2.2 Fuzzy Cause-Effect Networks (FCE-Nets)

Since operator knowledge can contain expressions and terms with some degree of
uncertainty, the proposed method used the advantages of the fuzzy logic and the CE-nets
to express the degree of certainty of a rule as a real number between 0 and 1 and to
represent it in graphical way. The use of certainty factor (CF) is a good way to describe
the uncertainty in numerical expression which facilitate the usage of certainty factor to
represent the uncertain characteristic in conditions and rules [22].
FCE-Nets can easily represent causality between faults and actions of protective relays
and circuit breakers by the following three kinds of nodes:
a) Fault section node: This node represents a section hit by a fault.
b) Relay node: This node indicates the action of a protective relay.

c) Circuit breaker (CB) node: This node means the action of a circuit breaker.

In addition, there are three kinds of arcs show the relation between the mentioned nodes,
they are as following:

a) Protected-by: Means that the fault of section A causes the action of relay B.

b) Cause: Means that the action of relay A causes the trip of circuit breaker B.

c)  Backup-by: Means that the failure of circuit breaker A causes the action of relay
Figure 3.4, shows relations between the nodes and the arcs in FCE-Nets.

Fault section Relay
node node
A H N
[ A ) >
~__~  protected-by Ly
Relay CB
node node
.-'/— : l\-.l ..H.- ."/. .\\".
N cause N A
CB Relay
node node
-~ "'\ I ."/ H‘\Il

\ ('}

A —_ )
e backup-by N

Fig. 3.4 Basic node-arc relations in FCE-Nets [22]
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3.3The properties of the proposed fault identification process

In this part, the components, the mathematical reasoning and the theoretical

representation of the proposed fault section estimation process are presented as follows:
3.3.1 Membership Function

The proposed approach utilizes fuzzy membership functions to represent system state’s
data which is derived from SCADA systems instead of specifying a fixed value, and use
fuzzy inference techniques to perform reasoning in the proposed inference algorithm. The
trapezoidal fuzzy Membership M was used in the proposed method. It is characterized by
four points (a, b, c, d), where (bc) denotes the core in which the membership value is
equal to 1 and (ab and cd) indicate the left and right boundaries of the trapezoidal
distribution. Figure 3.5, shows a trapezoidal fuzzy membership function M parameterized
by (a, b, c, d).

u(x)

Core
I
L
I
l
L
I
L
I
a a b € h d
Support
<>
Boundary Boundary

Fig. 3.5 :Trapezoidal fuzzy membership function [21]

3.3.2 Fuzzy Rules of the FCE-Net

The challenge when the Eqgn. 3.3 used is to define membership function with Certainty
factor (CF) can achieve the accuracy in defining the location state of faulted buses or

branches when any fault occurs. Figure 3.6 shows the graph association for the rules.
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Ol

Fig 3.6 Associated graph for fuzzy implication rules [22]

Since operators’ knowledge can contain some degree of uncertainty, a rule can be
described as the following statement:
IF (afault atF,, ) THEN (relay €O, operates) (CF= u;)

For different occasions, the CF of the same rule may change to another value. So with no
doubt the choice of a good certainty factor needs some expertise. In order to avoid a bias
in assigning the certainty factors, in the proposed method historical data from some
operators in the National Control Center (NCC) was used. This data which contains
historical records of relays COs and CBs behaviors when dealing with fault situations

were used to identify certainty factors as shown in table 3.1.

Table 3.1 Historical records of the protection elements’ behaviors with faults and their

corresponding (CF)

Feeder fault cause local relay operating 9:10/10 0.95
Circuit breaker tripped because of relay operating 7:9/10 0.80
Backup relay operates when the local relay fails 9:10/10 0.95
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Table 3.2 lists the linguistic terms and their corresponding fuzzy numbers as follows:

Table 3.2: The linguistic terms and their corresponding fuzzy number and membership

functions

& T
pix) =i
Always ( A) [1.00 1.00 1.00 1.00]
>
mix)
______ M=U
Usually (U) [0.90 0.95 0.99 1.00]
0.90 n..95 poo 1
n(x)

Some times (S)

[0.75 0.85 0.90 0.99]

. >
0.75 0.85 0.90 099

Often (O)

[0.65 0.75 0.80 0.85]

L

Never (N)

(0.00, 0.00, 0.00, 0.00)
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3.3.3 Matrix Representation of FCE-Nets

The rules with linguistic certainty factors can be represented as the fuzzy rule matrix R .
This matrix describes the relations between causes and effects of FCE-Nets. Once the
fuzzy rule matrix is established, the diagnosis algorithm can then be performed by matrix
operations. A fuzzy rule matrix associated with K conditions is a k by k matrix with all
ones on the diagonal by reflexivity because each condition implies itself [22]. The entry

R[i,j] = w; means that condition C; implies condition C; with the certainty factor ;,
and R[i,j] = 0 indicates that there is no implication between C;and C;.

. Hi» if G - G
R[i,j] = .
Li.j] {0 , otherwise

A fuzzy value in the entry of the fuzzy rule matrix gives the degree of confidence in how
condition C; implies the truth of condition C;.

The following matrix D is employed to represent the presence or absence of a specified
relation between pairs of nodes. The entry of this matrix in position (i,j) n is y; if two
nodes n; and n; are related. As shown in Figure 3.4 the transpose of a binary matrix

corresponds to the reversal of all arrows in the associated digraph.

ﬂ\ [

b= o0 0o |
oo oo ) )
'] 0 }L: I:} Crﬁ—b(:r:\:
R
CEE ———  pffiecd
.Ilfi'
i S Mz
0000 S aaN
ﬂ.J.zﬂz 000
00 0 ’\\‘
o Mo o AN

comr af——  offic

Fig 3.7 The transpose of a binary matrix corresponds to the reversal of all arrows in the

associated digraph
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3.3.4 Reasoning with Fuzzy Rule Matrices

Assume that a FCE-Net contains a set of k conditions. Each condition contains a high
level of linguistic expression for humans to use. However, this string expression is
inconvenient and inefficient for computers to process.

Therefore, some vectors were defined to transform string based conditions into numerical

vectors for reasoning and computation as follows:

A. Truth State Vector (T)
The truth state vector (T) is employed to represent the fault symptom with the status of
protective devices. This vector contains the truth values for a set of k conditions,
C; Cy .......Cy . Each component is defined by T[i] =x; , where x;is the truth value of

condition C; [22].

B. Fault Node Vector (F):
The fault node vector F is defined to represent the fault section nodes in a given FCE-
Net. This vector contains k Boolean valued components for a set of k conditions. If node
condition C; is associated with a fault section node, the value of F[i] is assigned to 1,
otherwise F[i] is 0 [23].

Fli] = {1, if C; € fault section node
1o, otherwise

This vector is defined for extracting the nodes that belong to the fault section node

through fuzzy intersection operation.

C. Backup Node Vector (B):
The backup node vector B is employed to represent the backup relay nodes in a given

FCE Net. This vector contains k Boolean valued components for a set of conditions.

If node condition C; is associated with a backup relay node, the value of BJi] is assigned
to 1, otherwise BJi] is 0 [22].

B[i] = {1, if C; € backup relay node
(o, otherwise

This vector is defined for extracting operated backup relays through fuzzy intersection

operation.
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D. Transformation vector (TV):

The meaning of this transformation is to propagate the truth state of given fault
symptoms leading backward into the fault cause. The TV vector contains information that
causes the fault symptoms.

TV=RTQT 3.4)
Where "®" is the fuzzy multiplication operator, by which row-by-column matrix product
is performed by replacing multiplication and addition with the min and max operations,
respectively. Also the fuzzy multiplication operator is used for performing truth state
transformation on the transpose of the fuzzy rule matrix and a truth state vector that
contains the degree of truth in its entries. The entry of a fuzzy rule matrix represents an
implication between two conditions. As truth state contains information of fault
symptoms, the function of this operator is to perform a composition transformation that
propagates the truth state leading backward into the fault cause [22].
The TV transformation is calculated to compare it with T with to check if there was a
device failure. If they equal each other this means that there was no failure operation at
feeder protection; otherwise, failures did occur.

E. The updated transformation vector T*
If TV don’t equal with T, the process went to update TV and assign it to T*using the

following formula; otherwise, TV assigned toT*.

T*=TV—[RTQ(BAT)] (3.5)
- Where "A"the fuzzy min-operatorwhich is is used to remove the status of operated
backup relays in the truth state vector when the action of the backup relays is caused by a
main relay failure [24]. The fuzzy multiplication operator is used for performing truth
state transformation on the transpose of the fuzzy rule matrix and the truth state vector
operated on a backup relay node by fuzzy min-operator [22].
- The fuzzy multiplication operator is used for performing truth state transformation on
the transpose of the fuzzy rule matrix and the truth state vector operated on a backup
relay node by fuzzy min-operator.
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As such, the updated transformation vector using (3.5) is to remove the status of backup

relays from fault section candidates.

F. Estimated Fault Section (EFS)
As the vector T*contained information about fault causes, we selected only fault section
nodes with the entry value greater than a threshold as estimated fault sections [22]. The

selection of fault section nodes from T *can be achieved by the following:

EFS=T'AF (3.6)
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3.4Conclusions

Mainly in this chapter, the proposed fault identification method based on FCE-Nets was

presented.

A literature review on some used fault diagnosis methods and techniques was
presented to show the parameters, construction, advantages and dis-advantages of
each one.

The proposed method of fault identification which is based on fuzzy logic and
FCE-Nets were presented.

The main advantage of the fuzzy logic which is the ability of dealing with
uncertainty situations was focused on.

The properties of the proposed FCE-Nets were presented.

It was discussed that by transforming the established FCE-Nets into matrix forms,
the possible fault identification can be done through simple matrix operations.
Some operators and vectors to transform string based conditions to numerical
expression for reasoning and computation.

The knowledge representation with the FCE-Nets model is based on graphical
methodology, so it is easy to understand the relationship between the rules and
conditions.

Furthermore, it is possible to predict the inference results in advance by observing
the flow of truth state in the FCE-Nets when some conditions are specified.

Also the proposed method is capable of representing uncertain knowledge and

performing fuzzy reasoning through matrix based transformation.

27



Chapter 4: Fault Types Identification using Fuzzy Data Base and Rule Base

In order to protect the system from damage due to a fault, the fault type has to be
identified as well. Therefore, in this chapter a proposed method based on fuzzy data and
rule base is presented to identify different fault types in substations. Thus, it will be easier
for the operator to estimate the volume of damages or the suitable way to follow to keep
the system balanced. Literature review on some famous techniques and their applications

in fault type identifying is presented to show advantages and dis advantages of each one.

4.1Literature survey on fault classification methods and techniques

Among the various techniques of the fault classification, the most widely used techniques
are Neural Network systems, Fuzzy systems and Expert systems. Some of these efforts is
discussed briefly as follows:

In [23], a fault classification technique was proposed based on fuzzy Logic. The
fault classification algorithm is based on the angular differences among the
sequence components of the fundamental fault current (FFC) as well as on their

relative magnitudes.

In [24], a comparison between two neural networks (ANN) models for fault diagnosis of
power systems was performed. Radial basis function and back-propagation networks are
compared with reference to generalization, training time and number of training patterns
needed for each model. Although the capabilities of ANN in online fault diagnosis was
presented, there were clearly unsolved problems, such as slow convergence in the
training process, and determination of the network parameters like hidden units, layers,
learning rate and momentum value . In addition, when any configuration of the system
changes, the related neural network needs to be re-trained. In practical use, the needs of a
great number of patterns to train the ANN and the slow training process often make the

users hesitate to accept the ANN approach in the fault diagnosis.
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In [25], fault type identification is achieved using a simple and numerically efficient
algorithm based on Park's transformations. The algorithm uses two transformation
matrices. The first matrix is used to filter out the dc offset and harmonics that
contaminate the three-phase voltage signal. The second transformation is used to estimate
the positive and negative sequence components.

The zero sequence components can easily be estimated from the first transformation
matriX. Results based on detailed system models are presented A detailed synchronous
machine model-based power system was used in MATLAB was used to test the proposed
technique by conducting a series of faults and then identify the type of fault given a
minimum number of fault current cycles. Finally the author recommended his proposed
technique to systems that contain harmonics because of the inherent filtering capability of

the park transform.

In [26], the capabilities of the expert system in identifying bus faults were discussed.
Also the expansion of expert system to include real-time measurements of current and
voltage phasors to classify the type of fault that the faulted section was reported.

Although the ES based approach offers powerful solutions to the fault diagnosis, but the
response time of the ES is usually not applicable to a real-time environment due to the
conventional knowledge representation and inference steps. Also, There is the always
sufferance of the procedure of knowledge acquisition and knowledge base revision or

maintenance.

4.2Fault types

Faults in certain important equipment can affect stability of power system. Estimating
fault types when the fault hits any feeder in the substations will help the operator to make

the right decisions and will make avoidance to severe effects due to faults.
4.2.1 Symmetrical Faults

A fault involving all three phases is known as a symmetrical (balanced) fault.
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4.2.2 Unsymmetrical Faults

A fault involving one or two phases is known as an unsymmetrical (unbalanced) fault.
A) Single line to ground (SLG)
B) Line to line (DL)
C) Double line to ground (DLG)

4.3The properties of the proposed fault types identification process

Generally, when faults occur, feeders current increase in magnitude and bus voltages go
down and that changes from phase to another depending on the fault type. So the
proposed approach will depend on the behavior of the voltage and current during fault

situations to identify fault types.

4.3.1 Fuzzy Data Base & Rule Base

The values of faulted currents and voltages are highly depending on the location between
the source and faulted location as well as load characteristics. So the Fuzzy if then rules
identify the fault types based on feeder currents and bus voltages through the data which

is provided to SCADA from RTUs and measurement devices.
4.3.2 Membership function

All measurements, in root mean square value, are described with the use among three
fuzzy sets: Low (L), Normal (N) and High (H). The related linguistic variables and

membership functions are defined in fuzzy data base.

1 Low (L) High (H)

0------ - 2 " 2 =8

Fig. 4.1. The proposed Membership Sets for current and voltage ranges
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4.3.3 Fuzzy rule base

The Fuzzy Rule Base is formed by rules which are elicited from all types of fault. In
order to define these rules, behavior of analogue signal has to be well understood. In [27],

table 4.1 shows the summary of proposed rules for identifying fault types as follows:

Table 4.1 Summary of rules for identifying fault types

Rule # I, I | Ic Iy A Vg V¢ Type
R1 H N N H L N SLG A
R2 N H N H N L N SLGB
R3 N N H H N L SLGC
R4 H H N N L |L N DL AB
R5 N H H N N L L DL BC
R6 H N H [N L N L DL AC
R7 H H N H L L N DLG AB
R8 N H H H N L L DLG BC
R9 H N H H L N L DLG AC
R10 H H H N L L L 3% fault

Where, Single Line to Ground fault (SLG), Double Line fault (DL) Double Line to
Ground fault (DLG), Symmetrical Fault (39).

For example:

IFIo=(N) Ig =(H) Ic=(N) Iy=(H) Vy=(N) Vg=(L) Vo =(N) , Then fault
type SLG-B.
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4.3.4 Fault type analysis procedures

The process of the fault type fuzzy reasoning consists of four stages as shown in Figure
4.6 of the fuzzy logic scheme (FLS) for fault classification. First, at (P) measurements of
the feeder currents and bus voltages must be taken from SCADA system. Next, these
values must be translated into fuzzy linguistic terms; these terms (Q) are specified by the
membership functions of the fuzzy sets, which are defined in the appropriate universe of
discourse. These linguistic terms are then used in the evaluation of the fuzzy rules. Fuzzy
rules are evaluated by means of the compositional rule of inference. The maximum
membership grade in rules stands for the dominant rule and is selected as the final result
(R). To determine the crisp fault type (S) correctly these fuzzy outputs need to be
defuzzified.

Fuzzy Rule Base

o

p -p»| Fuzzilication | Fuzzy Inference Engine [ o Defuzzification S

Fig. 4.2 FLS for fault classification [23]
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4.4Conclusions

In this chapter, the proposed fault type identification method based on fuzzy logic was

presented and the following main points were discussed in details.

1-

2-

Some efforts of researchers in the field of fault type classification were discussed.
The proposed method identifies the fault types from the known data from SCADA
system which is provided by the measurement devices of current and voltages.
The constructions of the database and rule base of the proposed method were
presented.

The procedure of fault type estimating the was presented.
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Chapter 5: Applications

In this chapter the proposal methodology and procedures of fault diagnosis process will
be presented. Also the data base, the rule base and the graphical networks of the proposed
methodology will be presented and discussed in details. To evaluate the proposed
methodology two cases of study will be done on existing systems against other methods
and the results will be compared and discussed. Furthermore, two challengeable scenarios
will be done on existing system, to obtain more advantages and test the abilities of the
proposed methodology. All the tests and evaluations will be done by using Mat-lab fuzzy

tool-box.

5.1Inference and procedures of proposed method

The proposed fault diagnosis method consist of two processes , the first one is to estimate
the fault identifying by using FCE-Nets and the second process is estimating fault type
using fuzzy data base and IF-Then rule.

In the last chapters the methodology and the main concepts of each process where
discussed in details. The procedures and inferences of each process will be presented as

follow:

5.1.1 Inference of Fault identification by FCE-Nets

The inference procedures are described step by step as follows:

1) From the information of the system in SCADA, the fuzzy cause and effect relations
diagraph of the system will be defined to build a k -by- k fuzzy rule matrix R according
to the given FCE-Nets, with rows and columns indexed by nodes.

If an arc (C;,C;) presented, the certainty factor in cell R[i,j] got value; otherwise
R[i,j]is zero. (C;, C;) denotes a directed arc from node to node. Also the values of the

vectors F and B will be received from SCADA.
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2) According to fault symptoms, the truth value of each condition will be defined in the

entry T[i] to derive the truth state vector.

3) Calculate transformation vector TV, using (3.2).

4) Compare the two vectors RT®T and T. if they are equal, assign TV to T*; otherwise
the inference procedure goes to update the fuzzy truth state transformation using (3.4).

5) The vector T*contains information about fault causes, the fault sections can be
retrieved by selecting fault section nodes from T* by determining the value of EFS from
(3.5), and then selecting the entry value greater than the threshold value for selecting fault
sections X as estimated fault sections.

Figure 5.2, shows the flow chart of defining the fault location.

~| SCADA System -1

'

Get Truth state Relation Diagraph
wector [T}

I 1
oy w *
Bulld Derive fault | Derive Backup
Rule matrix (R) node vector [F) wector [(B)
T
b
Parform fuzzy truth
state transforrmation
v = RT@&T)
NO Updated transformation vector |

(T =TV - [RT@EAT]) [

Yes

Assign TV value to T

i

Calcu late Estimated
fault section
EFY =T"AF

1

Select Fault Section value
greater than =
{ EMND |

Fig. 5.1 The flow chart of fault Identification

[y
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5.1.2 Fault type analysis procedures

The process of the fault type fuzzy reasoning consists of four stages as follows:

1) Measurements of the feeder currents and bus voltages must be taken from SCADA
system.

2) These values must be translated into fuzzy linguistic terms; these terms are specified
by the membership functions of the fuzzy sets, which are defined in the appropriate
universe of discourse. The following figures showing the memberships of feeder current,
bus voltage and neutral current also the defining of the ranges of the sets High (H),
Normal (N) and low (L) for every membership function. Figures 5.3-5, shows the

membership functions for the current, voltage and neutral current of the feeders.

plot points:

Membership function plots 181

| | 3 1 | | | [
0 100 200 300 400 500 800 700 200 S00 100
input variable "la”

Fig.5. 2 Membership function for the fuzzy set feeder current

phal painta:
Membership Tutcha plals

121
T T T I ! ! I

1 1 I I I I I
f &5 iy 7.5 B &5 ¥ 95 10
npul vanabe "/a”

Fig.5. 3 Membership function for the fuzzy set Bus Voltage
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Membership function plots 181

T T
H

100

200

input wariable "In"

400 500 00 700 800 s00 1000

Fig. 5.4 Membership function for the fuzzy set Neutral Current

2) These linguistic terms are then used in the evaluation of the fuzzy rules. Fuzzy

rules are evaluated by means of the compositional rule of inference. Table 5.1,

shows the summary of rules for identifying fault types which was discussed in

chapter 4.

Table 5. 1 Summary of rules for identifying fault types

Rule # I, Ig Ic Iy Va Vg Ve Type
R1 H N N H L N N SLG A
R2 N H N H N L N SLG B
R3 N N H H N N L SLGC
R4 H H N N L L N DL AB
R5 N H H N N L L DL BC
R6 H N H N L N L DL AC
R7 H H N H L L N DLG AB
R8 N H H H N L L DLG BC
R9 H N H H L N L DLG AC
R10 H H H N L L L 3? fault
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Figure 5.6, shows the rules in the Rule Editor in Matlab.

9 Rule Editor: 1234
File Edit View Options

1.1f (lais H} and (I is N} and (lc is N) and (Inis H} and (Va is L) and (Wb is N) and (Wc is N} then (SLG-A is SLG-A)
2.1f {lais N}y and (lbis H) and (lc is N} and (In is H) and (Va is N) and (Vb is L) and (Wc is N} then (SLG-B is SLG-B)
3.If(lais Ny and (Iois Ny and (lz is H) and (Inis H) and (Va is N} and (Vb is Nj and (Ve is L) then (SLG-C is SLG-C}
4.If(lais Hyand (Iois H} and (lz is N) and (Inis N} and (Va is L) and (Vb s L) and (Viz is N) then (DL-AB is DL-AB)
( ( (
( ( (
( ( (

—

1)
1)
1)
1)

=

(

<. If (lais N) and (Io s H) and {Ic is H) and (in is N) and (Va iz N) and (Vb ie L) and (Vc iz L) then (DL-BC is DL-BC) (1)
.17 {]a i H) and (Ibis M) and (lcis H) and (Inia N) and (Va i L) and (Vb ia N) and (Vc is L) then (DL-AC is DL-AC) (1)
7.1f (lais H) and (Io is H) and (ic is N) and (in is H) and (Va is L) and (Vb is L) and (Vc i N) then (DLG-AB is DLG-AB) (1)
8. If iz is M) and (o is H) and (Ic is H) and (Inis H) and (Va is N) and (Vb e L) and (Vc ie L) then (DLG-BC is DLG-BC) (1)
9. If lais H) and (Io is N) and (ic is H) and (in is H) and (Va is L) and (Vb is N) and (Vc is L) then (DLG-AC is DLG-AC) (1)
10.If la iz H) and (Ib s H) and (Ic is H) and (in is N) and (Va is L) and (Vb is L) and (Vc is L) then (3PH iz 3PH) (1

Fig. 5.5 Rule Editor in Matlab
4) The maximum membership grade in rules stands for the dominant rule and is selected

as the final result. Figure 5.7, shows the rule viewer in Matlab fuzzy toolbox.
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Figure 5.8 shows the flow chart of defining the fault type.

SCADA System

|

Read
IA, IBJ Ic ’ INJ VA,
Vgand V.
of fault sections

L

Translate Crisp values
into Fuzzy terms

v

Compute membership
grades

!

Evaluate dominate
Rules

i)

Selected fault type with
high belonginggrade

END

Fig. 5.7 The flow chart of fault type identification
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- Figure 5.9 shows the flow chart of the proposed method of the fault diagnosis with the

two missions of identifying fault location and type.

SCADA System
A 4
A 4
Read / Get Truth state / Relation Diagraph
’,', ’B' ’C"N' V‘, vectorff)
VB and Vc I I
of fault sections v v v
Build Derive fault = Derive Backup
.l, v Rule matrix (R) node vector (F) vector (B)
c
Translate Crisp values y V¥ )
into Fuzzy terms Perform fuzzy truth
state transformation
v (V=R QT
Compute membership
grades
NO Updated transformation vector |
v T =1v- R eBAT)) [
Evaluate dominate
Rules Yes
)
Selected fault type with Assign TV valueto T*
high belonginggrade
& |}
CalculateEstimated |
fault section <
EFS=T'AF
Select Fault Section value
greater than X\
y
END

Fig. 5.8 The flow chart of the proposed method
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5.2 Testing and evaluating the proposed methodology

A. CASE 1
As it was mentioned in the introduction of this chapter, a comparison between the
proposed method and the other one in [28] will take place to test effectiveness, accuracy
and simplicity in construction. The author proposed a new method based on Expert
System (ES) with connection with Artificial Neural Network (ANN) and recommended
this method for online fault diagnosis of power substations.
The author used an existing system, considering that there aren’t transmission errors
assumed in the cases he presented.
A single line-to-ground fault occurs at phase A of feeder 1. CO relay "CO3A" operates
and trips breaker "CB3", but the LCO relay "LCO03" fails. The fault situation is shown in
figure 5.10.

L a L= I3 L 4
S0 B
L =i Lara-=-1 |
#£2 Th. #1 TEL
L1 2] (=]
=1 Bas 1.4 KW
= Lini] a= a3 = 1] L]
L] F B0 Fa Fs Fa Fa Fa L= 1

E : Hpezmed Baealker I:: Dpcratisme FTelay I; Fajlure Eolay

: Closed Bresksar :-: i Teipped Bseskar L) ! Clhoood & wicch
B - Openecil Sweitck L= = Current Tr. E i Faldlmre Beealker
=z Famls 1 ; Brealer Xumsberc

Fig. 5.9 Distribution system of case 1
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Table 5.2 ,shows the pre-fault values of the branch F1 and the voltage of #1 BUS as

follow:
Table 5. 2 Pre- Fault VValues of Case 1
Phases F1 Bus #1
Phase A 230.2 (A) 9536.1 (V)
Phase B 234.5 (A) 9617.6 (V)
Phase C 236.3 (A) 9626.4 (V)
Neutral 20 (A)

The author’s final results is as shown in Table 5.3, where the corresponding peak bus

voltages and feeder currents at the fault are appended for reference.

Table 5. 3 The author’s final results of case 1

Fault section Phase A of feeder 1 (11.4KV)
Fault type Single line to ground

Phase A 8923V
Peak values( #?I gllg Voltage at Phase B 9468/
Phase C 9843 V

Phase A 506 A

Peak values of feeder current Phase B 282 A
(Feeder 1) Phase C 293 A

Neutral 25 A

- The proposed method and procedures were done on the mentioned case above and the

results were as following

A)Fault identification process :
Step 1: Figure 5.11, shows the relation diagraph of this system. Tables (5.4-6), present
the defining of the node of conditions and the developing of the rule matrix of the system

and the fault vector.
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Fig. 5. 10 FCE-Net of Casel
Table 5. 4 Set of node conditions of Case 1

Node Description Node Description
Cl | Afaultoccurs at feeder F1 C15 | A fault occurs at feeder F4
C2 [ Relay COL1 operates C16 | Relay CO4 operates
C3 | Circuit breaker CBL1 tripped C17 | Circuit breaker CB4 tripped
C4 | CO1 operates but CB1 fails C18 [ CO4 operates but CB4 fails
C5 | Relay COML1 operates C19 | A fault occurs at feeder F5
C6 | Circuit breaker CBM1 tripped C20 | Relay COS5 operates
C7 | Afault occurs at feeder F2 C21 | Circuit breaker CB5 tripped
C8 [ Relay CO2 operates C22 | CO5 operates but CB5 fails
C9 | Circuit breaker CB2 tripped C23 | A fault occurs at feeder C1
C10 | CO2 operates but CB2 fails C24 | Relay COC1 operates
C11 | A fault occurs at feeder F3 C25 | Circuit breaker CBCL1 tripped
C12 | Relay CO3 operates C26 | COCL1 operates but CBC1 fails
C13 | Circuit breaker CB3 tripped C27 | A fault occurs at section BUS1
C14 | CO3 operates but CB3 fails

The rule matrix describes the relations between causes and effects of FCE-Nets. Table

5.4 , shows the non-zero entries of rule matrix of this system.
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Table 5.5 Nonzero Entries of Rule Matrix of Case 1

RIi] Value RJi] Value RJi] Value

R[1,1] 1 R[2,1] 0.95 R[2,2] 1

R[3,2] 0.8 R[3,3] 1 R[4,4] 1

R[5,4] 0.95 R[5,5] 1 R[5,10] 0.95
R[5,14] 0.95 R[5,18] 0.95 R[5,22] 0.95
R[5,26] 0.95 R[5,27] 0.95 R[6,5] 0.8

R[6,6] 1 R[7,7] 1 R[8,7] 0.95

R[8,8] 1 R[9,8] 0.8 R[9,9] 1
R[10,10] 1 R[11,11] 1 R[12,11] 0.95
R[12,12] 1 R[13,12] 0.8 R[13,13] 1
R[14,14] 1 R[15,15] 1 R[R16,15] 0.95
R[16,16] 1 R[17,16] 0.8 R[17,17] 1
R[18,18] 1 R[19,19] 1 R[20,19] 0.95
R[20,20] 1 R[21,20] 0.8 R[21,21] 1
R[22,22] 1 R[23,23] 1 R[24,23] 0.95
R[24,24] 1 R[25,24] 0.8 R[25,25] 1
R[26,26] 1 R[27,27] 1

The fault node vector (F) is defined to represent the fault section nodes in a given FCE-
Net. Table 5.6 , shows the non-zero entries of Fault vector (F) of this system.

Table 5. 6 Nonzero entries of Fault vector (F) of Case 1

F[i] Value Description
F[1] 1 F1
FI7] 1 F2
F[11] 1 F3
F[15] 1 F4
F[19] 1 F5
F[23] 1 C1
F[27] 1 BUS 1

Step2: Get the truth state vector entries from SCADA and as the author mentioned that
there is no backup protection, we didn’t give any values for the backup process. The truth

vector values are as shown in Table 5.7.
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Table 5.7 Nonzero entries of truth vector (T) of Case 1

TIi] Value Description
T[2] 0.95 Degree of 'Relay CO1 operates'
T[3] 0.8 Degree of ‘Circuit breaker CB1 tripped’

Step 3: Calculating (TV) vector to propagate the truth state of given fault symptoms
leading backward into the fault cause. The (TV) vector contains information that causes
the fault symptoms. Table 5.8, presents the entries of the vector (TV) of this system.

Table 5. 8 The entries of the vector (TV)

TVI[i] Value TVIi] Value TVIi] Value
TV[1] 0.95 TV[10] 0 TV[19] 0
TV[2] 0.95 TV[11] 0 TV[20] 0
TV[3] 0.8 TV[12] 0 TV[21] 0
TV[4] 0 TV[13] 0 TV[22] 0
TV[5] 0 TV[14] 0 TV[23] 0
TV[6] 0 TV[15] 0 TV[24] 0
TV[7] 0 TV[16] 0 TV[25] 0
TV[8] 0 TV[17] 0 TV[26] 0
TV[9] 0 TV[18] 0 TV[27] 0

Step4: Although the T vector and TV vector aren’t equal, the T* is equal to TV and that

because of the author mention in this example that there is no backup protection.

Step 5: the fault section determined from the EFS vector according to (3.6) is F1 as

shown in Table 5.9:

Table 5.9 The fault section estimated of Case 1

Faults Node# EFS
F1 C1 0.95
F2 C7 0
F3 Cl1 0
F4 C15 0
F5 C19 0
C1 C23 0

BUS 1 C27 0
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B) Fault type estimation process :

Stepl: Define the membership function ranges as shown in Figures 5.12-14:

L N

=2

1 1 1 1
3 5 i 8 9 10 11

input variable "wa”

Fig.5. 11 Membership function of the Bus Voltages of Case 1
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Fig.5. 12 Membership function of the Feeder currents of Case 1
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Fig.5. 13 Membership function of the neutral current of Case 1

Step2: Get the reads of Current and voltage measurement devices from SCADA as it is
reported by the author.
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Step3: By using the rules, the result will be as shown in Table 5.10:
Table 5. 10 Fault data from SCADA and the suitable rule base of Case 1

Rule# | 1, | Ig Ic |In| Va | Vg | Vc | Fault Type | Degree of belonging

506 | 282 | 293 | 25|89 |94 | 938
R1 SLG-A 0.620

H N N |H| L |N]|N

After this case the proposed methodology can be evaluated as follow :

1- By this case not only the accuracy of the proposed method were shown but also
the simplicity of the knowledge base and ability to modify this base were shown if
it compared to the ES-ANN system discussed in [28] and shown in Figure 5.15.
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Fig. 5. 14 Hierarchical Architecture of the Connectionist-type Knowledge Base [28]

2- The proposed method does not need to be trained for every modification so it is

very applicable for online diagnosis.
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B. Case 2

In this case the accuracy of fault section estimation process of the proposed method will
be tested by comparing the results with the method in [29] to show the difference
between the main concept of FCE-Nets and the classical cause and effect networks (CE-
Nets).

A realistic Taipower’s secondary substation was used to demonstrate the proposed
method in [29] as shown in Figure (5.16). The substation is composed of three sub-
transmission lines, three main transformers, two tie circuit breakers, one 69KV primary
bus bar and three 11.4KV secondary bus bars. Each secondary bus contains five radial
distribution feeders which are protected by CO relays, LCO relays and re-closers. The
main transformers are protected by differential relays. The bus bars are protected by CO
and LCO relays and as the back-up protection for each feeder. The three phase, four-wire
distribution system is solidly grounded at substation, with the neutral wire also grounded

at each distribution transformer location.

The author work with almost the same steps of our proposed method but he defined a
vector called Elimination vector (E) to identify the cause of fault so he can get the faulted
section as shown in (5.1)

E=TAB (5.1)
A three-phase fault occurs at the feeder F1. Relay COL1 operates correctly while the
circuit breaker CB-1 fails to trip. Owing to the tripping failure of CB-1, the backup
breaker CBML is tripped by the relays COM1. Meanwhile, a double-line to ground fault
at phases B and C happens at feeder F2, which causes CO2 operating to trip CB-2.
However, the status of relay CO2 is missing, considering this missing signal to

complicate the studied case so the entries of vector T are changed as shown in table 5.12.
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Procedures of Fault diagnosis:

A) Fault identification process :

Step 1: The construction of the system is the same of the construction of case 1, so the

FCE-Net in will be the same of the one was presented in Figure 5.11. Also the same

node of conditions in table 5.2, the same entries of rule matrix in Table 5.3 and the

same fault vector values will be used. In this case there is a backup protection the

backup vector of the system will be as shown in Table 5.11.

Table 5.11 Values of the backup vector (B) Case 2

B[i]

Value

B[4]

1

B[10]

B[14]

B[18]

B[22]

B[26]

A I

Step2: The truth state vector (T) is employed to represent the fault symptom with the
status of protective devices. Table 5.12 , shows the non-zero entries of (T) vector of this

system.
Table 5. 12 Nonzero entries of truth state vector (T) of Case 2
TIi] Value Description
T[2] 0.98 Relay CO1 operates
T[4] 0.98 CO1 operates but CB1 fails
T[5] 0.84 Relay COM1 operates
T[6] 0.84 Circuit breaker CBM1 tripped
T[8] 0.88 Degree of 'Relay CO2 operates'
T[9] 0.88 Circuit breaker CB2 tripped
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Step 3: Calculating (TV) vector to propagate the truth state of given fault symptoms
leading backward into the fault cause. The (TV) vector contains information that causes
the fault symptoms. Table 5.12 , presents the entries of the vector (TV) of this system.

Table 5. 13 Values of the vector (TV) of Case 2

TVIi] Value TVIi] Value TVIi] Value
TV[1] 0.95 TV[10] 0.84 TV[19] 0
TV[2] 0.98 TV[11] 0 TV[20] 0
TVI[3] 0 TV[12] 0 TV[21] 0
TV[4] 0.98 TV[13] 0 TV[22] 0
TV[5] 0.84 TV[14] 0 TV[23] 0
TVI[6] 0.84 TV[15] 0 TV[24] 0
TV[7] 0.88 TV[16] 0 TV[25] 0
TVI[8] 0.88 TV[17] 0 TV[26] 0
TV[9] 0.88 TV[18] 0 TV[27] 0.84

Step4: The TV transformation is calculated to compare it with T with to check if there

was a device failure. If they equal each other this means that there was no failure

operation at feeder protection; otherwise, failures did occur. Because TV don’t equal with

T, the process went to update TV and assign it to T*using the following formula;

otherwise, TV assigned toT*. Table 5.14 , presents the entries of the vector T* of this

system.
Table 5. 14 Values of the vector T* of Case 2
T [i] Value T [i] Value T [i] Value
T [1] 0.95 T* [10] 0.84 T [19] 0
T [2] 0.98 T [11] 0 T [20] 0
T [3] 0 T [12] 0 T [21] 0
T [4] 0 T [13] 0 T [22] 0
T [5] 0.84 T [14] 0 T [23] 0
T [6] 0.84 T [15] 0 T [24] 0
T [7] 0.88 T [16] 0 T [25] 0
T" [8] 0.88 T [17] 0 T" [26] 0
T [9] 0.88 T* [18] 0 T [27] 0.84

Step 5: the fault sections determined from the EFS vector according to (3.6) and E

according to (5.1) as shown in Table 5.14:

51



Table 5. 15 Comparison between values of the vectors (EFS) and (E)

Faults Node# EFS E

F1 C1 0.95 E[4]=0.98

F2 C7 0.88 0

F3 C11 0 0

F4 C15 0 0

F5 C19 0 0

C1 C23 0 0
BUS 1 C27 0.84 0

By this case it was shown that :

1- When the information is complete, FCE-Nets and CE-Nets inference can obtain
the correct results. But if a status signal is missing, CE-Nets can’t find the fault
sections.

2- The proposed method has the ability to identify multiple fault sections even when a

failure device and incomplete or missing information happen.
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5.3System under study

A typical unit in Cairo West Planet as shown in Figure 5.17 is employed to illustrate the
reasoning process of the FCE-Net technique. The unit is composed of one sub
transmission line , one main transformer and one auxiliary transformer feeds two 6.6KV
bus bars each one of the protected by 2500 A, 40 kA for 1 sec, 6.6KV switch gear
(SWG). Busl feeds three radial feeders each one of them protected by 3 relays CO and
1250A CB.Bus2 feeds five radial feeders each one of them protected by 3 relays CO and
1250A CB. The protective relays of the 6.6KV buses serve as the backup protection for
their connected feeders. Two challengeable scenarios were took place on this system to
prove the accuracy, ease in construction , the ability in dealing with uncertainty situations

and with any construction of substations of the proposed methodology.

A. The First scenario
A three phase fault hit feeder (F1) and protective relay CO1 operates and give a signal to
circuit breaker CB1 to trip. Although CO1 operates, CB1 failed to trip. So the protective
Relay of the Busl operates as a backup and CBML1 tripped. Also a single line to ground
fault hit feeder (F5) and protective relay CO5 operates and give a signal to circuit breaker
CBS to trip.CB5 tripped with no failure. Table 5.16, shows the pre-fault values of feeder
current of F1 and F5 also the bus voltage of Bus#1 and Bus#2.

Table 5. 16 Pre-Fault values of Scenario 1

Phases F1 F5 Bus #1 Bus #2
A 500 (A) 420 (A) 9.2 (V) 9.3(V)
B 360 (A) 380 (A) 9.4 (V) 9.2 (V)
C 390 (A) 370 (A) 8.7 (V) 10.1 (V)
Neutral 45(A) 62(A)
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Fig.5. 16 A typical unit in Cairo West Planet — Scenario 1
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-Procedures of Fault diagnosis:

A) Fault identification process :

Step 1: To perform the reasoning process with the fuzzy rule matrix, the associated FCE-
Net for the model system is shown in Figure 5.18. Tables (5.17-20), shows the defining
of the node conditions and the developing of the rule matrix (R), the fault vector (F) and

backup vector (B) as follows:

Fig.5. 17 The associated FCE_Net for the model System - Scenario 1
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- The set of conditions of the system is listed in the following table:

Table 5. 17 The set of conditions of the system — Scenario 1

Node Description Node Description
C1 A fault occurs at feeder F1 C20 Relay COM3 operates
C2 Relay COL1 operates C21 Circuit breaker CBM3 tripped
C3 Circuit breaker CB1 tripped C22 A fault occurs at feeder F4
C4 CO1 operates but CB1 fails C23 Relay CO4 operates
C5 Relay COML1 operates C24 Circuit breaker CB4 tripped
C6 Circuit breaker CBML1 tripped C25 CO4 operates but CB4 fails
Cc7 A fault occurs at feeder F2 C26 A fault occurs at feeder F5
C8 Relay CO2 operates C27 Relay CO5 operates
C9 Circuit breaker CB2 tripped Cc28 Circuit breaker CB5 tripped
C10 CO2 operates but CB2 fails C29 COS5 operates but CB5 fails
Cl1 A fault occurs at feeder MTR1 C30 A fault occurs at feeder F6
C12 Relay COMTRL1 operates C31 Relay COG6 operates
C13 Circuit breaker CBMTR1 tripped C32 Circuit breaker CB6 tripped
Ci14 COMTRL1 operates but CBMTRL1 fails C33 CO6 operates but CB6 fails
C15 A fault occurs at section BUS1 C34 A fault occurs at feeder MTR2
C16 A fault occurs at feeder F3 C35 Relay COMTR?2 operates
C17 Relay CO3 operates C36 Circuit breaker CBMTR21 tripped
C18 Circuit breaker CB3 tripped C37 COMTRL1 operates but CBMTR?2 fails
C19 CO3 operates but CB3 fails C38 A fault occurs at section BUS2
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The rule matrix describes the relations between causes and effects of FCE-Nets. Table

5.18 , shows the non-zero entries of rule matrix of this system.

Table 5. 18 Nonzero Entries of Rule Matrix of Scenario 1

R[i] Value RIi] Value RIi] Value
R[L,1] 1 R[2,1] 0.95 R[2,2] 1
R[3,2] 0.8 R[3,3] 1 R[4,4] 1
R[5,4] 0.95 R[5,5] 1 R[6,5] 0.8
R[6,6] 1 R[7,7] 1 R[8,7] 0.95
R[8,8] 0.95 R[9,8] 0.8 R[9,9] 1
R[5,10] 0.95 R[5,14] 0.95 R[5,15] 0.95

R[10,10] 1 R[11,11] 1 R[12,11] 0.95
R[12,12] 1 R[13,12] 0.8 R[13,13] 1
R[14,14] 1 R[15,15] 1 R[16,16] 1
R[17,16] 0.95 R[17,17] 1 R[R18,17] 0.8
R[18,18] 1 R[19,19] 1 R[20,19] 0.95
R[20,20] 1 R[20,25] 0.95 R[21,20] 0.8
R[21,21] 1 R[22,22] 1 R[23,22] 0.95
R[23,23] 1 R[24,23] 0.8 R[24,24] 1
R[25,25] 1 R[26,26] 0.8 R[27,26] 0.95
R[27,27] 1 R[28,27] 0.8 R[28,28] 1
R[20,29] 0.95 R[20,33] 0.95 R[29,29] 1
R[30,30] 1 R[31,30] 0.95 R[31,31] 1
R[32,31] 0.8 R[32,32] 1 R[33,33] 1
R[34,34] 1 R[35,34] 0.95 R[35,35] 1
R[36,35] 0.8 R[36,36] 1 R[20,37] 0.95
R[20,38] 0.95 R[37,37] 1 R[38,38] 1
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Once the fuzzy rule matrix is established, the diagnosis algorithm can then be performed
by matrix operations

The fault node vector (F) is defined to represent the fault section nodes in a given FCE-

Net. Table 5.19 , shows the non-zero entries of Fault vector (F) of this system.

Table 5. 19 Values of the fault vector of Scenario 1

Fli] Value Description
F[1] 1 F1
F[7] 1 F2
F[11] 1 MTR1
F[15] 1 BUS1
F[16] 1 F3
F[22] 1 F4
F[26] 1 F5
F[30] 1 F6
F[34] 1 MTR2
F[38] 1 BUS2

The backup node vector B is employed to represent the backup relay nodes in a given

FCE Net. Table 5.20 , shows the (B) vector of this system.

Table 5. 20 Values of Backup vector (B) of Scenario 1

B[i]

Value

B[4]

1

B[10]

B[14]

B[19]

B[25]

B[29]

B[33]

B[37]

e
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Step 2: The informed data from SCADA of the truth state vector is listed as follow:

Table 5. 21 Nonzero entries of the truth state vector (T) of Scenario 1

TIi] Value Description

T[5] 0.95 Degree of 'Relay COML1 operates'

T[6] 0.8 Degree of 'CBML1 tripped’

T[2] 0.95 Degree of 'Relay CO1 operates'

T[4] 0.8 Degree of 'Relay CO1 operates but CB1 fails'
T[27] 0.95 Degree of 'Relay CO5 operates'
T[28] 0.95 Degree of ‘Circuit breaker CBS tripped’

Step3: Calculating TV Vector to propagate the truth state of given fault symptoms

leading backward into the fault cause. The (TV) vector contains information that causes

the fault symptoms. Table 5.22 , presents the entries of the vector (TV) of this system.
Table 5. 22 Calculated values of the (TV) vector of Scenario 1

TVIi] Value TVI[i] Value TVI[i] Value
TV[1] 0.95 TV[14] 0.95 TV[27] 0.95
TV[2] 0.95 TV[15] 0.95 TV[28] 0.95
TVI[3] 0 TV[16] 0 TV[29] 0
TV[4] 0.95 TV[17] 0 TV[30] 0
TV[5] 0.95 TV[18] 0 TV[31] 0
TVI[6] 0.8 TV[19] 0 TV[32] 0
TVI[7] 0 TV[20] 0 TVI[33] 0
TV[8] 0 TV[21] 0 TV[34] 0
TV[9] 0 TV[22] 0 TV[35] 0
TV[10] 0.95 TV[23] 0 TV[36] 0
TV[11] 0 TV[24] 0 TV[37] 0
TV[12] 0 TV[25] 0 TV[38] 0
TV[13] 0 TV[26] 0.95

Step4: The T vector and TV vector aren’t equal, the process went to update TV and

assign itto T*. Table 5.23, presents the entries of the vector T* of this system.
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Table 5. 23 Calculated values of the (T*) Vector of Scenario 1

T [i] Value T [i] Value T [i] Value
T* [1] 0.95 T* [14] 0.95 T* [27 0.95
T* [2] 0.95 T* [15] 0.95 T* [28] 0.95
T* [3] 0 T* [16] 0 T* [29] 0
T* [4] 0.15 T* [17] 0 T* [30] 0
T* [5] 0.95 T* [18] 0 T* [31] 0
T* [6] 0.80 T* [19] 0 T* [32] 0
T* [7] 0.95 T* [20] 0 T* [33] 0
T* [8] 0.95 T" [21] 0 T* [34] 0
T* [9] 0.80 T* [22] 0 T* [35] 0
T* [10] 0.95 T* [23] 0 T* [36] 0
T" [11] 0 T* [24] 0 T* [37] 0
T* [12] 0 T* [25] 0 T* [38] 0
T* [13] 0 T* [26] 0.95

Step 5: the fault section determined from the EFS vector according to (3.6) is F1 as the

following table:

Table 5. 24 Calculated Values of the EFS vector of Scenario 1

Fli] Description Value
F[1] F1 0.95
F[7] F2 0
F[11] MTR1 0
F[15] BUS1 0.95
F[16] F3 0
F[22] F4 0
F[26] F5 0.95
F[30] F6 0
F[34] MTR2 0
F[38] BUS2 0

The Faulted sections are F1, Busl1 and F5.
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B) Fault type estimation process :

Stepl: Define the membership function ranges as following:

=

5.2

6.6

Fig.5. 18 Membership function of the Bus Voltages of Scenario 1
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Fig.5. 19 Membership function of the Feeder currents of Scenario 1
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Fig.5. 20 Membership function of the neutral current of Scenario 1
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Step2: Get the reads of Current and voltage measurement devices from SCADA.

Step3: By using the rules, the result will be as follows:

Table 5. 25 Fault data from SCADA and the suitable rule base of Scenario 1

Rule | F# | Iy Ig Ic | Iy | V4| Vg | V¢ Fault Degree of
# Type belonging
R10 . 3000 | 3000 | 2500 | 40 | 5.4 5.6 6.2 30 0.76
H H H N | L|L | L | fAULT
R1 1250 | 400 | 380 | 100 (6.3| 9 [9.8| SLG-A 0.69
F5

In this case:

1- The proposed method shows high flexibility in dealing with any system construction.

2- The graphical construction of the nodes and arrows of the used system was very ease

in construction and understanding.
3- The memberships cover the database very well.
These results reflect the great abilities and advantages of the proposed methodology.
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B. Scenario 2
To increase the challenge in this scenario we increase the number of faults to show
the accuracy and the ability of the proposed method in dealing with any number of
faults occur in the same time.
A double line to ground fault hit feeder (F2), so protective relay CO2 operates and gives
a signal to circuit breaker CB2 to trip. Although CO2 operates, CB2 failed to trip. So the
protective Relay of the Busl operates as a backup and CBML1 tripped.
Also a single line to ground fault hit feeder (F3) and protective relay CO3 operates and
give a signal to circuit breaker CB3 to trip; CB3 tripped with no failure.
A line to line fault hit feeder (F4), so protective relay CO4 operates and gives a signal to
circuit breaker CB2 to trip. Although CO4 operates, CB4 failed to trip. So the protective
Relay of the Bus2 operates as a backup and CBM2 tripped.
A three phase fault hit feeder (F5), so protective relay CO5 operates and gives a signal to
circuit breaker CB2 to trip. Although CO5 operates, CB5 failed to trip; CB3 tripped with
no failure. Figure 5.22, shows the faulted distributed system of case 4. Table 5.26 , shows

the pre fault values of the faulted feeders curren and the voltage of Bus#1 and Bus #2.

Table 5. 26 Pre-Fault values of Scenario 2

Phases F2 F3 F4 F5 Bus #1 Bus #2

A | 650(A) | 500 (A) 580 (A) 530 (A) 9.2 (V) 8.3 (V)

B 690 (A) | 550 (A) 498 (A) 550 (A) 8.6 (V) 7.6 (V)

C | 682(A) | 496 (A) | 420(A) | 510(A) 8.4 (V) 9.5 (V)

Neutral | 80(A) 75(A) 60(A) 85(A)
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- Procedures of Fault diagnosis:

A) Fault identification process :

Step 1: As the previous case.

Step 2: The truth state vector (T) is employed to represent the fault symptom with the

status of protective devices. Table 5.27 , shows the non-zero entries of (T) vector of this

system.
Table 5. 27 Nonzero entries of the truth state vector (T) of Scenario 2

T[i] Value Description

T[5] 0.95 Degree of 'Relay COM1 operates'

T[6] 0.8 Degree of 'CBML1 tripped'

T[8] 0.95 Degree of Relay CO2 operates

T[9] 0.80 Degree of Circuit breaker CB2 tripped
T[10] 0.80 Degree of CO2 operates but CB2 fails
T[17] 0.95 Degree of Relay CO3 operates

T[18] 0.80 Degree of Circuit breaker CB3 tripped
T[20] 0.95 Degree of Relay COM3 operates

T[21] 0.80 Degree of Circuit breaker CBM3 tripped
T[23] 0.95 Degree of Relay CO4 operates

T[24] 0.80 Degree of Circuit breaker CB4 tripped
T[25] 0.80 Degree of CO4 operates but CB4 fails
T[27] 0.95 Degree of Relay CO5 operates

T[28] 0.80 Degree of Circuit breaker CB5 tripped
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Step3: Calculating (TV) vector to propagate the truth state of given fault symptoms

leading backward into the fault cause. The (TV) vector contains information that causes

the fault symptoms. Table 5.28 , presents the entries of the vector (TV) of this system.

Table 5. 28 The calculated entries of the TV vector of Scenario 2

TVIi] Value TVIi] Value TVIi] Value
TV[1] 0 TV[14] 0.95 TV[27] 0.95
TV[2] 0 TV[15] 0.95 TV[28] 0.80
TV[3] 0 TV[16] 0.95 TV[29] 0.95
TV[4] 0.95 TV[17] 0.95 TV[30] 0
TV[5] 0.95 TV[18] 0.80 TV[31] 0
TV[6] 0.80 TV[19] 0.95 TV[32] 0
TV[7] 0.95 TV[20] 0.95 TV[33] 0.95
TV[8] 0.95 TV[21] 0.80 TV[34] 0
TV[9] 0.80 TV[22] 0.95 TV[35] 0
TV[10] 0.95 TV[23] 0.95 TV[36] 0
TV[11] 0 TV[24] 0.80 TV[37] 0.95
TV[12] 0 TV[25] 0.95 TV[38] 0.95
TV[13] 0 TV[26] 0.95

Step4: Because TV don’t equal with T, the process went to update TV and assign it to

T*using the following formula; otherwise, TV assigned toT*. Table 5.26 , presents the

entries of the vector T* of this system.

Table 5. 29 The calculated values of the T*vector of Scenario 2

T [i] Value T [i] Value T [i] Value
T [1] 0 T" [14] 0.95 T [27 0.95
T [2] 0 T* [15] 0.95 T* [28] 0.80
T* [3] 0 T* [16] 0.95 T [29 0.95
T [4] 0.95 T* [17] 0.95 T [30] 0
T [5] 0.95 T* [18] 0.80 T [31] 0
T* [6] 0.80 T* [19] 0.95 T [32] 0
T [7] 0.95 T* [20] 0.95 T* [33] 0.95
T [8] 0.95 T [21] 0.80 T* [34] 0
T [9] 0.80 T*[22] 0.95 T* [35] 0
T [10] 0.15 T* [23] 0.95 T* [36] 0
T* [11] 0 T* [24] 0.80 T* [37] 0.95
T* [12] 0 T* [25] 015 T* [38] 0.95
T [13] 0 T* [26] 0.95
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Step 5: the fault sections determined from the EFS vector according to (3.6) as the
following table:

Table 5. 30 The estimated fault sections of Scenario 2

F[i] Description Value
F[1] F1 0
F[7] F2 0.95
F[11] MTR1 0
F[15] BUS1 0.95
F[16] F3 0.95
F[22] F4 0.95
F[26] F5 0.95
F[30] F6 0
F[34] MTR2 0
F[38] BUS2 0.95

The Faulted sections are F2, Busl, F3, F4, F5 and Bus2.

B) Fault type estimation process :

Stepl: Define the membership function ranges as the previous case.

Step2: Get the reads of Current and voltage measurement devices from SCADA.

Step3: By using the rules, the result will be as follows:

Table 5. 31 Fault data from SCADA and the suitable rule base of Scenario 2

Rule# | F# Iy Ip Ic Iy | V4 | Vg | Vo | Fault Type | Degree of belonging
R7 - 2000 | 2000 | 700 | 130 | 4.5 |4.7 DLG AB 0.623
H H N H L|L]|N
R3 3 550 | 600 | 2500 | 121 | 7.2 81|59 | SLG-C 0.69
F
N N H H|N|N]|L
R5 ” 590 | 1400 | 2500 | 121 6 | 59| DL-BC 0.74
N H H N [N|L]|L
R10 2600 | 1660 | 2300 | 50 | 4.4 | 4.7 | 49 | 3¢ fAULT 0.87
F5
H H H N L|L]|L
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By this case:

1-

2-

The great ability of the proposed case in dealing with any number of faults was
approved.

The high accuracy of the proposed method in defining fault types when dealing
with almost similar types was shown, that was very clear in the fault type of (F2).
Although the degree of belonging was very close between the DL-AB and the
DLG-AB, the high accuracy of the proposed method in selecting the fault type of
this state was approved. Figure 5.23, shows the degree of belonging of the two
close types in Fault (F2).

DL-AB = 0.562 DLG-AB =0.623

]
L Ll

0 0 a

-

Fig.5. 22 The degree of belonging of fault types of Scenario 2
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5.4Conclusions

In this chapter, by using Mat-lab fuzzy toolbox the proposed approaches of the fault

diagnosis were presented.

Four cases of study of existing substations were taken place to evaluate and test the

proposed methodology; two of them were done and by comparing the results of the tests

with another two methods based on ES-ANN and CE-Nets techniques. After comparing

the results and discussing them, it was obtained that the proposed methodology got the

advantages of:

1-
2
3-
4

High accuracy and fast response.
Great ability to deal with uncertain situations.
Easy in construction and maintenance.

Suitability for on-line operation and no need for training.

By these tests, evaluations and according to the great results, it is proofed that the

proposed method improves the technique that was presented in [22] by the following:

1-

More than one bus with more than one backup were added in the same graphical
network to decrease the processing time which was leaked when dealing with
every bus individually.

The flexibility in forming the graphical networks with any substation construction
reflected on the mathematical structure of the proposed method and its data base
and this improvement make the construction of the proposed method suits any
substation construction with any number of busses and feeders.

Historical records of number of occurrence of the fault symptoms were used in
constructing the memberships and the data base of the proposed methodology.
The fault type estimating process based on fuzzy logic was added and it runs in
parallel with the fault identification process to complete the fault diagnosis

processes.

Finally, the proposed methodology can be recommended to be integrated into existing

SCADA systems like a tool box with no need for extra devices.
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Chapter 6: Conclusion and Recommendations

At the beginning, the construction and functions of SCADA system as the environment of
the events of the proposed methodology were presented. Also the duties of the
operator/dispatcher which include analyzing the information and data received from all
the components of SCADA representing current state of the fields and to recognize
possible threats to them were discussed; to represent how complex and risky these duties
are. The need of methodology to reduce or avoid the risk of making wrong decisions
under stresses to keep the power system stable was very necessary. So some fault
diagnosis methods and techniques were discussed generally showing the construction,

advantages and dis-advantages of every one.

Then the proposed method was presented showing the main concepts and basis that form
it. This method is based on FCE-Nets as graphical tool and matrix-based operations to
identify fault location. In the meanwhile, the fuzzy logic database and rule-base is
implemented to identify the fault type. The construction, matrixes and operators were
presented in details. The advantages of the proposed method were discussed, mainly
capability of representing and dealing with uncertain knowledge and terms thanks to the
fuzzy logic abilities, ease in understanding the relationship between the rules and
conditions and the possibility to predict the inference results in advance by observing the

flow of truth state in the FCE-Nets when some conditions are specified.
So the challenge was to test and compare the results of this methodology with another

techniques and methods on existing systems to proof the abilities of the proposed

methodology in dealing with any system and giving accurate results.
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6.1General discussion on the results

By using Mat-lab fuzzy tool box, the comparing of the results obtained from the proposed
methodology with ES-ANN based and CE-Nets techniques and the applying of the
proposed methodology on existing systems with hard scenarios shows ;

1- The high accuracy

2- Great ability to deal with un-certainty situations
3- Quick response.
4- Suitability for on-line operation, no need for training, and simplicity in

establishing the model of the proposed methodology.

5- The great ability of the proposed methodology in dealing with any construction of
the systems and with any number of faults

6- The proposed methodology can be considered as an economical solution as it can
be integrated to existing SCADA system like a tool box with no need to extra
devices.

7

The proposed technique will help the operator to make right decisions when he

faces fault events.

6.2Future work

In [30], a proposed hardware-implemented fault diagnosis system for SCADA-based
substations, which has its merits of fast inference speed and low cost. In addition, it is
easily integrated into existing systems, and is adaptive to network reconfiguration.

- The author also recommend his proposed feature to achieve the following:
1) Fast Inference Speed
Since the proposed fault diagnosis approach has fast inference speed, it is suitable for
real-time applications.
2) Decentralized Fault Diagnosis Framework:
Traditional fault diagnosis has problems when the host computer in the control center

fails to obtain accurate data from remote sites due to communication problems.
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The proposed decentralized system performs fault analysis in the field site, which has less
of an influence on communication failure since the data for analysis is obtained directly
from RTUs.

3) Feasibility for Power Utilities:

The proposed system can be easily integrated with the existing SCADA systems, which

makes it feasible for power utilities.

4) Adaptive to Network Reconfiguration:

Since FPGAs are reprogrammable silicon chips, the proposed approach can deal with the
changes of network configuration, which is effective in power system operation.

- Finally we suggest this promising proposal of implementing hardware device based on
cause and effect concept which is mainly consist of simple logic gates doing the operates
and calculations in the fault diagnosis process, can replace the PMUs devices as an

economical solution with less accuracy.
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