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ABSTRACT 

In recent times, power transformers are among the most critical of assets for electric utilities in 

the power system. Frequency response analysis (FRA) is a powerful diagnoses method which is used to 

detect mechanical deformations within power transformers. The determination of FRA for any 

transformer can be made by its material properties and geometry. FRA is considered as the fingerprint of 

the transformers. The main drawback of the FRA, in addition to its being an off-line tool, is that it 

depends on graphical analysis. So, there is requires an expert to analyze this graphical results to show 

the presence of failure within transformer windings. Hence, there is increases the need for an online 

monitoring tool to assess the internal condition of transformers. 

The present work is aimed to introduce novel online technique to detect the internal faults within 

a power transformer by constructing (ΔV- Iin) locus diagram. The advantage of this technique is the use 

of the existing measuring devices attached to any power transformer to monitor the input, output voltage 

in addition to the input current. Thus, it can be utilized as an online monitoring technique. Any 

deformation or displacement in the transformer winding can cause change in the circuit parameters and 

response. The changes can be detected using the proposed technique. This technique requires a reference 

response which is generated during commissioning of the transformer to detect these changes. 

The purpose of this thesis is to first, simulate the several different types of insulation failure, and 

second to identify and classify the fault within transformer windings utilizing an intelligent technique. 

To achieve these goals, the proposed winding model and five types of insulation failures that are apt to 

occur in power transformers are implemented in power simulation (PSIM). The transformer parameters 

have been calculated from the practical design data of a 3 MVA, 33/11 kV, three-phase, 50 Hz, ONAN, 

Dy11 power transformer. 
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CHAPTER ONE  

1. INTRODUCTION 

1.1. Background 

A power transformer is mainly used when there is a need for a voltage transformation, 

and it is used for transmission and distribution of electric power systems. The electric energy 

is transferred between different electrical circuits in transformer by the use of 

electromagnetic induction. Power transformers are usually expensive and require through 

maintenance and condition monitoring to maintain the continuity of supply.  

1.2. Problem Formulation 

Power transformers play very important role in the reliable operation of power systems. 

They are designed to function at supply frequency. In the event that a failure occurs in 

service, the impact can be far reaching. Not only can extended outages occur, but costly 

repairs and potentially serious injury or fatality can result. The aging transformer population 

increases the likelihood of failure, this poses significant a risk for utilities and other power 

network stakeholders as the impact of an in-service transformer failure can be catastrophic.  

Therefore, maintaining the integrity of insulation within the power transformer is crucial. 

Thus, there is an increasing need for better diagnostic and monitoring tool to assess the 

internal condition of transformers. 

Several diagnostic methods have developed a long time ago as a response to the need for 

condition assessment. Among these, Dissolved Gas Analysis (DGA) and Frequency 

Response Analysis (FRA) have emerged as the industry standard tests for assessing the 

condition of the transformer insulation / oil and the integrity of the winding structure, 

respectively. FRA is a powerful method which is used to detect mechanical deformations 

within power transformers in recent times. The FRA of a transformer is determined by its 

geometry and material properties, and it can be considered as the transformer’s fingerprint. If 

there are any mechanical changes in the transformer, for example if the windings are moved 

or distorted, its fingerprint will also be changed so, mechanical changes in the transformer 
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can be detected. In the FRA test, the transformer is taken out of service and a signal is 

applied to one winding terminal and the response is measured at another terminal [1]. The 

main drawback of the FRA, in addition to its being an off-line tool, is that it depends on 

graphical analysis i.e., an expert is required to analyze the results to show if the failure is 

present or not. Hence, there is a need for an online monitoring tool to assess the internal 

condition of transformers. Further modifications are investigated to apply the FRA test 

online [2]. 

In the last decade, some researchers had proposed several different computer aided 

techniques for classification of series and shunt insulation failures in transformer winding [3, 

4]. Moreover, correlation technique in the frequency domain has been applied to localize the 

occurrence of partial discharge in 10 section lumped parameter transformer winding model 

[5]. 

Nevertheless, the platform is still open for the application of computer-aided diagnostic 

techniques for the assessment of the proper operation and the integrity of insulation within 

power transformer. 

1.3. Aim or Research Motivation 

The present thesis is aimed to simulate, analysis, and discriminate five types of insulation 

failure which may be produced after the offline impulse test that is routinely carried out on 

power transformers [1]. The technique is introduced to detect the internal faults within a 

power transformer by contracting (ΔV- Iin) locus diagram. The advantage of this technique is 

the use of the existing measuring devices attached to any power transformer to monitor the 

input, output voltage in addition to the input current. Thus, it can be utilized as an online 

monitoring technique. 

This thesis also present two techniques to identify and classify the insulation failure 

within a power transformer based on developed code and artificial neural networks (ANNs). 

The proposed (ΔV- Iin) locus can be plotted every cycle (20 ms based on a 50-Hz network) 

and compared with the healthy locus using the developed code to immediately identify any 

changes. Hence, the fault is located along the winding of the transformer. The proposed 
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technique is easy to be implemented and automated so that the requirement for expert 

personnel can be eliminated and early warning for the transformer condition obtained. 

1.4. Outline of the thesis 

The main concern in this thesis is directed to study the diagnosis in power transformers 

and propose a new strategy for the classification of the abnormality conditions in transformer 

windings. The following points are covered in this work: 

1. Present a comprehensive literature survey about the addressed topic. 

2. Select and simulate a suitable transformer for this study using power simulation 

(PSIM) software. 

3. Develop an online diagnosis technique to present the current state of the transformer. 

4. Develop a new expression of the (ΔV- Iin) locus diagram that is used in the diagnosis 

study. 

5. Investigate the effect of different types of abnormal conditions within the simulated 

transformer by constructing (ΔV- Iin) locus diagram for the suitable transformer in 

healthy and faulty conditions. 

6. Discriminate different types of insulation failure which may be produced on power 

transformers according to visual inspection and discrimination using feature extraction. 

7. Develop an intelligent fault classification and localization technique using MATLAB. 

8. Demonstrate results and conclusions.  

Figure 1-1 shows all the processing stages utilized in this thesis to classify and locate the 

different types of failures apt to occur within the transformer windings. 

This thesis focuses on the identification and classification of the insulation failure in the 

transformer windings using intelligent computational techniques that can be readily applied to 

online measurements. This thesis starts with a brief introduction about the mechanical failure 

problem and the research motivation.  The second chapter is dedicated to overview for the 

power transformer and its reasons of failure and also discusses offline and online available 

transformer winding deformation diagnostic methods. The third chapter introduces an adopted 

diagnostic technique, the undertaken transformer model and discusses the simulation of the 

utilized power transformer and also studies and analyses the fault types. The fourth chapter. 
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The fourth chapter starts with the visual inspection of fault discrimination techniques 

applicable to transformer winding, and then details a developed algorithm (computational 

discrimination technique) used for fault discrimination within transformer winding utilizing 

feature extraction according to circuit model to identify the type of the fault in the 

transformer. The fifth chapter introduce the feature identification and location methods 

utilizing the Learn vector quantization (LVQ) algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Flow Chart of Thesis Work Steps 
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CHAPTER TWO  

2. BACKGROUND INFORMATION 

2.1. Introduction to power transformers 

In AC power systems, power transformers are among the most crucial physical assets in a 

power system in terms of their capital cost, network impact and cost due to unexpected 

failure. 

A power transformer comprises of two or more windings that are coupled through a 

common magnetic core. A time-varying flux created by one winding induces voltages in all 

of the other windings. Laminated iron core, two or more windings, an insulation medium, a 

tank, bushing and accessories represent the main components of any transformer. 

Transformers can be categorized into different types according to different criteria. For 

example; depending on the construction of the core, transformers can be categorized as 

Core-type transformers and Shell-type transformers. In core-type transformers, the windings 

are wrapped around two sides of a sample rectangular window iron core; while in shell-type 

transformers, the windings are only wrapped around the center leg of a three-legged iron 

core. Also, with a particular point of view about the insulation medium, transformers fall 

into two categories: 

 Dry type transformers: If the core and coils are in a gaseous or dry compound 

insulation. 

 Fluid-filled transformers: this type of transformers have the core and coils impregnated 

with an insulating fluid and immersed in the same insulation medium. 

An iron core is used because of its high relative permeability. As a result of its higher 

relative permeability, a smaller magnetizing current is required as compared to a non-

ferromagnetic core.  Furthermore, the iron core is usually laminated in order to minimize 

eddy current losses, which are generated in the core by the time varying magnetic flux. 
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The windings are usually made of copper or aluminum. The winding conductors may be 

either wires or sheets. Successive layers are insulated by sheets of insulation. Ceramic 

bushings are used to isolate the windings from grounded structures of the transformer such 

as the oil tank. Transformers with increasingly larger voltages require increasingly longer 

bushings to prevent an external flashover. Mineral oil is typically used as insulation medium. 

It is also used to cool the transformer. 

The insulation must be capable of withstanding voltages greatly exceeding the rated 

winding voltages. Voltages must larger than the rated values can appear across the windings 

of the transformer during network transients. Such as switching operations, lightning strikes, 

short circuit faults, and fluctuations in the load. Table 2.1 shows the insulation levels for 

different voltage ratings, which are defined as the values of the required test voltages [6]. 

BIL, that is basic insulation levels, are given in the column 3 and column 7 for Europe and 

North America respectively. 

Table 2.1 Standardized test voltages for rated voltages 

Coordination of Insulation according to IEC Publication 71, 1972 

European practice and other countries U.S.A. and Canada 

Rated 

voltage 

Vm* 

Test 

voltage 50 

Hz,  

1 min 

Lightning 

impulse 

voltage 1.2/50 

µsec 

Switching 

surge voltage 

250/2500 µsec 

Rated 

voltage 

Test 

voltage 60 

Hz,  

1 min** 

Lightning 

impulse voltage 

1.2/50 µsec 

KV in RMS KV in RMS KV in peak KV in peak KV in RMS KV in RMS KV in peak 

3.6 10 40  4.76 19 60 
7.2 20 60  8.25 26 75 
12 28 75  15 36 95 

17.5 38 95  15.5 50 110 
24 50 125  25.8 60 125 
36 70 170  38 80 150 
100 185 450  100 185 450 
145 275 650  145 275 650 
175 325 750  175 325 750 
245 460 1050  254 460 1050 
300 380 1050 850    
362 450 1175 950    
420 520 1425 1050    
525 620 1550 1175    
765 830 2100 1425    
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Note:  

* Vm is the maximum service voltage of the network between phases. 

**Test voltage is the phase voltage.  

Outages due to power transformer failure cost the company money not only in 

replacement or repair, but also in buying power from other companies to supply their 

customers. These costs can quickly grows into millions of dollars in just a few days. A case 

study mentioned [7], estimated the failure of a 520MVA transformer to reach approximately 

US$18 Million in just 8 days.  

2.2. Classification of transformer failure 

Generally, transformer failures may be caused by a multitude of reasons. The literature 

review over the last several decades on transformer failure have different ways to categorize 

the causes of transformer failures. 

One of these ways classified the transformer failure causes into two categories as 

"internal causes" and "external causes". Internal causes are due to the internal faults that 

happen inside the tank such as: Short circuit between windings or turns, Insulation 

deterioration, Loss of winding clamping, Overheating, Oxygen, Moisture, Solid 

contamination in the insulating oil, Partial discharge, Design & manufacture defects or 

internal winding resonance. While, external causes are due to external faults that related to 

bushing, leads and accessories that are outside the tank, and may be caused by system 

switching operations, lightning strikes, system overload and system fault (short circuits). The 

internal faults can be split further to thermal faults and electrical faults. Generally, 

Transformers overheating due to thermal faults. According to the severity of the faults, 

thermal faults are often divided into four categories listed in table 2.2. Under high electric 

field electrical faults cause the degradation of the insulation. According to the degree of 

discharge intensity, electric faults are further divided into partial discharge, spark discharge 

and arc discharge. 
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Table 2.2. Thermal faults categories 

Thermal fault category type temperature 

Slight temperature overheating less than 150°C 

Low temperature overheating 150-300°C 

Medium temperature overheating 300-700°C 

High temperature overheating More than 700°C 

Another way for fault classification ways is based on circuitry. According to "circuitry", 

failures can also be split into two categories as "structure of main body" and "fault 

location". By structure of the main body of the transformers, failures can be divided into 

winding faults (or electric faults), core faults (or magnetic faults), oil faults (or oil path 

faults), and accessory faults; by fault location, failures can be divided into insulation faults, 

core faults and tap-changer faults, etc. All of the above failures can either reflect thermal 

failures, electric failures or both. A survey listed the percentage of several reasons of 

transformer failures (internal and external reasons) as shown in Table 2.3 was conducted by 

Hartford Steam Boiler over the last several decades on thousands of transformer failures [8]. 

Table 2.3. Causes of transformer failure 

Failure percentage per year 1975 1983 1998 winding movement evident 

Lightening surges 32.3 % 30.2 % 12.4 %   

Line surges / External short circuit 13.3 % 18.6 % 21.5 %   

Poor workmanship-Manufacturer 10.6 % 7.2 % 2.9 %   

Insulation deterioration 10.4 % 8.7 % 13 % ×  

Overloading 7.7 % 3.2 % 2.4 % ×  

Moisture 7.2 % 6.9 % 6.3 % ×  

Inadequate Maintenance 6.6 % 13.1 % 11.3 %   

Sabotage, Malicious Mischief 2.6 % 1.7 % 0 %  ×  

Loose Connections 2.1 % 2.0 % 6.0 %   

All others 6.9 % 8.4 % 24.2 %  -- 

As shown in Table 2.3., the main reasons of transformer failures are lightning surges, 

switching surges, insulation deterioration and inadequate maintenance. Another international 
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survey shows the percentage of failures related to the structural components (fault location) 

of the transformers was conducted by the CIGRE Working Group [17], as shown in Figure 

2.1. Figure 2.1. Show that, the main components that cause failures in large power 

transformers are on-load tap changers, windings, and tank/fluid. An article [18] in Electricity 

Today tabulates transformer failures by their components as given in Table 2.4.  

 

Figure 2.1. Failures for large power transformers with on-load tap changers 

Table 2.4. Transformer Component Failures 

Transformer component Failure percentage Insulation System 

High Voltage Windings 48% Yes 

Low Voltage Windings 23% Yes 

Bushings 2% Yes 

Leads 6% No 

Tap Changers 0% No 

Gaskets 2% No 

Other 19% No 

Total 100% -- 
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2.3. Offline and online transformer winding diagnosis techniques 

Major diagnostic methods which are employed by utilities and researchers include off 

and on-line methods where are introduced as diagnostic tools by [9, 14] as follows: 

2.3.1. Offline techniques 

2.3.1.1. Visual inspection (VI) 

In this test; the transformer has to be taken out of service, and opened up to be inspected 

after drained. The clamps, windings and insulation condition can then be inspected to 

determine if there are any noticeable problems. It requires expert to carry out inspections and 

can lead to long out of service times for the transformer, which is undesirable. This method 

is the most reliable method to determine the winding condition, and it is likely to be retained 

only as a final verification when a less invasive method detects the presence of critical 

damage. 

2.3.1.2. Short circuit impedance (SCI) 

SCI method is usually used for transformer winding deformation detection. Measured 

SCI of a power transformer can be compared to the value that appears at the nameplate or 

factory test results. It is employed to detect winding movement that may have occurred since 

the factory tests were performed. To conduct this test, the low voltage winding terminals 

have been short-circuited to each other and the input current voltage and power are 

measured.  Changes of more than ±3% of the SCI should be considered significant [15]. 

2.3.1.3. Transfer function methods (FRA/LVI) 

Transfer function is basically a way of describing a system behavior. Transfer function 

method is increasingly used in the diagnostics of electric power equipment, especially for the 

identification of winding integrity in transformers [16-18]. Transfer function measurement 

has been developed based on two popular methods. The first one applies in time domain 

while the second one is concentrated on frequency domain. Frequency domain measurement 

is performed by injecting a swept sinusoidal waveform within a predetermined frequency 

band. Some researchers believe that acceptable and judicable result would be taken in 

between 10 Hz and 1 MHz [19] while the others have recommended max extended 
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frequency response measurement up to 10 MHz [20]. In time domain method, an impulse 

voltage waveform is injected into the test object and time domain response measured 

through test object output. Once the time domain measurement data is at hand, transfer 

function in frequency domain could be determined by using Fast Fourier transform (FFT) 

technique. Generally, the purpose of both methods is to excite the natural frequencies of the 

test object. 

2.3.1.4. Leakage reactance test 

The short circuit impedance test set-up can also be used to calculate the leakage reactance 

of the transformer. If the winding has expanded, the leakage reactance would increase as a 

consequence. This method is sensitive to certain types of distortion only, namely distortion 

that results in increased distance between the primary and secondary coil. It does not pick up 

distortions such as twisting of windings and is ineffective at high frequencies due to the skin 

effect. 

2.3.1.5. Ratio test 

The winding ratio test is an offline test that can be used to detect faulty winding 

conditions (short circuit or open circuit). The transformer voltage ratio is tested to ensure 

that the proper turns-ratio is present. This test determines the transformer turns ratio (TTR) 

of the number of turns in the high-voltage winding to that in the low-voltage winding. The 

ratio test shall be made at rated or lower voltage and rated or higher frequency. The tolerance 

for the ratio test is 0.5% of the winding voltages specified on the transformer nameplate. 

2.3.1.6. Winding resistance test 

The winding resistance test can be used to detect fraction of an ohm changes of the 

transformer winding. So, this technique requires highly sensitive equipment. Also, this test is 

an offline test. Any change in the geometry of the conductor would show up as a change in 

the winding resistance, this is the main idea in this test. For example, if the winding expands 

then the length of the winding would increase while the cross sectional area would decrease. 

This would cause an increase in the resistance of the winding. Generally, variations of more 

than 5% are considered indicative of damage. 

http://en.wikipedia.org/wiki/Fast_Fourier_transform
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2.3.2. Advanced online techniques 

2.3.2.1. Vibration method  

Transformer vibration can be considered to be repetitive movement of transformer inner 

parts that are covered by the transformer tank. This movement is done around a reference 

position. The reference position is where the transformer attains once it is out of service. 

Vibration might be interpreted by using parameters such as winding displacement, velocity 

and acceleration. Vibration testing involves the mounting of acoustic sensors on the tank 

wall of the transformer to sense the vibration of the transformer caused by the continuous 

magnetization and demagnetization of the core and windings. These acoustic signals form 

the signature for the winding. This method has the advantage of being an online method; 

however the externally mounted sensors are highly susceptible to vibration noise from the 

external environment. In addition, [21-23] have introduced an on-line method. These studies 

show that transformer tank vibration depends on voltage square and current square. 

Furthermore, studies reveal that winding vibration main harmonic component is 100 Hz 

when fundamental power frequency is 50 Hz. Therefore, transformer tank vibration has been 

recommended to be considered as an online transformer winding deformation diagnosis 

method. 

2.3.2.2. Communication method 

Communication method which is introduced in the literature [24-26] is applied based on 

scattering parameters. The magnitude and phase of scattering parameters for normal 

transformer winding are measured by several antennas as finger print. Proposed antennas 

could be placed outside or inside the transformer tank. In this method mean absolute 

magnitude distance (MAMD) and mean absolute phase distance (MAPD) are introduced as 

displacement indices. As has mentioned in [24-26], any kind of transformer winding 

deformation can cause abovementioned indices are altered and deformation detected. 

2.3.2.3. Current deformation coefficient method 

This method has been introduced by [27], and by using that a high frequency low voltage 

signal is applied to live power system line along with power frequency signal when the 

standard practices of connection are considered. The line-end and neutral-end high frequency 
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currents are continuously measured using isolated precision current probes and digital 

filtering technique [27]. Associated capacitive reactance is changed due to the transformer 

winding deformation and this change is reflected in deviations of high frequency terminal 

currents from fingerprint. When these deviations are measured, the ratio of deviations at the 

two ends is calculated. Hence, current deviation coefficient (CDC) is introduced as 

justifiable relation.  

2.3.2.4. Ultrasonic method 

Ultrasound is a sound with a frequency greater than the upper limit of human hearing.  In 

this method introduced in [28], an ultrasonic signal has been used as reference signal. The 

basis of this method concentrates on ultrasound reflection due to the non-matching 

acoustic impedance between oil and the winding. 

2.4. Artificial neural networks. 

2.4.1. Neural networks introduction. 

ANNs have been around since the late 1950's, it was not until mid-1980 that algorithms 

became sophisticated enough for general applications. 

ANNs are collections of mathematical models that emulate some of the observed 

properties of biological nervous systems and draw on the analogies of adaptive biological 

learning. The key element of the ANN paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected processing 

elements that are analogous to neurons and are tied together with weighted connections that 

are analogous to synapses. A typical neuronal model is thus comprised of weighted 

connectors, an adder and a transfer function (Figure 2.2). 
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Figure 2.2. A single mathematical neuronal model 

The basic relationship here is: 

n = wp + b    (2.1) 

a = F (wp + b)    (2.2) 

Where: 

a = network output signal 

w = weight of input signal 

p = input signal 

b = neuron specific bias 

F = transfer/activation function 

n = induced local field or activation potential 

Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons. This is true of ANNs as well. Learning typically occurs by 

example through training, or exposure to a trothed set of input/output data where the training 

algorithm iteratively adjusts the connection weights (synapses). These connection weights 

store the knowledge necessary to solve specific problems. From equations 2.1 and 2.2, it can 

be seen that a simple neuron performs the linear sum of the product of the synaptic weight 

and input with the bias, which value is then passed through an activation or transfer function 

that limits the amplitude of the output of a neuron. Activation functions can take various 

forms ranging from hard limit, through pure linear to sigmoid and the choice of which to use 

depends on the desired output from the network and the characteristics of the system being 

modelled.  
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Typical and practical networks are normally multi-input and probably multi-layered and 

in such cases, the variables in equations 2.1 and 2.2 now take a different format with w being 

the matrix of weights and a, p and b representing vectors of their respective definitions. 

1. Their building blocks are highly interconnected computational devices though the 

artificial neurons are much inferior to their biological counterparts.  

2. The function of the network is determined by the nature of connection between the 

neurons. 

ANNs are excellent at developing systems that can perform information processing 

similar to what our brain does. Some characteristics of biological networks include the 

following:  

 They are non-linear devices  

 They are highly parallel in processing, robust and fault tolerant  

 They can easily handle imprecise, fuzzy, noisy and probabilistic information  

 They can generalize from known tasks or examples. 

ANNs attempts to mimic some or all of these characteristics by using principles from the 

nervous system to solve complex problems in an efficient manner. 

There are several different types of ANN strategies used in PD recognition. They are: 

Back-propagation NN, self-organizing feature map [29], learning vector quantization 

network [30]…etc. 

2.4.2. Learn vector quantization (LVQ). 

LVQ neural networks can be applied to multi-class classification problems. So, recently, 

LVQ networks are usually the choice where neural network based classifiers are used in field 

of diagnostic procedures. Feng Yan [31] found that LVQ networks is quite effective and 

superior to BP Neural Network in fault location in distribution network. Jianye Liu, 

Yongchun Liang, and Xiaoyun Sun [32] presented LVQ to analyze the fault of the power 

transformer, and it conclude that “the LVQ network a good classifier for the fault diagnosis 

of power transformer”. 
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LVQ network has simple network structure. Figure 2.3 show LVQ neural network that 

used in this work. It is composed by three layers of neurons; a first input layer, second 

competitive layer and third linear layer. In LVQ neural network, the competitive layer learn 

to classify input vectors into target classes chosen by the user while the linear layer 

transforms the competitive layers classes into the predefined target classifications. A weight 

value connect each neurons of input layer to all the neurons in the competitive layer. A 

different group of competitive neurons are connected with each output neuron. Connection 

weights value between competitive layer and output layer is always 1. 

 

Figure 2.3. LVQ neural network structure 

 

LVQ does not need to handle input vector for normalization and orthogonal. And it only 

needs to calculate the distance between input vector and competition layer directly. 

Therefore, it is easy to realize the category of fault [7]. The LVQ neural network model is 

shown in Figure 2.4. 

 

Figure 2.4. The model of LVQ neural network 

We refer to the classes learned by the competitive layer as subclasses and the classes of 

the linear layer as target classes. Both the competitive and linear layers have one neuron per 
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(sub or target) class. Each neuron in the competitive layer is assigned to a class, with several 

neurons often assigned to the same class. Each class is then assigned to one neuron in the 

linear layer. The number of neurons in the competitive layer S1 is always larger than the 

number of neurons in the linear layer S2. In the LVQ network, the input vector P with R 

neurons of the input layer will be given in by equation 2.3. 

    𝑃 = (𝑝1, 𝑝2, 𝑝3…𝑝𝑅)     (2.3) 

Input weights vectors that make the connection between input layer and competitive layer 

are 

𝑤1 = (𝑤1
1, 𝑤2

1, 𝑤3
1 …𝑤𝑠1

1 )  𝑤i
1 = (𝑤i1

1 , 𝑤i2
1 , 𝑤i3

1 …𝑤𝑖𝑠1
1 ) (2.4) 

Where, i=1, 2 … 𝑠1 

The competitive layer input will be given in vector form by equation 2.5. 

      𝑛1 = −

[
 
 
 
‖𝑤1

1 − 𝑝‖

‖𝑤2
1 − 𝑝‖
⋮

‖𝑤𝑠1
1 − 𝑝‖]

 
 
 

     (2.5) 

Where 𝑤i
1represents the input weight matrix, i denotes the corresponded neuron. The output 

of the competitive layer is given as follows. 

𝑎1 = 𝑐𝑜𝑚𝑝𝑒𝑡(𝑛1)     (2.6) 

Therefore the neuron whose weight vector is closest to the input vector will output one, 

and the other neurons will output zero. Thus, the winning neuron indicates a subclasses, 

rather than a class as in competitive networks. There may be several different neurons 

(subclasses) that make up each class. 

The linear layer in the LVQ network is used to combine subclasses into a single class 

which is done by the weight matrix 𝑤2. The columns of 𝑤2 represent subclasses, and the 

rows represent classes.  𝑤2 has a single 1 in each column, with the other elements set to 

zero. The row in which the 1 occurs indicates which class the appropriate subclass belongs 

to, in other words, 
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𝑤ki
2 = 1 Subclass i is a part of class k. 

Weights vectors that make the connection between competitive layer and output layer are 

𝑤2 = (𝑤1
2, 𝑤2

2, 𝑤3
2 …𝑤𝑠2

2 )  𝑤j
1 = (𝑤j1

2 , 𝑤j2
2 , 𝑤j3

2 …𝑤𝑗𝑠1
2 ) (2.7) 

Where, j=1, 2 … 𝑠2 

The output of the linear layer is. 

𝑎2 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑤2𝑎1)     (2.8) 

LVQ learning in the competitive layer is based on a set of input/target pairs 

2.4.3. Probabilistic Neural Network 

Specht (1988, 1990) developed the probabilistic neural network (PNN). PNN is used to 

provide solution to pattern classification problems through an approach developed in 

statistics, called Bayesian classifiers. In Bayes theory, the relative likelihood of events as 

well as priori information to improve prediction is considered.  

PNN uses a supervised training set to develop distribution functions within a pattern 

(middle) layer. In the recall mode, the developed functions are used to determine the 

likelihood of a given pattern being a member of a class or category with the criteria solely 

based on the closeness of the input feature vector to the distribution function of a class. 

PNN has three layers. The input layer has as many elements as there are separable 

parameters needed to describe the objects to be classified. The middle layer organizes the 

training set such that each input vector is represented by an individual processing element. 

And finally, the output layer, also called the summation layer, has as many processing 

elements as there are classes to be recognized.  

PNNs are simple on design and with sufficient data are guaranteed to generalize well in 

classification tasks. Training of the PNN is much simpler than with backpropagation. 

However, the pattern layer can be quite huge if the distinction between categories is varied 

and at the same time quite similar in special areas. In addition, PNNs are slower to operate in 

the recall mode as more computations are done each time they are called.  



19 
 

CHAPTER THREE 

3. MODELING AND SIMULATION 

3.1. Introduction 

Transformer is one of the most important and costly equipment in power systems which 

converts energy from one potential side to another. Transformers represent a high capital 

investment in any substations at the same time as being a key element determining the 

loading capability of the station within the network. With appropriate maintenance, 

including insulation reconditioning at the appropriate time, the technical life of a transformer 

can be in excess of 60 years. 

Transformer windings are treated as an inductance when it is incorporated in the power 

system computations (typically when transformer is a part of a power system network). 

When the behavior of transformer winding subjected to very fast transient over-voltages 

(VFTO), which causes some mechanical deformations, is to be studied, this assumption of 

lumped inductance does not hold well. So, for power flow studies or even short circuits 

studies its complex nature is represented as an inductance. However, for the purpose of 

diagnostics, such simplification cannot be made. 

The Fast transient over-voltages (FTO) and VFTO or generally electromagnetic 

transients, are the main causes of transformer outages, have wavelengths which are 

comparable to the dimension of the winding. Hence, it is more appropriate to model the 

transformer winding as a distributed parameter transmission line for the study of very fast 

transients.  The detailed transformer transient models can be employed during the design 

stage to predetermine those over-voltages. Using these models, the proper insulation can be 

designed.  

There has been a great deal of research work done on transformer modeling [33].  Due to 

different purposes for the models, different types of transformer models have been 

constructed and used. Generally, Transformer models usually fall into one of two categories.  

1. Black Box or “Terminal Model”. 



20 
 

2. Gray Box or “Physical Model”. 

One is the Black Box or “Terminal Model”, which is necessary for the insulation 

coordination of power system and can be employed to evaluate the current and voltage wave 

shapes at the terminals of the transformer (i.e. provides the terminal characteristics of a 

transformer). The Black Box model is not necessarily related to a transformer internal 

condition and physical configuration. This type of model mainly describes the terminal 

performance and characteristics, and can be constructed by various methods (e.g., 

mathematical equations or network analysis (poles and zeros)). 

The other type of transformer model is the Gray Box or physical model. The physical 

model can either model all parts of the transformer in great detail or can be constructed 

according to gross physical components such as the winding layers. These types of models 

use network equivalent parameters (resistances, inductances and capacitances) to construct 

the model and focus on the frequency range of interest. Transformer models can be classified 

as power frequency range, medium frequency range (kHz) or high frequency range (MHz). 

The Gray Box models can be used by designers to study the resonance behavior of 

transformer winding and the distribution of electrical stresses along the transformer 

windings. .The Gray Box models can be categorized as Lumped models and Transmission 

line models. 

This thesis is studying what influence the transformer internal changes have on the (∆V -

Iin ) locus signature changes. In the case of the monitoring, it is desirable to see small 

changes in the transformer so that any movement can be detected as early as possible. To 

model this situation, a terminal model is not suitable as it is mainly used for system 

performance studies rather than being focused on transformer internal condition changes. A 

detailed model is preferred, but detailed design information for a transformer is very difficult 

to obtain, as it needs detailed proprietary manufacturing design data that manufacturers do 

not want to divulge. A reduced model is more suitable for the work in this thesis. 

3.2. Adopted diagnostic technique 

In the present work, we use the novel online technique for diagnosis of power 

transformer faults by constructing the voltage - current (ΔV- Iin) locus diagram to provide a 
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current state of the transformer, which have been previously detected. This technique relies 

on constructing locus diagram between Iin (X-axis) and ΔV (Y-axis) for the transformer 

under test. Basically, this relationship between ∆V and Iin represents an Ellipse [6]. The 

relationship of this locus can be derived using the 1- 𝝋 transformer equivalent circuit and its 

vector diagram shown in Figure 3.1. 

 

 

Figure.3.1. (a) Per-unit equivalent circuit of the transformer. (b) Vector diagram. 

Let: 

V2 is a reference, 𝛿 is the power angle, and it is the phase shift between V1 and V2, which 

is normally small value, γ is the load impedance phase angle, φ represent the phase shift 

between i2 and v2, φ = γ. The phase shift between i1 and v2 is φ because the phase shift 

between i1 and i2 is approximately zero. 

So, 

𝑣1(𝑡) = 𝑉𝑚1sin(𝜔𝑡 + 𝛿)  

𝑣2(𝑡) = 𝑉𝑚2sin(𝜔𝑡) 
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𝑖1(𝑡) = 𝐼𝑚1sin(𝜔𝑡 − 𝜑) 

 

For simplicity, assume that 𝑉𝑚1 = 𝑉𝑚2 = 𝑉𝑚. 

Since (x − axis) → 𝐼𝑖𝑛(t) and (y − axis) → ∆𝑉 = 𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡 

                         ∴ x =  i1(t) = Im1sin(ωt − φ)                        (3.1) 

 

∴ 𝑦 = 𝑣1(𝑡) − 𝑣2(𝑡)= 𝑉𝑚{sin(𝜔𝑡 + 𝛿) − sin(𝜔𝑡)} 

                         ∴ y = 2Vm cos(ωt +
δ

2
). cos δ                     (3.2) 

The Cartesian formula relating x and y can be obtained from parametric (3.1) and (3.2) 

by eliminating ωt as following. From equations (3.1) and (3.2), we get: 

𝜔𝑡 = {sin−1(
x

Im1
)} + 𝜑 = {cos−1(

y

2Vm cos δ
)} −

𝛿

2
 

∴ {cos−1(
y

2Vm cos δ
)} − {sin−1(

x

Im1
)} = (𝜑 +

𝛿

2
) 

∴ sin {cos−1(
y

2Vm cos δ
) − sin−1(

x

Im1
)} = sin (𝜑 +

𝛿

2
) 

∴ (
√(2Vm cos δ)2 − 𝑦2√Im1

2 − 𝑥2 − 𝑥𝑦

2VmIm1 cos δ
) = sin (𝜑 +

𝛿

2
) 

∴ √(2Vm cos δ)2 − 𝑦2√Im1
2 − 𝑥2 − 𝑥𝑦 = 2VmIm1 cos δ  sin (𝜑 +

𝛿

2
) 
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∴ √(2Vm cos δ)2 − 𝑦2√Im1
2 − 𝑥2 = 2VmIm1 cos δ  sin (𝜑 +

𝛿

2
) + 𝑥𝑦 

Squaring the both sides, we get: 

∴ {(2Vm cos δ)2 − 𝑦2}{Im1
2 − 𝑥2} = {2VmIm1 cos δ sin (𝜑 +

𝛿

2
) + 𝑥𝑦}

2

 

 

 

 ∴ (2Vm cos δ)2Im1
2 − (2Vm cos δ)2𝑥2 − Im1

2𝑦2 + 𝑥2𝑦2 =

{2VmIm1 cos δ sin (𝜑 +
𝛿

2
)}

2
+ {4VmIm1 cos δ sin (𝜑 +

𝛿

2
) 𝑥𝑦} +

𝑥2𝑦2 

∴ {2Vm cos δ}2x2 + {4VmIm1 cos δ sin (φ +
δ

2
)} xy + Im1

2y2 +

{2VmIm1 cos δ sin (φ +
δ

2
)}

2
− (2Vm cos δ Im1)

2 = 0              (3.3) 

Equation (3.3) can be written as: 

                                                Ax2 + Bxy + Cy2 + D = 0             (3.4) 

Where: 

A={2Vm cos δ}2 

B=4VmIm1 cos δ sin (φ +
δ

2
) 

C=Im1
2 
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D={2VmIm1 cos δ sin (φ +
δ

2
)}

2
− (2Vm cos δ Im1)

2 

The quadratic (3.18) represents by: 

1. An ellipse if B2 − 4AC < 0 

2. A parabola if B2 − 4AC = 0 

3. A hyperbola if B2 − 4AC > 0 

 

From equation (3.3), we get: 

B2 − 4AC = 16Vm
2Im1

2(cos δ)2 (sin (φ +
δ

2
))

2

− 16Vm
2Im1

2(cos δ)2 

∴ B2 − 4AC = 16Vm
2Im1

2(cos δ)2 {(sin (φ +
δ

2
))

2

− 1} 

∴ B2 − 4AC = 16Vm
2Im1

2(cos δ)2 {−(cos (φ +
δ

2
))

2

} 

                 ∴ B2 − 4AC = −16Vm
2Im1

2(cos δ)2 (cos (φ +
δ

2
))

2

              (3.5) 
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Figure 3.2 Graphical illustration of V-I relationship 

Equation 3.5 is always a negative term regardless of the values of Im1, Vm, δ, and, φ. 

Hence, the Cartesian relationship between ΔV and Iin represents an Ellipse. The graphical 

illustration of the proposed technique is shown in Figure 3.2, where the instantaneous values 

of ΔV and Iin are measured at a particular time to calculate the corresponding point on the 

(ΔV- Iin) locus.  The graph in Figure 3.2 is drawn with some assumptions such as (0.8 

lagging power factor, the power angle δ can be neglected because the phase shift between V1 

and V2 is normally small, and the angle Φ between i1 and V2 is almost equal to the load 

impedance phase angle because the phase shift between i1 and i2 is negligible).  

3.3. Undertaken transformer model 

The purpose of the transformer modeling for this study is to analyze the principal 

changes in (∆V -Iin ) locus diagram, which are caused by transformer internal factors. The 

undertaken transformer for this study is 3 MVA, 33/11 KV, three phase, ONAN, Dy11 

power transformer. The adopted model [34] separates the winding into identical sections that 

simulate individual winding discs. The number of sections is a compromise between 
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closeness to the real transformer and limitations of capability of the program to perform the 

calculations. An R, L, C equivalent network circuit simulates the transformer winding. Each 

section of the circuit consists of a ground or shunt capacitance (Cg), series capacitance (Cs), 

series inductance (L) and resistance (R). The number of sections used in this model is 88, 

which simulate the number of transformer discs. The series inductance represents the 

winding lead inductance, the parallel ground capacitance represents the capacitance between 

the discs and ground, the series capacitance represents the turn-to-turn or disc-to-disc 

capacitance and the series resistance represents the winding resistance. Figure 3.3 shows the 

basic model. 

 

Figure 3.3 Equivalent circuit of a single transformer winding. 

The transformer model equivalent circuit shown in Figure 3.3 has been used in this work; 

the delta-connected disc winding of the HV sides of the transformer has been represented by 

a network with lumped parameters. The model consists of sequentially arranged 88 discs 

from line end to earth end of high voltage winding. The model parameters used were based 

on those used in reference [1]. They were as follows: 

R - Resistance per disc   : 0.151 Ω 

L - Total inductance per disc  : 0.324 mH 

Cs - Series capacitance per disc  : 1.04 nF 

Csh - Ground capacitance per disc  : 22.13 pF 

S - Total number of sections  : 88 

These parameters have been calculated from the practical design data of a 3 MVA, 33/11 

kV, three-phase, 50 Hz, ONAN, Dy11 power transformer [34].  
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3.4. Simulation structure 

An integrated model utilizing PSIM Software and MATLAB program was used for 

simulate the transformer model shown in Figure 3.3. The entire simulation process involved 

three main stages sequentially run as following: 

 Transformer model construction. 

 Running Simulations. 

 Data file generation. 

Figure 3.4 shows the detailed steps for the developed simulation process. The program 

requires the user to construct the transformer model and input the following data: 

 Amplitude of signal. 

 Inter turn resistance. 

 Inter turn inductance. 

 Inter turn capacitance. 

 Capacitance to ground. 

 Frequency. 

 The load impedance. 

 Recorded time. 

 Time step. 

In the proposed model, a 50-Hz ac voltage source of low amplitude is utilized and the 

instantaneous values of ΔV, Iin are recorded at a particular time 0.02 sec. and time step of 10 

µsec. The (ΔV- Iin) locus diagram of the transformer model under test can be constructed for 

healthy condition at load impedance (8+j6) Ω. The locus diagram analysis and 

discrimination will be conducted using MATLAB program and not in the PSIM program. 

So, we need two sets of data so that we can construct a transformer locus diagram as (ΔV - 

time) and (Iin - time).   
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Figure 3.4 Algorithm for developed simulation 

 

3.5. Simulation result 

3.5.1. Healthy condition 

In this study, the (ΔV- Iin) locus diagram of the transformer model under test can be 

constructed for healthy condition.  This locus diagram of a healthy transformer can be shown 

in Figure 3.5 and is considered as a reference or fingerprint of this transformer. 

Read input data “*.txt” files 

Construct the (∆V -Iin) locus 

diagram 

Start MATLAB program 

End 

Start PSIM program 

Constructing the circuit 

of the transformer under 

test 

Set all the settings 

needed by the PSIM 

program 

Run PSIM program 

Plot (∆V - t) and (Iin- t) 

curves` 
 

Extract data from (∆V - t) and 

(Iin- t) curves  
 

Save the extracted data with 

extension “*.txt” 
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Figure 3.5. Locus diagram of 3MVA, 33/11KV transformer power in healthy condition 

3.5.2. Fault conditions 

During impulse testing of power transformer, insulation failure/ faults may occur 

anywhere along the entire length of the transformer winding. The important winding faults, 

tested via (ΔV- Iin) locus analysis, are as follows: 

 Partial Discharge   (PDF). 

 Inter disk fault  (IDF). 

 Series short circuit  (SEF). 

 Shunt short circuit  (SHF). 

 Axial Displacement  (ADF). 

These faults have been simulated and each faulty locus is compared with the healthy 

locus (fingerprint) of the proposed transformer. 

3.5.2.1. PDF within transformer winding 

Partial discharges can cause incipient insulation faults, if allowed to develop over time, 

may lead the insulation to a total breakdown and result in catastrophic failure of power 

transformers. As an important entity of power plant, loss of a power transformer in operation 
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can lead to economic penalties due to loss of power supply and the capital expenditure for 

replacement. PD monitoring therefore forms an important part of online condition 

monitoring and is used as a diagnostic tool for quality of insulation. If during the monitoring 

process an excessive amount of discharge activity has been detected, the location of 

discharge needs to be sought in aid of making the decision of either taking the transformer 

out of service for further investigation or keeping it in operation with increased monitoring 

[35]. 

In this work the (ΔV- Iin) locus is used for monitoring process of PD. The PD can be 

simulated by injecting current pulse of shape equivalent to practical PD pulses into probable 

positions of the windings. 

The PD pulse can be approached as different equivalent pulses; such as Gaussian pulse 

[36] and double exponential [37]. The Gaussian pulse is defined as the following equation: 

                     i(t) = Imax(e
−t2

2σ2)      (3.6) 

Where, Imax  is the magnitude of the peak current in (amperes), t is the time in (seconds), 

and σ Denotes the pulse width which is chosen to fit the pulse shape with measured pulses 

and measured at half of the maximum value.  

While the double exponential pulse equation can be written as: 

   i(t) = Imax[(1 + αt)e−αt − (1 + βt)e−βt]  (3.7) 

Where, Imax  is the magnitude of the peak current in (amperes), t is the time in (seconds), 

and α, β are the time coefficients (reciprocal seconds). 

The graphs of Gaussian and double exponential pulses are shown in Figures 3.6 and 3.7 

using equations 3.6 and 3.7 respectively. 
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Figure 3.6. PD pulse waveforms using Gaussian pulses of similar current magnitude value 

but different pulse width 

 

Figure 3.7. PD pulse waveforms using the double exponential pulse equation where  

(α = 108 𝑠𝑒𝑐−1, β = 8 ∗ 107𝑠𝑒𝑐−1) 

In the proposed model under study, The PD occurrence can be simulated as a current 

pulse injected into the network nodes 1, 2, 3… N+1 as shown in Figure 3.3.  
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The PD current pulse is simulated by a Gaussian pulse of 1V peak, pulse width 5 µs as 

shown in Figure 3.6. Figure 3.8 shows the (∆v -Iin) locus for injecting PD pulse for line-end 

numbers 44 and 48 compared to the healthy locus. 

 

Figure 3.8. The (∆V -Iin) locus for injecting PD pulse at nodes 44 and 48 compared to the 

healthy locus. 

Figure 3.8 shows that PDF will increase the area of the faulty locus compared with the 

healthy one. Increasing the number of faulty disks will further decrease the locus area and 

the major axis is rotating in anti-clockwise direction until aligning with the healthy major 

axis. 

3.5.2.2. IDF within transformer winding 

One of the most common faults of power transformers is the inter disc fault or (Turn to 

turn short circuit), as in practice, around 80% of transformer breakdowns are attributed to its 

occurrence [38]. This fault can be simulated by short circuiting series resistors. In the 

proposed model under study, during IDF simulation, the series resistors of different number 

of disks have been short circuited to find their effect on the (ΔV- Iin) locus. Figure 3.9 shows 

the locus for 20 and 60 faulty disks compared to the locus in healthy condition. As the 
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number of faulty disks increases, the locus rotates clockwise and its area increases as 

illustrated in Figure 3.9. 

 

Figure 3.9 Effect of IDF on the (ΔV- Iin) locus   

3.5.2.3. SEF within transformer winding 

Series fault implies insulation failure between the discs. In the proposed model, during 

SEF simulation, the faulted disc has been short-circuited to find its effect on the (ΔV- Iin) 

locus as shown in Figure 3.10. Figure 3.11 shows the locus for 20 and 80 faulty disks 

compared to the locus in healthy condition. 

 

Figure 3.10 Series fault at disc one 

It can be observed from Figure 3.11 that as the number of faulty disks increase, the locus 

rotates in the clockwise direction and its entire area decreases. 
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Figure 3.11 Effect of SEF on the (ΔV- Iin) locus 

3.5.2.4. SHF within transformer winding 

Insulation damage, ground shield damage, abrasion, high moisture content in the 

winding, hotspot and aging insulation, (which reduces its dielectric strength, therefore 

reducing the resistance to ground) are the main reasons for leakage fault or disc to ground 

fault  inside a transformer [39]. 

So, shunt fault represents insulation failure between the winding and earthed 

components, such as tank, core, etc. In the proposed model, this type of fault can be 

simulated by connected the faulty disc to ground as shown in Figure 3.12. Figure 3.13 shows 

the locus for 20 and 60 faulty disks compared to the locus in healthy condition. 

It can be observed from Figure 3.13 that as the number of faulty disks increase, the locus 

rotates in the clockwise direction and its entire area increases. 
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Figure 3.12 Shunt fault at disk one 

 

Figure 3.13 Effect of SHF on the (ΔV- Iin) locus 

3.5.2.5. ADF within transformer winding 

In the case of short circuit currents, ADF occurs due to the magnetic imbalance between 

low and high voltage windings. The axial displacement between the magnetic centers of the 

windings will result in unbalanced magnetic force components in each half of the winding 

which leads to a change in its relative position. Leaving this fault without monitoring can 

cause winding collapse or failure of the end-supporting structure due to its progressive 

nature [6]. 

Generally, this type of fault can be simulated by changing the mutual and self-

inductances of particular disks. The change in capacitance can be neglected [38]. 
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In the proposed model under study, The ADF is simulated by decrease the inductance by 

30% of its value. The effect of axial displacement of 60 and 88 disks on the (ΔV- Iin) locus 

compared to the locus in healthy condition is illustrated in Figure 3.14. Axial displacement 

will decrease the area of the faulty locus compared with the healthy one as Increasing the 

number of faulty disks will further decrease the locus area but with a very slight decrease in 

the locus major axis and thus can be neglected. So, approximately no rotation in the locus 

major axis. 

 

Figure 3.14 Effect of ADF on the (ΔV- Iin) locus 
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CHAPTER FOUR  

4. FAULT DISCRIMINATION 

4.1. Visual discrimination 

Discrimination between different types of faults can be visibly observed from the (∆V -

Iin) locus area and major axis rotation. To show this, different types of faults discussed 

before are simulated on 40 disks of the transformer model, and the (∆V -Iin) loci for all of 

them with respect to the healthy locus are compared as shown in Figure 4.1. 

 

Figure 4.1 Comparison of the effect of each fault on the (ΔV- Iin) locus (40 disks) 

Figure 4.1 shows that the locus area is increasing in all faulty cases with respect to the 

area of the healthy locus except in cases of axial displacement and series short circuit where 

the area is decreased. The locus major axis in case of axial displacement is aligning with the 

healthy major axis but in other cases the major axis will rotate in the clockwise or anti 

clockwise directions (according to the type of the applied fault) in the case of the number of 

faulty disks increases. 
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Table 4.1 summarizes the effect of studied faults on the locus area and locus major axis 

rotation in relation to the healthy locus for visual discrimination. 

Table 4.1 Effect of faults on locus area and axis rotation 

Simulation 

No. 
Fault type 

indication 

Area Rotation 

Simulation 1 PDF 
Significant 

increase 
Very large 

Simulation 2 IDF increase large 

Simulation 3 SEF decrease Large 

Simulation 4 SHF increase large 

Simulation 5 ADF decrease none 

4.2. Fault discrimination using traditional techniques 

This section reviews two methods used for fault discrimination within transformer 

windings based on image processing. These methods tested by applying the most types of 

fault winging that produced within transformer winding such as turn to turn short circuit, 

axial displacement, disk to ground fault and buckling stress of inner winding. 

4.2.1. Image pixels discrimination 

This method has been introduced by [38], and by using that a rough approximation of the 

contour length can be measured by counting the number of pixels along the contour. A 

MATLAB code has been introduced to measure the number of pixels for healthy and faulty 

loci [40].  Same axes scales were used in plotting all loci. Results in [38] shows that the turn 

to turn short circuit fault has significant increase in number of pixels as the number of faulty 

disks increases compared to the healthy case. 

4.2.2. Mean square error 

This method has concentrated on determining the root mean square (RMS) error of the 

locus diagram. A MATLAB code has been developed to measure the RMS error of the faulty 

loci compared to the healthy locus. The images are converted into a two dimensional array 
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with values representing pixel colors. The faulty image array and healthy image array are 

then used to calculate the RMS error.  

Results in [38] shows that the RMS error for all types of faults increases as the number of 

faulty disks increases. Results also shows that the turn to turn short circuit has the largest 

RMS error while the disk to ground fault has the minimum RMS error. 

The main problem in these two techniques that the image may contain noise in the case 

of fault occurrence. Thus, this work undertakes feature extraction from the faulty loci 

compared to the healthy locus to improve the discrimination process and this is described in 

the following section. 

4.3. Feature extraction 

After simulation of insulation failures; as has been shown in the mathematical proof and 

simulation results before, the (∆V - Iin) locus is always representing an ellipse. The next goal 

of the present thesis is identification and location of fault characteristics, i.e. type and 

location of failures. So, some unique features of the ellipse can be used to compare different 

loci and to identify the type of fault within the power transformer. Some of significant 

features are extracted from each of 440 loci. These features include ellipse centroid, the 

major axis length (a), the minor axis length (b), the angle between the major axis, and the 

horizontal axis (θ) as shown in Figure 4.2, and hence calculate ellipse focus (f), eccentricity 

(e), flattering (g), and area (𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒), and circumference (𝐶𝒆𝒍𝒍𝒊𝒑𝒔𝒆).  

Basically, the ellipse which depicts in Figure 4.3 is constructed from two waves (Ex, Z) 

and (Ey, Z) illustrated in Figure 4.2. 

 

Figure 4.2 Uniform plan wave. 
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Figure 4.3 General ellipse 

Two options are provided for the calculating of the ellipse axes lengths A’, and B’. The 

first is presented by [41] and it is present a MATLAB function to calculate the ellipse axes 

A’, and B’ by using the magnitude of the two waves (A, B) and the phase shift between them 

(φ). This function carried out by using the following equations: 

A = √
1

2
(a2 + b2) +

s

2
√(a2 − b2)2 + 4a2b2 cos2 φ   (4.1) 

B = √
1

2
(a2 + b2) −

s

2
√(a2 − b2)2 + 4a2b2 cos2 φ    (4.2) 

Where s=sign (a-b). 

The second option is development a MATLAB code to also calculate the ellipse axes a, 

and b by using the ellipse (x-y) data. The two options have been tested on a different 

numbers of ellipse and table 4.2 gives the output ellipse axes.as follows: 

 

Ellipse 1:  𝐸𝑥(𝑡) = 4 cos(𝜔𝑡 +π), 𝐸𝑦(𝑡) = 3 cos(𝜔𝑡) 

Ellipse 2:  𝐸𝑥(𝑡) = 3 cos(𝜔𝑡 +
π

3
), 𝐸𝑦(𝑡) = 3 cos(𝜔𝑡) 

Ellipse 3:  𝐸𝑥(𝑡) = 4 cos(𝜔𝑡), 𝐸𝑦(𝑡) = 3 cos(𝜔𝑡 −
π

4
) 

Ellipse 4:  𝐸𝑥(𝑡) = 4 cos(𝜔𝑡 +
π

4
), 𝐸𝑦(𝑡) = 3 cos(𝜔𝑡 −

π

2
) 
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Table 4.2 Ellipse axes output 

Ellipse no. 
Method no. 1 Method no. 2 

A B A B 

1 5.0000 0 5 0.001018366018475 

2 3.6742 2.1213 3.674234614128865 2.121320426347296 

3 4.6560 1.8224 4.619553796225180 1.913303292001840 

4 4.6560 1.8224 4.619350467616694 1.913794857248074 

In this thesis. It was found that the second option is sufficiently suitable with the type of 

data of ellipses. The other ellipse features as mentioned before can be calculated from the 

following relations [42]: 

               θ =
1

2
atan {

2AB

A2−B2 cosφ}         (4.3) 

The first and second ellipse eccentricity e, e’ and its relation between them are given by 

equations 4.4, 4.5, and 4.6 respectively. 

                     e =
f

a
=

√A2−B2

A
      (4.4) 

                    e′ =
f

b
=

√A2−B2

B
                   (4.5) 

                            
e

e′ =
B

A
       (4.6) 

The ellipse focus (f) and flattering (g) can be calculated from equations 4.7, and 4.8. While 

the ellipse area and circumference are given by equations 4.9, and 4.10. 

 

                       f = √A2 − B2       (4.7) 

                         g = 1 −
B

A
                    (4.8) 
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                      Aellipse = πAB     (4.9) 

            Cellipse ≈ π{3(A + B) − √10AB + 3(A2 + B2)}      (4.10) 

Moreover, to get better fault identification accuracy, three features are also extracted using 

statistical analysis of the load voltage. These features are given by: 

               𝑉𝐿av
=

1

2𝜋
∫ 𝑉m sin(𝑤𝑡)  𝑑𝑤𝑡

2𝜋

0
        (4.11) 

𝑉𝐿rms
= √

1

2𝜋
∫ (𝑉m sin(𝑤𝑡))2 𝑑𝑤𝑡

2𝜋

0
   (4.12) 

𝑉𝐿abs
= |

1

2𝜋
∫ 𝑉m sin(𝑤𝑡)  𝑑𝑤𝑡

2𝜋

0
|   (4.13) 

A MATLAB code is developed to extract and calculate all of these features. Table 4.3 

represents general ellipse features of healthy condition for the transformer under test. 

Table 4.3: General ellipse features for healthy condition. 

Ellipse features 

A B 𝛉 f e 𝐞′ 
𝐞

𝐞′
 g 𝑨𝒆𝒍𝒍𝒊𝒑𝒔𝒆 𝑪𝒆𝒍𝒍𝒊𝒑𝒔𝒆 

1
1
.7

9
8
9
9
 

3
.6

2
3
1
8
7
 

8
6
.4

2
6
2
5
 

1
1
.2

2
8
9
3
 

0
.9

5
1
6
8
5
 

3
.0

9
9
1
8
5
 

0
.3

0
7
0
7
6
 

0
.6

9
2
9
2
4
 

1
3
4
.3

0
3
 

5
1
.9

1
6
3
3
 

 

4.4. Computational discrimination 

Locus area and locus angle of rotation can be measured by equations 4.9 and 4.3 

respectively. A MATLAB code is developed to measure the locus area and the angle of 

rotation of the faulty loci compared to the healthy locus. Figures 4.4 and 4.5 shows the effect 

of faults on locus area and locus angle of rotation.  
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Figure 4.4 Effect of faults on locus area 

 

Figure 4.5 Effect of faults on locus angle of rotation 

Table 4.4 shows the difference in locus area (𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒) and the locus major axis rotation 

(θ) for different types of faults for the whole winding of the transformer under test with 

respect to the healthy locus for computational discrimination. Unlike the series fault and 

axial displacement fault, the locus area for the inter disk fault and shunt fault increase as the 
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number of faulty disks increases while the partial discharge fault has a significant increase of 

locus area as the number of faulty disks increases and this can be shown in Figure 4.4 and 

table 4.4. Also as can be shown in Figure 4.4 and table 4.4, the locus angle of rotation for the 

axial displacement fault remains constant as the number of faulty disks increases. While in 

the case of partial discharge fault, the locus angle of rotation increase so much as the number 

of faulty disks increases. In the case of the inter turn fault occurrence, the locus angle of 

rotation increase as the number of faulty disks increases. And this is coherent with the locus 

displayed in section 4.1. 

Table 4.4 Effect of different faults on locus area and axis rotation 

Faulty 

disc  

Axial 

displacement 

Inter turn Partial discharge Series fault Shunt fault 

𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝛉 𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝛉 𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝛉 𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝛉 𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝛉 

4 131.5466 86.41504 134.1752 86.31839 1530.998 28.66675 129.3579 86.25782 351.4018 86.26255 

8 130.139 86.39844 135.3264 86.19759 566.8361 51.90776 124.2314 86.07269 351.5562 86.07625 

12 128.7262 86.3819 136.524 86.07033 437.7482 63.48843 118.9168 85.86827 351.7357 85.87043 

16 127.4266 86.36678 137.773 85.93623 397.1408 69.9069 113.4079 85.64136 351.9459 85.64187 

20 124.7598 86.35694 138.0936 85.80478 379.3423 73.89136 108.6955 85.37921 352.1942 85.38659 

24 123.3313 86.34053 139.5141 85.65673 369.9902 76.58161 102.7293 85.09404 352.4905 85.09961 

28 121.8977 86.32419 140.123 85.5124 364.4769 78.51231 96.55348 84.77131 352.8481 84.77467 

32 120.4589 86.30794 140.9122 85.36192 360.9564 79.9623 90.16724 84.40308 353.285 84.40372 

36 119.0149 86.29176 141.8893 85.20539 358.5723 81.0899 84.33919 83.96753 353.8266 83.97629 

40 116.3145 86.28197 143.062 85.04302 356.8837 81.99124 77.48012 83.47298 354.5091 83.47848 

44 114.8596 86.26592 144.4378 84.87522 355.6447 82.72787 70.42852 82.89013 355.3861 82.89143 

48 113.3995 86.24996 145.1795 84.70262 354.7074 83.34096 63.77555 82.17827 356.5392 82.18895 

52 111.9343 86.23411 147.2846 84.54534 353.9813 83.85907 56.34134 81.32846 358.0976 81.33359 

56 110.464 86.21837 148.8905 84.38902 353.4094 84.30264 49.24094 80.25398 360.2764 80.26988 

60 108.9886 86.20274 150.8593 84.23591 352.9485 84.68661 41.60863 78.90438 363.4543 78.91223 

64 106.248 86.19314 153.2117 84.08884 352.5737 85.02222 34.33012 77.1016 368.3506 77.12168 

68 104.7615 86.17769 155.3069 83.9513 352.2634 85.31803 26.89909 74.65107 376.471 74.65791 

72 103.2699 86.16236 159.5512 83.85686 352.0032 85.58073 20.02041 71.05106 391.4197 71.07068 

76 101.7732 86.14718 162.2543 83.7222 351.7835 85.81557 13.70214 65.39216 423.7163 65.42706 

80 100.2715 86.13213 166.9466 83.67567 351.2628 86.01913 8.345536 55.55381 515.9915 55.5539 

84 97.49592 86.12277 170.7752 83.59042 351.4365 86.21766 4.675599 36.08834 1014.27 36.09104 

88 95.98299 86.10795 309.0184 86.55706 351.2997 86.39108 0.006661 5.73E-05 695070.8 5.73E-05 
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CHAPTER FIVE 

5. ARTIFICIAL INTELLIGENCE BASED FAULT 

IDENTIFICATION 

Fault identification and location according to FRA can be performed by experienced 

engineers. However, the problem is the relations and patterns based FRA, although present, 

are too complex to humanly discern so that a rule base cannot be built manually. As so far, 

there is no standard code for FRA interpretation worldwide. To solve this problem, various 

artificial intelligence techniques have been proposed in the literature. The techniques include 

expert systems, back propagation artificial neural network (BPANN), radius function 

network (RBF), propagations neural network (PNN), self-organizing map (SOM) network, 

and learn vector quantization (LVQ) algorithm [1-6].  

Healthy locus 
 

 

 

  

 

 

         Faulty locus 

 

 

 

 

 

Figure 5.1. Block diagram representation of fault identification and localization 

scheme 
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In this thesis, the problem is to assign “unknown” fault patterns to known there 

classifications and locations. In this approach the identification scheme, as shown in Figure 

5.1, will be developed and employed to perform the detection and location tasks of the 

diagnostic system using two different structures of intelligent techniques which can be 

summarized as follows: 

5.1. Conventional fault classification technique (if-condition based image 

comparator). 

Any mechanical fault within transformer winding will alter the locus in a unique way 

and, hence, fault detection as well as fault type can be identified. A new classification 

technique based on measuring and comparing some features of the loci to identify the 

possible fault type is developed. These features include locus area, and the locus angle of 

rotation. 

As mentioned before, the used FRA technique does not call for any new hardware since it 

uses the existing metering devices attached with the power transformer and can be 

implemented online as it is performed at the power frequency. The proposed locus can be 

plotted every cycle (20 ms based on a 50-Hz network). And compared with the healthy locus 

using the developed image-processing code to immediately identify any changes, it generates 

an early warning signal.  

To identify the type of fault based on locus area, angle of rotation, the proposed model is 

divided into twenty two sections, viz. S1, S2… S22. Each fault has been simulated on a 

different number of discs starting from one section to 22 sections, and these parameters are 

calculated for each fault. Each section consists of sequentially arranged 4 disks and covers 

approximately 4.5 % of winding length, i.e., the developed algorithm had localized and 

identified different five types of insulation failures within ±4.5 % of winding length. This ± 

4.5 % of the localization length has been obtained by trial and error method. It was observed 

that, higher value of fault identification accuracy may be obtained with minimum number of 

winding section, like, three sections and each covers 33% of winding length [3]. 

Based on the range of the percentage differences of these parameters for each fault, the 

MATLAB code is developed to identify and locate fault within the transformer windings. 
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The logic flow diagram of fault identification using their extracted features is shown in 

Figure 5.2.  
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Figure 5.2. Logic flow diagram for identification of fault characteristics 
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It may be observed that the algorithm work in two levels. In the first level of classifier, 

the insulation failure is identified as (SEF) or (IDF) or (ADF) or (PDF) or (SHF). Then, the 

location of insulation failure within 22 sections of the winding is predicted in the level 2 

classifier as S1 or S 2 or S3... or S22. 

Usage of intelligence techniques is the challenge of this trend to get more accuracy for 

fault identification. The next section discusses ANNs, the tool that is being explored to 

develop the advanced diagnostic framework for frequency response fault diagnoses (FRFD). 

5.2. Results and discussion 

The preconditioning of the input data is the important facet of classification based neural 

network. The features that has been extracted from the frequency response of a transformer 

is essentially a series of values corresponding to the state of the winding. As mentioned 

before, the used FRA technique relies on recording the (ΔV- Iin) diagram by using the 

metering devices that already attached to the transformer. Thus, this technique is conducts on 

line at the nominal power frequency. The locus diagram can be recorded every 20 ms 

(cycle). Any type of fault produced inside the transformer winding will affect the locus, 

hence, the new locus can be used to identify the type of fault. A new LVQ classification 

technique based on identify the extracted features from the faulty loci to get the type of fault 

is introduced. The extracted features from ellipse general proportion of various faulted 

conditions forms thirteen-dimensional data matrix Xm×n where m is the fault cases and n is 

the features of each case of fault. These features contain the fault characteristics. In this 

work, m is 440 case corresponding to five different abnormal conditions at 88 different 

location within transformer winding. So, the data matrix that used for the identification 

contains 440 fault classes (rows) and 13 features (columns). The LVQ algorithm is 

performed to find classes. The fault identification results based on LVQ show that this 

number of features are sufficient to get a reasonably good accuracy in the identification task.  

According to the transformer model under study, an 88 different locations apt to five 

types of fault conditions along the transformer winding. So, we have five classes. To show 

this classes, each two features are plotted together for all five classes. Figure 5-3 to 5-14 

depicts the first feature (ellipse area) against the residual features. 
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Figure 5-3 the five classes according to two features (area and theta) 

 

 

Figure 5-4 the five classes according to two features (area and circumference) 
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Figure 5-5 the five classes according to two features (area and semi major axis length) 

 

 

Figure 5-6 the five classes according to two features (area and semi minor axis length) 
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Figure 5-7 the five classes according to two features (area and focus) 

 

 

Figure 5-8 the five classes according to two features (area and first eccentricity) 
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Figure 5-9 the five classes according to two features (area and second eccentricity) 

 

 

Figure 5-10 the five classes according to two features (area and ratio between eccentricities) 
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Figure 5-11 the five classes according to two features (area and flattering) 

 

 

Figure 5-12 the five classes according to two features (area and average value of load 

voltage) 
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Figure 5-13 the five classes according to two features (area and root mean square value of 

load voltage) 

 

 

Figure 5-14 the five classes according to two features (area and average of the absolute value 

of load voltage) 

As stated before, the data matrix that used for the identification task is 440 raw × 13 

columns. In this work, 50% of the data 220 × 13 are used for train the LVQ algorithm and 
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remaining are used for validate and test the algorithm share equally. As shown in Figure 5.3 

to 5.14, it is clear that the similarity between the PDF and SHF with the IDF features. Thus, 

the classification algorithm should be worked in four levels due to this similarity. Figure 

5.15 show the logic flow chart that describe the fault classification. 

 

Figure 5.15. Fault identification flow chart 
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The first level identifies the type of insulation failure, viz. ‘series fault’ (SEF) or ‘axial 

displacement fault’ (ADF) or any type of ‘partial discharge’ (PDF),‘shunt short circuit’ 

(SHF) and ‘inter disk fault’ (IDF). The first level output is “1” for SEF, “2” for IDF or PDF 

or SHF, and “3” for ADF. Figure 5.16 showing the errors in the first network, illustrates that 

the network was able to achieve near perfect classification of the validation data, with the 

sum squared error of the output data being in the order of 0.0808 at time 1 sec. and 29 min. 

 

Figure 5.16: Errors in layer one classification of validation data 

All training values of features for SEF, IDF, and ADF can be used directly as an inputs to 

the first classifier network. So, in total the data set matrix that used for fault identification 

based on learn vector quantization LVQ has form 44×3= 132 case (row) and 13 features 

(column). If the output of the first level is “2”, this means that the fault type may be IDF or 

PDF or SHF. And that chivied by the second level of classification. In the second level, the 

network identifies the type of insulation failure, viz. ‘inter disk fault’ (IDF) or any type of 

‘partial discharge’ (PDF), and ‘shunt short circuit’ (SHF). The second level output is “1” for 

IDF and “2” for PDF or SHF.  In the second network the performance goal met after only 

one of 100 epochs and this takes one sec. so the overall time of the first and second network 

that able to achieve near perfect classification of the validation data is 1 min and 30 sec. the 
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features that used as inputs to the second network are all features values of IDF and PDF. 

This values forms 44×2= 88 case (row) and 13 features. If the output of the second network 

is “2”, this means that the type of fault may be PDF or SHF. The fault can be identified 

either as (PDF) or (SHF) by the third level. The output of the third network is “1” for the 

PDF type and “2” for the SHF type. In this level of classifier we use only features number 

11, 12 and 13 of PDF and SHF as an input to train this network. This values forms 44×2= 88 

case (row) and 3 features. The minor similarity between SEF and IDF will effect on the 

accuracy if we use only three level. Thus, forth level is used to increase the whole accuracy. 

In The fourth level, we use the probabilistic neural network. In this level we use only SESC 

and ADF features as an input to train this network. With these classifier levels, the ANN 

algorithm successfully for identify the insulation winding failure under any type of the 

proposed fault condition. 

 As mentioned before, for insulation failure identification, thirteen significant features are 

extracted from each of 440 locus. Among that, 50% of the data are used as a training 

samples. While the remaining 50% of the data samples are used to validate and test the 

identification accuracy of LVQ algorithm. This algorithm has successfully identified 432 

fault loci from 440 total faulty loci after 1 min and 32 sec by using 13 features. Thus, an 

entire identification accuracy of about 98.1818% has been obtained from this identification 

algorithm. Figure 5.17, 5.18, 5.19, 5.20, and 5.21 shows the actual and predicted locus when 

we test the algorithm at different fault locations with all types of faults. The fault 

identification accuracies of the proposed algorithm are given in table 5.1. 
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Figure 5.17. Actual and predicted locus when we test the algorithm at different fault 

locations SEF type 

 

Figure 5.18. Actual and predicted locus when we test the algorithm at different fault 

locations IDF type 
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Figure 5.19. Actual and predicted locus when we test the algorithm at different fault 

locations ADF type 

 

Figure 5.20. Actual and predicted locus when we test the algorithm at different fault 

locations PDF type 
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Figure 5.21. Actual and predicted locus when we test the algorithm at different fault 

locations SHF type 

Table 5.1. Confusion matrix showing identification accuracy of train, validation and test data 

points 

 Predicted cases  

T
ra

in
in

g
 

  SEF IDF ADF PDF SHF No. of obj. Accuracy 
Over all 

Accuracy 

SEF 44 0 0 0 0 44 100% 

100% 

IDF 0 44 0 0 0 44 100% 

ADF 0 0 44 0 0 44 100% 

PDF 0 0 0 44 0 44 100% 

SHF 0 0 0 0 44 44 100% 

va
lid

at
io

n
 SEF 20 1 1 0 0 22 90.91% 

95.45% 

IDF 0 22 0 0 0 22 100% 

ADF 0 1 21 0 0 22 95.45% 

PDF 1 0 0 20 1 22 90.91% 

SHF 0 0 0 0 22 22 100% 

Te
st

in
g 

SEF 21 0 1 0 0 22 95.45% 

97.27% 

IDF 0 22 0 0 0 22 100% 

ADF 0 0 22 0 0 22 100% 

PDF 0 0 0 21 1 22 95.45% 

SHF 1 0 0 0 21 22 95.45% 
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CONCLUSION 

The simulation of five different types of insulation failures in PSIM based model of 33 

KV winding, 3MVA power transformer is undertaken. Successful discrimination between 

these insulation failures was performed utilizing a neural network approach. The input 

voltage - output voltage and input currents are utilized to construct the (ΔV- Iin) locus. The 

change in the (ΔV- Iin) locus for different types of insulation failure was constructed. A 

multi-level neural network approach based on analytical features training sets was developed 

to identify such deformations in power transformers. The system comprised three learn 

vector quantization levels in addition to a probabilistic neural network level in order to 

discriminate between all types of faults efficiently. 

The fault identification results based on the used algorithm show that thirteen features are 

sufficient to get a reasonably good accuracy in the identification task. The proposed 

algorithm has successfully identified 432 fault loci from 440 total faulty loci after 1 min and 

32 sec by using the extracted features. The results showed that the developed classifier has 

successfully identified and localized all five different types of insulation failures within ± 

4.55% winding length with acceptable accuracy of about 98.1818%. 

Such a system would be a useful tool for preventive maintenance of transformers 

enabling power management system to spot the ones requiring immediate periodic 

maintenance or exchange without the interruption of supply. Integrate this study into 

studying the performance of an online internal transformer fault detection approach for non-

sinusoidal operating conditions (that produced due to noise and harmonics), and developing 

an overall smart automated tool that localized the internal condition of the transformers 

under this conditions. 
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APPENDIX 

 

MATLAB CODEs: 

1. ANN classification code. 
 

 

clear all 
close all 
clc 

  
ALL_FEATURES_DATA=xlsread('ALL FEATURES DATA.xlsx'); 
SESC=ALL_FEATURES_DATA(:,[1:13]); 
IDF=ALL_FEATURES_DATA(:,[14:26]); 
ADF=ALL_FEATURES_DATA(:,[27:39]); 
PDF=ALL_FEATURES_DATA(:,[40:52]); 
SHSC=ALL_FEATURES_DATA(:,[53:65]); 

  
test_no=[]; 
validation_no=[]; 
train_no=[]; 
for i=4:4:88 
    test_no=[test_no i]; 
    validation_no=[validation_no i-3]; 
    train_no=[train_no i-2 i-1]; 
end 

  
% Train Data % 
SESC_train=SESC(train_no,:); 
IDF_train=IDF(train_no,:); 
ADF_train=ADF(train_no,:); 
PDF_train=PDF(train_no,:); 
SHSC_train=SHSC(train_no,:); 

  
% Validation Data % 
SESC_validation=SESC(validation_no,:); 
IDF_validation=IDF(validation_no,:); 
ADF_validation=ADF(validation_no,:); 
PDF_validation=PDF(validation_no,:); 
SHSC_validation=SHSC(validation_no,:); 

  
% Test Data % 
SESC_test=SESC(test_no,:); 
IDF_test=IDF(test_no,:); 
ADF_test=ADF(test_no,:); 
PDF_test=PDF(test_no,:); 
SHSC_test=SHSC(test_no,:); 

  
% ANN#1 to identify class 1 (for SESC) or 2 (for IDF or PDF or SHSC) or 3 

(for ADF) % 
P=[SESC_train' IDF_train' ADF_train']; 
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t1=ones(1,44);t2=ones(1,44)*2;t3=ones(1,44)*3;t4=ones(1,44)*4;t5=ones(1,44)

*5; 
Tc=[ t1 t2 t3 ]; 
T = ind2vec(Tc); 
targets = full(T); 
net = lvqnet(30); 
net = configure(net,P,T); 
net.trainParam.epochs = 1000; 

  
net = train(net,P,T); 

  

  
Yc11 = vec2ind(net([SESC_train'])); 
Yc21 = vec2ind(net([IDF_train'])); 
Yc31 = vec2ind(net([ADF_train'])); 
Yc41 = vec2ind(net([PDF_train'])); 
Yc51 = vec2ind(net([SHSC_train'])); 

  
Yc1=[Yc11;Yc21;Yc31;Yc41;Yc51]; % (5*44) output of ANN#1 by using input 

train no 

  
% ANN#2 to identify class 1 (for IDF) or 2 (for PDF or SHSC) % 
P1=[  IDF_train' PDF_train' ]; 
P1=P1((11:end),:); 
Tc1=[ t1 t2 ]; 
T1 = ind2vec(Tc1); 
targets1 = full(T1); 
net1 = lvqnet(10); 
net1 = configure(net1,P1,T1); 
net.trainParam.epochs = 100; 
net1 = train(net1,P1,T1); 
Yc21_1 = vec2ind(net1([IDF_train(:,(11:end))]')); 
Yc41_1 = vec2ind(net1([PDF_train(:,(11:end))]')); 
Yc51_1 = vec2ind(net1([SHSC_train(:,(11:end))]')); 

  
% ANN#3 to identify class 1 (for PDF) or 2 (for SHSC) % 
P2=[  PDF_train' SHSC_train' ]; 
P2=P2((11:end),:); 
Tc2=[ t4 t5 ]; 
T2 = ind2vec(Tc2); 
targets2 = full(T2); 
net2 = lvqnet(10); 
net2 = configure(net2,P2,T2); 
net.trainParam.epochs = 100; 
net2 = train(net2,P2,T2); 
Yc41_2 = vec2ind(net2([PDF_train(:,(11:end))]')); 
Yc51_2 = vec2ind(net2([SHSC_train(:,(11:end))]')); 

  
% ANN#4 to identify class 1 (for SESC) or 2 (for ADF) % 
P3=[SESC_train' ADF_train']; 
t1=ones(1,44);t2=ones(1,44)*2;t3=ones(1,44)*3;t4=ones(1,44)*4;t5=ones(1,44)

*5; 
Tc3=[ t1 t3]; 
T3 = ind2vec(Tc3); 
net3 = newpnn(P3,T3); 
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Y = sim(net3,P3); 
Yc = vec2ind(Y) 
Yc11_3 = vec2ind(sim(net3,[SESC_train'])); 
Yc31_3 = vec2ind(sim(net3,[ADF_train'])); 

  
Yc_train=[Yc11_3;Yc21;Yc31_3;Yc41_2;Yc51_2] 

  
Yc12 = vec2ind(net([SESC_validation'])); 
Yc22 = vec2ind(net([IDF_validation'])); 
Yc32 = vec2ind(net([ADF_validation'])); 
Yc42 = vec2ind(net([PDF_validation'])); 
Yc52 = vec2ind(net([SHSC_validation'])); 

  
Yc_validation=[Yc12;Yc22;Yc32;Yc42;Yc52]; 

  
Yc13 = vec2ind(net([SESC_test'])); 
Yc23 = vec2ind(net([IDF_test'])); 
Yc33 = vec2ind(net([ADF_test'])); 
Yc43 = vec2ind(net([PDF_test'])); 
Yc53 = vec2ind(net([SHSC_test'])); 

  
Yc_test=[Yc13;Yc23;Yc33;Yc43;Yc53]; 

  
for i=1:5 
    for j=1:22 
        if Yc_validation(i,j)==2&i==1 
            PB=SESC_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_validation(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_validation(i,j)=4; 
                else 
                    Yc_validation(i,j)=5; 
                end 
            end 
        elseif Yc_validation(i,j)==2&i==2 
            PB=IDF_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_validation(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_validation(i,j)=4; 
                else 
                    Yc_validation(i,j)=5; 
                end 
            end 
        elseif Yc_validation(i,j)==2&i==3 
            PB=ADF_validation'; 
            PA=PB(:,j); 
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            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_validation(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_validation(i,j)=4; 
                else 
                    Yc_validation(i,j)=5; 
                end 
            end 
        elseif Yc_validation(i,j)==2&i==4 
            PB=PDF_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_validation(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_validation(i,j)=4; 
                else 
                    Yc_validation(i,j)=5; 
                end 
            end 
        elseif Yc_validation(i,j)==2&i==5 
            PB=SHSC_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_validation(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_validation(i,j)=4; 
                else 
                    Yc_validation(i,j)=5; 
                end 
            end 
        end 
    end 
end 

  

  
for i=1:5 
    for j=1:22 
        if Yc_test(i,j)==2&i==1 
            PB=SESC_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_test(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_test(i,j)=4; 
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                else 
                    Yc_test(i,j)=5; 
                end 
            end 
        elseif Yc_test(i,j)==2&i==2 
            PB=IDF_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_test(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_test(i,j)=4; 
                else 
                    Yc_test(i,j)=5; 
                end 
            end 
        elseif Yc_test(i,j)==2&i==3 
            PB=ADF_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_test(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_test(i,j)=4; 
                else 
                    Yc_test(i,j)=5; 
                end 
            end 
        elseif Yc_test(i,j)==2&i==4 
            PB=PDF_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_test(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_test(i,j)=4; 
                else 
                    Yc_test(i,j)=5; 
                end 
            end 
        elseif Yc_test(i,j)==2&i==5 
            PB=SHSC_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net1(PA((11:end),:))); 
            if Y==1 
                Yc_test(i,j)=2; 
            else 
                Z=vec2ind(net2(PA((11:end),:))); 
                if Z==4 
                    Yc_test(i,j)=4; 
                else 
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                    Yc_test(i,j)=5; 
                end 
            end 
        end 
    end 
end 

  

  

  

  

  

  
for i=1:5 
    for j=1:22 
        if (Yc_validation(i,j)==1&i==1)|(Yc_validation(i,j)==3&i==1) 
            PB=SESC_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_validation(i,j)=1; 
            else 
                Yc_validation(i,j)=3; 
            end 
        elseif (Yc_validation(i,j)==1&i==2)|(Yc_validation(i,j)==3&i==2) 
            PB=IDF_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_validation(i,j)=1; 
            else 
                Yc_validation(i,j)=3; 
            end 
        elseif (Yc_validation(i,j)==1&i==3)|(Yc_validation(i,j)==3&i==3) 
            PB=ADF_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_validation(i,j)=1; 
            else 
                Yc_validation(i,j)=3; 
            end 
        elseif (Yc_validation(i,j)==1&i==4)|(Yc_validation(i,j)==3&i==4) 
            PB=PDF_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_validation(i,j)=1; 
            else 
                Yc_validation(i,j)=3; 
            end 
        elseif (Yc_validation(i,j)==1&i==5)|(Yc_validation(i,j)==3&i==5) 
            PB=SHSC_validation'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_validation(i,j)=1; 
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            else 

                 
            end 
        end 
    end 
end 

  

  
for i=1:5 
    for j=1:22 
        if (Yc_test(i,j)==1&i==1)|(Yc_test(i,j)==3&i==1) 
            PB=SESC_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_test(i,j)=1; 
            else 
                Yc_test(i,j)=3; 
            end 
        elseif (Yc_test(i,j)==1&i==2)|(Yc_test(i,j)==3&i==2) 
            PB=IDF_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_test(i,j)=1; 
            else 
                Yc_test(i,j)=3; 
            end 
        elseif (Yc_test(i,j)==1&i==3)|(Yc_test(i,j)==3&i==3) 
            PB=ADF_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_test(i,j)=1; 
            else 
                Yc_test(i,j)=3; 
            end 
        elseif (Yc_test(i,j)==1&i==4)|(Yc_test(i,j)==3&i==4) 
            PB=PDF_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_test(i,j)=1; 
            else 
                Yc_test(i,j)=3; 
            end 
        elseif (Yc_test(i,j)==1&i==5)|(Yc_test(i,j)==3&i==5) 
            PB=SHSC_test'; 
            PA=PB(:,j); 
            Y=vec2ind(net3(PA((1:end),:))); 
            if Y==1 
                Yc_test(i,j)=1; 
            else 

                 
            end 
        end 
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    end 
end 

  

  

  
Yc_validation 
Yc_test 
Yc_overall=[Yc_train Yc_validation Yc_test]; 

  
acc_train=((length(find(Yc_train(1,:)==1))+length(find(Yc_train(2,:)==2))+l

ength(find(Yc_train(3,:)==3))+length(find(Yc_train(4,:)==4))+length(find(Yc

_train(5,:)==5)))/(length(find(Yc_train(1,:)))+length(find(Yc_train(2,:)))+

length(find(Yc_train(3,:)))+length(find(Yc_train(4,:)))+length(find(Yc_trai

n(5,:)))))*100 
acc_validation=((length(find(Yc_validation(1,:)==1))+length(find(Yc_validat

ion(2,:)==2))+length(find(Yc_validation(3,:)==3))+length(find(Yc_validation

(4,:)==4))+length(find(Yc_validation(5,:)==5)))/(length(find(Yc_validation(

1,:)))+length(find(Yc_validation(2,:)))+length(find(Yc_validation(3,:)))+le

ngth(find(Yc_validation(4,:)))+length(find(Yc_validation(5,:)))))*100 
acc_test=(length(find(Yc_test(1,:)==1))+length(find(Yc_test(2,:)==2))+lengt

h(find(Yc_test(3,:)==3))+length(find(Yc_test(4,:)==4))+length(find(Yc_test(

5,:)==5)))/(length(find(Yc_test(1,:)))+length(find(Yc_test(2,:)))+length(fi

nd(Yc_test(3,:)))+length(find(Yc_test(4,:)))+length(find(Yc_test(5,:))))*10

0 
acc_overall=((length(find(Yc_overall(1,:)==1))+length(find(Yc_overall(2,:)=

=2))+length(find(Yc_overall(3,:)==3))+length(find(Yc_overall(4,:)==4))+leng

th(find(Yc_overall(5,:)==5)))/(length(find(Yc_overall(1,:)))+length(find(Yc

_overall(2,:)))+length(find(Yc_overall(3,:)))+length(find(Yc_overall(4,:)))

+length(find(Yc_overall(5,:)))))*100 

  

  

The program output is: 
 

acc_train = 

 

   100 

 

 

acc_validation = 

 

   95.4545 

 

 

acc_test = 

 

   97.2727 

 

 

acc_overall = 

 

   98.1818 
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2. Code to draw the five classes. 
 

clear all 
close all 
clc 

  
format long 

  
IDF=xlsread('IDF.xlsx'); 
SESC=xlsread('SESC.xlsx'); 
ADF=xlsread('ADF.xlsx'); 
PDF=xlsread('PDF.xlsx'); 
SHSC=xlsread('SHSC.xlsx'); 

  
%_______________________________________________________________________ 

  

  

  
%_______________________________________________________________________ 

  
figure1 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,2),'+') 
hold on 
plot(SESC(:,1),SESC(:,2),'OK') 
plot(ADF(:,1),ADF(:,2),'OR') 
plot(PDF(:,1),PDF(:,2),'O') 
plot(SHSC(:,1),SHSC(:,2),'*K') 
xlabel('Ellipse area') 
ylabel('Angle between the semi-major axis, and the horizontal axis (Theta) 

') 
axis([0 1000 50 90]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)', 'PDF (class 

4)','SHF (class 5)',4) 

  
%_______________________________________________________________________ 

  
figure2 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,3),'+') 
hold on 
plot(SESC(:,1),SESC(:,3),'OK') 
plot(ADF(:,1),ADF(:,3),'OR') 
plot(PDF(:,1),PDF(:,3),'O') 
plot(SHSC(:,1),SHSC(:,3),'*K') 
xlabel('Ellipse area') 
ylabel('Ellipse circumference') 
axis([50 400 50 90]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)',4) 
% %_______________________________________________________________________ 

  
figure3 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,4),'+') 
hold on 
plot(SESC(:,1),SESC(:,4),'OK') 
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plot(ADF(:,1),ADF(:,4),'OR') 
plot(PDF(:,1),PDF(:,4),'O') 
plot(SHSC(:,1),SHSC(:,4),'*K') 
xlabel('Ellipse area') 
ylabel('Semi major axis length') 
axis([0 2000 0 50]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)',4) 
%_______________________________________________________________________ 

  
figure4 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,5),'+') 
hold on 
plot(SESC(:,1),SESC(:,5),'OK') 
plot(ADF(:,1),ADF(:,5),'OR') 
plot(PDF(:,1),PDF(:,5),'O') 
plot(SHSC(:,1),SHSC(:,5),'*K') 
xlabel('Ellipse area') 
ylabel('Semi minor axis length') 
axis([0 1000 0 12]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)',4) 

  
%_______________________________________________________________________ 

  
figure5 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,6),'+') 
hold on 
plot(SESC(:,1),SESC(:,6),'OK') 
plot(ADF(:,1),ADF(:,6),'OR') 
plot(PDF(:,1),PDF(:,6),'O') 
plot(SHSC(:,1),SHSC(:,6),'*K') 
xlabel('Ellipse area') 
ylabel('Ellipse focus') 
axis([0 1000 -4 40]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)',4) 
%_______________________________________________________________________ 

  
figure6 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,7),'+') 
hold on 
plot(SESC(:,1),SESC(:,7),'OK') 
plot(ADF(:,1),ADF(:,7),'OR') 
plot(PDF(:,1),PDF(:,7),'O') 
plot(SHSC(:,1),SHSC(:,7),'*K') 
xlabel('Ellipse area') 
ylabel('First ellipse eccentricity') 
axis([0 1000 -0.4 1]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)',4) 
%_______________________________________________________________________ 

  
figure7 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,8),'+') 
hold on 



76 
 

plot(SESC(:,1),SESC(:,8),'OK') 
plot(ADF(:,1),ADF(:,8),'OR') 
plot(PDF(:,1),PDF(:,8),'O') 
plot(SHSC(:,1),SHSC(:,8),'*K') 
xlabel('Ellipse area') 
ylabel('Second ellipse eccentricity') 
axis([0 1000 0 10]) 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)') 
%_______________________________________________________________________ 

  
figure8 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,9),'+') 
hold on 
plot(SESC(:,1),SESC(:,9),'OK') 
plot(ADF(:,1),ADF(:,9),'OR') 
plot(PDF(:,1),PDF(:,9),'O') 
plot(SHSC(:,1),SHSC(:,9),'*K') 
axis([0 1000 0 1.5]) 
xlabel('Ellipse area') 
ylabel('ratio between first and second ellipse eccentricity') 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)') 
%_______________________________________________________________________ 

  
figure9 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,10),'+') 
hold on 
plot(SESC(:,1),SESC(:,10),'OK') 
plot(ADF(:,1),ADF(:,10),'OR') 
plot(PDF(:,1),PDF(:,10),'O') 
plot(SHSC(:,1),SHSC(:,10),'*K') 
xlabel('Ellipse area') 
ylabel('Ellipse flattering') 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)') 
axis([0 1000 0 1.5]) 
%_______________________________________________________________________ 

  
figure10 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,11),'+') 
hold on 
plot(SESC(:,1),SESC(:,11),'OK') 
plot(ADF(:,1),ADF(:,11),'OR') 
plot(SHSC(:,1),SHSC(:,11),'*K') 
plot(SHSC(:,1),SHSC(:,11),'OK') 
xlabel('Ellipse area') 
ylabel('Average value of the load voltage') 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)') 
axis([0 1000 -2.5e-3 20e-4]) 
%_______________________________________________________________________ 

  
figure11 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,12),'+') 
hold on 
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plot(SESC(:,1),SESC(:,12),'OK') 
plot(ADF(:,1),ADF(:,12),'OR') 
plot(PDF(:,1),PDF(:,12),'O') 
plot(SHSC(:,1),SHSC(:,12),'*K') 
xlabel('Ellipse area') 
ylabel('Root mean square value of the load voltage') 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)') 
axis([0 1000 0 15]) 
%_______________________________________________________________________ 

  
figure12 = figure('Color',[1 1 1]); 
plot(IDF(:,1),IDF(:,13),'+') 
hold on 
plot(SESC(:,1),SESC(:,13),'OK') 
plot(ADF(:,1),ADF(:,13),'OR') 
plot(PDF(:,1),PDF(:,13),'O') 
plot(SHSC(:,1),SHSC(:,13),'*K') 
axis([0 1000 0 15]) 
xlabel('Ellipse area') 
ylabel('Average of the absolute value of the load voltage') 
legend('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF 

(class 5)') 
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 ملخص الرسالة

 نظام في الكهرباء لشركات الأصول المهمة جدا أهم بين من تعد الكهرباء الأخيرة، محولات الآونة في

حيث يتم بهذه الطريقة  (FRA) التردد استجابة الطاقة. الطريقة المثلى لتشخيص حالة المحول هى تحليل

 تنفذ بواسطة أن يمكن محول لأي استجابة التردد  تحديد. المحول داخل الميكانيكية التشوهات عن الكشف

 محول كبصمة اصبع بالنسبة للمحوليمكن اعتبار تحليل استجابة ال. المصنع منها المحول المواد خصائص

 تحتاج الى فصل مصدر التيار عن المحول، كونها إلى بالإضافة لتحليل استجابة المحول، الرئيسي العيب. 

وجود  لإظهار النتائج هذه لتحليل خبير لذلك هذا يتطلب. البيانية الرسوم تحليل هى ايضا طريقة تعتمد على

للمراقبة المستمرة بدون قطع  طريقة جديدة إلى هذا يزيد من حاجتنا ي،وبالتال. المحولات لفات في فشل اى

 له. الداخلية الحالة لتقييم مصدر التيار عن المحول وهذا

بدون فصل مصدر التيارعن المحول  المحول داخل الداخلية العيوب هذه الرسالة تقدم تقنية جديدة لكشف

تكمن ميزة هذة التقنية فى استخدام اجهزة القياس  . (inI -ΔVوهذا عن طريق رسم العلاقة البيانية )

الموجودة على اى محول لمراقبة الفولت الداخل والخارج من المحول بالاضافة الى التيار الداخل للمحول. 

وبالتالى يمكن استخدامها كتقنية للمراقبة المستمرة بدون قطع مصدر التيار. اى تشوة او ازاحة فى لفات 

هذه التغييرات يمكن  دث تغيير فى معايير الدائرة وبالتالى تغيير فى استجابة التردد.المحول يمكن ان يح

الكشف عنها بواسطة التقنية المقترحة. هذه التقنية تحتاج الى مرجعية فى الاستجابه التى تتولد اثناء بدء 

 تشغيل المحول للكشف عن هذه التغيرات.

القسم الاول هو المحاكاة والتمييز بين عدة انواع مختلفة من الغرض من هذه الرسالة يمكن تقسيمة لقسمين. 

تلف العزل. القسم الاخر هو تصنيف نوع التلف وتحديد مكانة فى لفات المحول طبقا لتقنيات الذكاء. 

( وتم تنفيذ خمس انواع من تلف PSIMولتحديد هذه الاهداف تم تمثيل نموذج للفات المحول على برنامج )

ان تحدث فى لفات المحول على هذا النموذج وتتبع هذه الدراسه بتصميم مصنف شبكات  العزل التى يمكن

 عصبية وادراج بعض السمات المستخرجة اليه لتدريب الشبكة العصبية لتعطى اعلى كفاءة تصنيف.

من بين خمس  وقد اظهرت النتائج ان التقنية المستخدمه فى التصنيف نجحت فى التعرف على نوع الفشل

( من الطول الكلى لللفات بدقة مقبولة %4.55انواع مختلفة من فشل العزل وايضا تحديد مكانه خلال )

 .(%98.1818تقدر بحوالى )
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 الاكاديمية العربية للعلوم و التكنولوجيا والنقل البحرى

 كلية الهندسة و التكنولوجيا

 قسم الهندسة الكهربية والتحكم

 

 

 

ها داخل ت الذكية لتحديد الحالات الغير مرغوب فيتطبيق التقنيا

 المحولات
 

 رسالة الماجيستير

  

 مقدمة من:

 

أحمد سيد عبد الحميد عوضمهندس /   

 
 للحصول على درجة الماجيستير فى الهندسة الكهربية و التحكم

 

 

 تحت إشراف

 

رانيا متولى الشرقاوى  أستاذ دكتور /   

 مشرف

_____________________ 

 
ة التحكيملجن  

 

 

/ياسر جلال أستاذ دكتورمحمد عبد الرحيم بدر                         أستاذ دكتور /  

 ممتحن                                                             ممتحن

_____________________________                          _____________________________ 

 

 

 

5201هرة  القا  
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 الاكاديمية العربية للعلوم و التكنولوجيا والنقل البحرى

 كلية الهندسة و التكنولوجيا

 قسم الهندسة الكهربية والتحكم

 

 

 

ها داخل تطبيق التقنيات الذكية لتحديد الحالات الغير مرغوب في

 المحولات
 

 رسالة الماجيستير

  

 مقدمة من:

 

أحمد سيد عبد الحميد عوضمهندس /   

 
 للحصول على درجة الماجيستير فى الهندسة الكهربية و التحكم

 

 

 

 تحت إشراف

 

رانيا متولى الشرقاوىأستاذ دكتور /   
 قسم القوى الكهربية و التحكم

 كلية الهندسة

 الاكاديمية العربية للعلوم و التكنولوجيا والنقل البحرى

 

 

 

 

 

 

 

 

5201القاهرة    


