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ABSTRACT

In recent times, power transformers are among the most critical of assets for electric utilities in
the power system. Frequency response analysis (FRA) is a powerful diagnoses method which is used to
detect mechanical deformations within power transformers. The determination of FRA for any
transformer can be made by its material properties and geometry. FRA is considered as the fingerprint of
the transformers. The main drawback of the FRA, in addition to its being an off-line tool, is that it
depends on graphical analysis. So, there is requires an expert to analyze this graphical results to show
the presence of failure within transformer windings. Hence, there is increases the need for an online

monitoring tool to assess the internal condition of transformers.

The present work is aimed to introduce novel online technique to detect the internal faults within
a power transformer by constructing (AV- Iin) locus diagram. The advantage of this technique is the use
of the existing measuring devices attached to any power transformer to monitor the input, output voltage
in addition to the input current. Thus, it can be utilized as an online monitoring technique. Any
deformation or displacement in the transformer winding can cause change in the circuit parameters and
response. The changes can be detected using the proposed technique. This technique requires a reference
response which is generated during commissioning of the transformer to detect these changes.

The purpose of this thesis is to first, simulate the several different types of insulation failure, and
second to identify and classify the fault within transformer windings utilizing an intelligent technique.
To achieve these goals, the proposed winding model and five types of insulation failures that are apt to
occur in power transformers are implemented in power simulation (PSIM). The transformer parameters
have been calculated from the practical design data of a 3 MVA, 33/11 kV, three-phase, 50 Hz, ONAN,

Dy11 power transformer.
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CHAPTER ONE

1. INTRODUCTION

1.1. Background

A power transformer is mainly used when there is a need for a voltage transformation,
and it is used for transmission and distribution of electric power systems. The electric energy
is transferred between different electrical circuits in transformer by the use of
electromagnetic induction. Power transformers are usually expensive and require through

maintenance and condition monitoring to maintain the continuity of supply.

1.2. Problem Formulation

Power transformers play very important role in the reliable operation of power systems.
They are designed to function at supply frequency. In the event that a failure occurs in
service, the impact can be far reaching. Not only can extended outages occur, but costly
repairs and potentially serious injury or fatality can result. The aging transformer population
increases the likelihood of failure, this poses significant a risk for utilities and other power
network stakeholders as the impact of an in-service transformer failure can be catastrophic.
Therefore, maintaining the integrity of insulation within the power transformer is crucial.
Thus, there is an increasing need for better diagnostic and monitoring tool to assess the

internal condition of transformers.

Several diagnostic methods have developed a long time ago as a response to the need for
condition assessment. Among these, Dissolved Gas Analysis (DGA) and Frequency
Response Analysis (FRA) have emerged as the industry standard tests for assessing the
condition of the transformer insulation / oil and the integrity of the winding structure,
respectively. FRA is a powerful method which is used to detect mechanical deformations
within power transformers in recent times. The FRA of a transformer is determined by its
geometry and material properties, and it can be considered as the transformer’s fingerprint. If
there are any mechanical changes in the transformer, for example if the windings are moved

or distorted, its fingerprint will also be changed so, mechanical changes in the transformer



can be detected. In the FRA test, the transformer is taken out of service and a signal is
applied to one winding terminal and the response is measured at another terminal [1]. The
main drawback of the FRA, in addition to its being an off-line tool, is that it depends on
graphical analysis i.e., an expert is required to analyze the results to show if the failure is
present or not. Hence, there is a need for an online monitoring tool to assess the internal
condition of transformers. Further modifications are investigated to apply the FRA test

online [2].

In the last decade, some researchers had proposed several different computer aided
techniques for classification of series and shunt insulation failures in transformer winding [3,
4]. Moreover, correlation technique in the frequency domain has been applied to localize the

occurrence of partial discharge in 10 section lumped parameter transformer winding model

[5].

Nevertheless, the platform is still open for the application of computer-aided diagnostic
techniques for the assessment of the proper operation and the integrity of insulation within

power transformer.

1.3. Aim or Research Motivation

The present thesis is aimed to simulate, analysis, and discriminate five types of insulation
failure which may be produced after the offline impulse test that is routinely carried out on
power transformers [1]. The technique is introduced to detect the internal faults within a
power transformer by contracting (AV- lin) locus diagram. The advantage of this technique is
the use of the existing measuring devices attached to any power transformer to monitor the
input, output voltage in addition to the input current. Thus, it can be utilized as an online

monitoring technique.

This thesis also present two techniques to identify and classify the insulation failure
within a power transformer based on developed code and artificial neural networks (ANNS).
The proposed (AV- Iin) locus can be plotted every cycle (20 ms based on a 50-Hz network)
and compared with the healthy locus using the developed code to immediately identify any

changes. Hence, the fault is located along the winding of the transformer. The proposed



technique is easy to be implemented and automated so that the requirement for expert
personnel can be eliminated and early warning for the transformer condition obtained.

1.4. Outline of the thesis

The main concern in this thesis is directed to study the diagnosis in power transformers
and propose a new strategy for the classification of the abnormality conditions in transformer
windings. The following points are covered in this work:

1. Present a comprehensive literature survey about the addressed topic.

2. Select and simulate a suitable transformer for this study using power simulation
(PSIM) software.

3. Develop an online diagnosis technique to present the current state of the transformer.

4. Develop a new expression of the (AV- lin) locus diagram that is used in the diagnosis
study.

5. Investigate the effect of different types of abnormal conditions within the simulated
transformer by constructing (AV- lin) locus diagram for the suitable transformer in
healthy and faulty conditions.

6. Discriminate different types of insulation failure which may be produced on power
transformers according to visual inspection and discrimination using feature extraction.

7. Develop an intelligent fault classification and localization technique using MATLAB.

8. Demonstrate results and conclusions.

Figure 1-1 shows all the processing stages utilized in this thesis to classify and locate the

different types of failures apt to occur within the transformer windings.

This thesis focuses on the identification and classification of the insulation failure in the
transformer windings using intelligent computational techniques that can be readily applied to
online measurements. This thesis starts with a brief introduction about the mechanical failure
problem and the research motivation. The second chapter is dedicated to overview for the
power transformer and its reasons of failure and also discusses offline and online available
transformer winding deformation diagnostic methods. The third chapter introduces an adopted
diagnostic technique, the undertaken transformer model and discusses the simulation of the

utilized power transformer and also studies and analyses the fault types. The fourth chapter.



The fourth chapter starts with the visual inspection of fault discrimination techniques
applicable to transformer winding, and then details a developed algorithm (computational
discrimination technique) used for fault discrimination within transformer winding utilizing
feature extraction according to circuit model to identify the type of the fault in the
transformer. The fifth chapter introduce the feature identification and location methods
utilizing the Learn vector quantization (LVVQ) algorithm.
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Figure 1-1 Flow Chart of Thesis Work Steps



CHAPTER TWO

2. BACKGROUND INFORMATION

2.1. Introduction to power transformers

In AC power systems, power transformers are among the most crucial physical assets in a
power system in terms of their capital cost, network impact and cost due to unexpected

failure.

A power transformer comprises of two or more windings that are coupled through a
common magnetic core. A time-varying flux created by one winding induces voltages in all
of the other windings. Laminated iron core, two or more windings, an insulation medium, a
tank, bushing and accessories represent the main components of any transformer.
Transformers can be categorized into different types according to different criteria. For
example; depending on the construction of the core, transformers can be categorized as
Core-type transformers and Shell-type transformers. In core-type transformers, the windings
are wrapped around two sides of a sample rectangular window iron core; while in shell-type
transformers, the windings are only wrapped around the center leg of a three-legged iron
core. Also, with a particular point of view about the insulation medium, transformers fall

into two categories:

e Dry type transformers: If the core and coils are in a gaseous or dry compound

insulation.

e Fluid-filled transformers: this type of transformers have the core and coils impregnated

with an insulating fluid and immersed in the same insulation medium.

An iron core is used because of its high relative permeability. As a result of its higher
relative permeability, a smaller magnetizing current is required as compared to a non-
ferromagnetic core. Furthermore, the iron core is usually laminated in order to minimize

eddy current losses, which are generated in the core by the time varying magnetic flux.



The windings are usually made of copper or aluminum. The winding conductors may be
either wires or sheets. Successive layers are insulated by sheets of insulation. Ceramic
bushings are used to isolate the windings from grounded structures of the transformer such
as the oil tank. Transformers with increasingly larger voltages require increasingly longer
bushings to prevent an external flashover. Mineral oil is typically used as insulation medium.
It is also used to cool the transformer.

The insulation must be capable of withstanding voltages greatly exceeding the rated
winding voltages. Voltages must larger than the rated values can appear across the windings
of the transformer during network transients. Such as switching operations, lightning strikes,
short circuit faults, and fluctuations in the load. Table 2.1 shows the insulation levels for
different voltage ratings, which are defined as the values of the required test voltages [6].
BIL, that is basic insulation levels, are given in the column 3 and column 7 for Europe and

North America respectively.

Table 2.1 Standardized test voltages for rated voltages

Coordination of Insulation according to IEC Publication 71, 1972

European practice and other countries U.S.A. and Canada
Test Lightning oo Test . .
Rated voltage 50 impulse Switching Rated voltage 60 | . Lightning
voltage Hy voltage 1.2/50 surge voltage voltage Hy impulse voltage
Vm* ! ' 250/2500 psec L 1.2/50 psec
1 min psec 1 min**
KV inRMS | KV in RMS KV in peak KV in peak KV inRMS | KV in RMS KV in peak

3.6 10 40 4.76 19 60

7.2 20 60 8.25 26 75

12 28 75 15 36 95
175 38 95 155 50 110

24 50 125 25.8 60 125

36 70 170 38 80 150
100 185 450 100 185 450
145 275 650 145 275 650
175 325 750 175 325 750
245 460 1050 254 460 1050
300 380 1050 850

362 450 1175 950

420 520 1425 1050

525 620 1550 1175

765 830 2100 1425




Note:
* Vm is the maximum service voltage of the network between phases.
**Test voltage is the phase voltage.

Outages due to power transformer failure cost the company money not only in
replacement or repair, but also in buying power from other companies to supply their
customers. These costs can quickly grows into millions of dollars in just a few days. A case
study mentioned [7], estimated the failure of a 520MVA transformer to reach approximately
US$18 Million in just 8 days.

2.2. Classification of transformer failure

Generally, transformer failures may be caused by a multitude of reasons. The literature
review over the last several decades on transformer failure have different ways to categorize

the causes of transformer failures.

One of these ways classified the transformer failure causes into two categories as
"internal causes" and "external causes". Internal causes are due to the internal faults that
happen inside the tank such as: Short circuit between windings or turns, Insulation
deterioration, Loss of winding clamping, Overheating, Oxygen, Moisture, Solid
contamination in the insulating oil, Partial discharge, Design & manufacture defects or
internal winding resonance. While, external causes are due to external faults that related to
bushing, leads and accessories that are outside the tank, and may be caused by system
switching operations, lightning strikes, system overload and system fault (short circuits). The
internal faults can be split further to thermal faults and electrical faults. Generally,
Transformers overheating due to thermal faults. According to the severity of the faults,
thermal faults are often divided into four categories listed in table 2.2. Under high electric
field electrical faults cause the degradation of the insulation. According to the degree of
discharge intensity, electric faults are further divided into partial discharge, spark discharge

and arc discharge.



Table 2.2. Thermal faults categories

Thermal fault category type

temperature

Slight temperature overheating

less than 150°C

Low temperature overheating

150-300°C

Medium temperature overheating

300-700°C

High temperature overheating

More than 700°C

Another way for fault classification ways is based on circuitry. According to "circuitry”,

failures can also be split into two categories as "structure of main body" and "fault

location™. By structure of the main body of the transformers, failures can be divided into

winding faults (or electric faults), core faults (or magnetic faults), oil faults (or oil path

faults), and accessory faults; by fault location, failures can be divided into insulation faults,

core faults and tap-changer faults, etc. All of the above failures can either reflect thermal

failures, electric failures or both. A survey listed the percentage of several reasons of

transformer failures (internal and external reasons) as shown in Table 2.3 was conducted by

Hartford Steam Boiler over the last several decades on thousands of transformer failures [8].

Table 2.3. Causes of transformer failure

Failure percentage per year 1975 1983 1998 | winding movement evident
Lightening surges 323% | 30.2% | 12.4% v
Line surges / External short circuit | 13.3% | 18.6% | 21.5% v
Poor workmanship-Manufacturer | 10.6% | 7.2% 29% v
Insulation deterioration 104% | 8.7% 13 % X
Overloading 7.7% 3.2% 24 % X
Moisture 7.2% 6.9 % 6.3 % X
Inadequate Maintenance 6.6% | 13.1% | 11.3% v
Sabotage, Malicious Mischief 2.6 % 1.7% 0% X
Loose Connections 21% | 20% | 6.0% v
All others 6.9 % 84% | 242% --

As shown in Table 2.3., the main reasons of transformer failures are lightning surges,

switching surges, insulation deterioration and inadequate maintenance. Another international
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survey shows the percentage of failures related to the structural components (fault location)
of the transformers was conducted by the CIGRE Working Group [17], as shown in Figure
2.1. Figure 2.1. Show that, the main components that cause failures in large power
transformers are on-load tap changers, windings, and tank/fluid. An article [18] in Electricity

Today tabulates transformer failures by their components as given in Table 2.4.

- On-load tap
Arceszories chanpers

14%

Tank/Fhud
14%

Figure 2.1. Failures for large power transformers with on-load tap changers

Table 2.4. Transformer Component Failures

Transformer component | Failure percentage Insulation System

High Voltage Windings 48% Yes
Low Voltage Windings 23% Yes
Bushings 2% Yes

Leads 6% No

Tap Changers 0% No
Gaskets 2% No

Other 19% No

Total 100% --




2.3. Offline and online transformer winding diagnosis techniques

Major diagnostic methods which are employed by utilities and researchers include off
and on-line methods where are introduced as diagnostic tools by [9, 14] as follows:

2.3.1. Offline techniques
2.3.1.1. Visual inspection (V1)

In this test; the transformer has to be taken out of service, and opened up to be inspected
after drained. The clamps, windings and insulation condition can then be inspected to
determine if there are any noticeable problems. It requires expert to carry out inspections and
can lead to long out of service times for the transformer, which is undesirable. This method
is the most reliable method to determine the winding condition, and it is likely to be retained
only as a final verification when a less invasive method detects the presence of critical

damage.

2.3.1.2. Short circuit impedance (SCI)

SCI method is usually used for transformer winding deformation detection. Measured
SCI of a power transformer can be compared to the value that appears at the nameplate or
factory test results. It is employed to detect winding movement that may have occurred since
the factory tests were performed. To conduct this test, the low voltage winding terminals
have been short-circuited to each other and the input current voltage and power are

measured. Changes of more than +3% of the SCI should be considered significant [15].

2.3.1.3. Transfer function methods (FRA/LVI)

Transfer function is basically a way of describing a system behavior. Transfer function
method is increasingly used in the diagnostics of electric power equipment, especially for the
identification of winding integrity in transformers [16-18]. Transfer function measurement
has been developed based on two popular methods. The first one applies in time domain
while the second one is concentrated on frequency domain. Frequency domain measurement
is performed by injecting a swept sinusoidal waveform within a predetermined frequency
band. Some researchers believe that acceptable and judicable result would be taken in

between 10 Hz and 1 MHz [19] while the others have recommended max extended
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frequency response measurement up to 10 MHz [20]. In time domain method, an impulse
voltage waveform is injected into the test object and time domain response measured
through test object output. Once the time domain measurement data is at hand, transfer
function in frequency domain could be determined by using Fast Fourier transform (FFT)
technique. Generally, the purpose of both methods is to excite the natural frequencies of the

test object.

2.3.1.4. Leakage reactance test

The short circuit impedance test set-up can also be used to calculate the leakage reactance
of the transformer. If the winding has expanded, the leakage reactance would increase as a
consequence. This method is sensitive to certain types of distortion only, namely distortion
that results in increased distance between the primary and secondary coil. It does not pick up

distortions such as twisting of windings and is ineffective at high frequencies due to the skin

effect.

2.3.15. Ratio test

The winding ratio test is an offline test that can be used to detect faulty winding
conditions (short circuit or open circuit). The transformer voltage ratio is tested to ensure
that the proper turns-ratio is present. This test determines the transformer turns ratio (TTR)
of the number of turns in the high-voltage winding to that in the low-voltage winding. The
ratio test shall be made at rated or lower voltage and rated or higher frequency. The tolerance

for the ratio test is 0.5% of the winding voltages specified on the transformer nameplate.

2.3.1.6. Winding resistance test

The winding resistance test can be used to detect fraction of an ohm changes of the
transformer winding. So, this technique requires highly sensitive equipment. Also, this test is
an offline test. Any change in the geometry of the conductor would show up as a change in
the winding resistance, this is the main idea in this test. For example, if the winding expands
then the length of the winding would increase while the cross sectional area would decrease.
This would cause an increase in the resistance of the winding. Generally, variations of more

than 5% are considered indicative of damage.
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2.3.2. Advanced online techniques

2.3.2.1. Vibration method

Transformer vibration can be considered to be repetitive movement of transformer inner
parts that are covered by the transformer tank. This movement is done around a reference
position. The reference position is where the transformer attains once it is out of service.
Vibration might be interpreted by using parameters such as winding displacement, velocity
and acceleration. Vibration testing involves the mounting of acoustic sensors on the tank
wall of the transformer to sense the vibration of the transformer caused by the continuous
magnetization and demagnetization of the core and windings. These acoustic signals form
the signature for the winding. This method has the advantage of being an online method;
however the externally mounted sensors are highly susceptible to vibration noise from the
external environment. In addition, [21-23] have introduced an on-line method. These studies
show that transformer tank vibration depends on voltage square and current square.
Furthermore, studies reveal that winding vibration main harmonic component is 100 Hz
when fundamental power frequency is 50 Hz. Therefore, transformer tank vibration has been
recommended to be considered as an online transformer winding deformation diagnosis

method.

2.3.2.2. Communication method

Communication method which is introduced in the literature [24-26] is applied based on
scattering parameters. The magnitude and phase of scattering parameters for normal
transformer winding are measured by several antennas as finger print. Proposed antennas
could be placed outside or inside the transformer tank. In this method mean absolute
magnitude distance (MAMD) and mean absolute phase distance (MAPD) are introduced as
displacement indices. As has mentioned in [24-26], any kind of transformer winding

deformation can cause abovementioned indices are altered and deformation detected.

2.3.2.3. Current deformation coefficient method

This method has been introduced by [27], and by using that a high frequency low voltage
signal is applied to live power system line along with power frequency signal when the

standard practices of connection are considered. The line-end and neutral-end high frequency
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currents are continuously measured using isolated precision current probes and digital
filtering technique [27]. Associated capacitive reactance is changed due to the transformer
winding deformation and this change is reflected in deviations of high frequency terminal
currents from fingerprint. When these deviations are measured, the ratio of deviations at the
two ends is calculated. Hence, current deviation coefficient (CDC) is introduced as
justifiable relation.

2.3.2.4. Ultrasonic method

Ultrasound is a sound with a frequency greater than the upper limit of human hearing. In
this method introduced in [28], an ultrasonic signal has been used as reference signal. The
basis of this method concentrates on ultrasound reflection due to the non-matching

acoustic impedance between oil and the winding.

2.4.Artificial neural networks.

2.4.1. Neural networks introduction.

ANNSs have been around since the late 1950's, it was not until mid-1980 that algorithms
became sophisticated enough for general applications.

ANNs are collections of mathematical models that emulate some of the observed
properties of biological nervous systems and draw on the analogies of adaptive biological
learning. The key element of the ANN paradigm is the novel structure of the information
processing system. It is composed of a large number of highly interconnected processing
elements that are analogous to neurons and are tied together with weighted connections that
are analogous to synapses. A typical neuronal model is thus comprised of weighted

connectors, an adder and a transfer function (Figure 2.2).
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Figure 2.2. A single mathematical neuronal model

The basic relationship here is:

n=wp+b (2.1)
a=F(wp+h) (2.2)
Where:

a = network output signal

w = weight of input signal

p = input signal

b = neuron specific bias

F = transfer/activation function

n = induced local field or activation potential

Learning in biological systems involves adjustments to the synaptic connections that
exist between the neurons. This is true of ANNs as well. Learning typically occurs by
example through training, or exposure to a trothed set of input/output data where the training
algorithm iteratively adjusts the connection weights (synapses). These connection weights
store the knowledge necessary to solve specific problems. From equations 2.1 and 2.2, it can
be seen that a simple neuron performs the linear sum of the product of the synaptic weight
and input with the bias, which value is then passed through an activation or transfer function
that limits the amplitude of the output of a neuron. Activation functions can take various
forms ranging from hard limit, through pure linear to sigmoid and the choice of which to use
depends on the desired output from the network and the characteristics of the system being

modelled.
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Typical and practical networks are normally multi-input and probably multi-layered and
in such cases, the variables in equations 2.1 and 2.2 now take a different format with w being

the matrix of weights and a, p and b representing vectors of their respective definitions.

1. Their building blocks are highly interconnected computational devices though the
artificial neurons are much inferior to their biological counterparts.
2. The function of the network is determined by the nature of connection between the

neurons.

ANNs are excellent at developing systems that can perform information processing
similar to what our brain does. Some characteristics of biological networks include the

following:

e They are non-linear devices
e They are highly parallel in processing, robust and fault tolerant
e They can easily handle imprecise, fuzzy, noisy and probabilistic information

e They can generalize from known tasks or examples.

ANNSs attempts to mimic some or all of these characteristics by using principles from the

nervous system to solve complex problems in an efficient manner.

There are several different types of ANN strategies used in PD recognition. They are:
Back-propagation NN, self-organizing feature map [29], learning vector quantization

network [30]...etc.

2.4.2. Learn vector quantization (LVQ).

LVQ neural networks can be applied to multi-class classification problems. So, recently,
LVQ networks are usually the choice where neural network based classifiers are used in field
of diagnostic procedures. Feng Yan [31] found that LVQ networks is quite effective and
superior to BP Neural Network in fault location in distribution network. Jianye Liu,
Yongchun Liang, and Xiaoyun Sun [32] presented LVQ to analyze the fault of the power
transformer, and it conclude that “the LVQ network a good classifier for the fault diagnosis

of power transformer”.
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LVQ network has simple network structure. Figure 2.3 show LVQ neural network that
used in this work. It is composed by three layers of neurons; a first input layer, second
competitive layer and third linear layer. In LVQ neural network, the competitive layer learn
to classify input vectors into target classes chosen by the user while the linear layer
transforms the competitive layers classes into the predefined target classifications. A weight
value connect each neurons of input layer to all the neurons in the competitive layer. A
different group of competitive neurons are connected with each output neuron. Connection

weights value between competitive layer and output layer is always 1.

Input Competition  Linear output
layer layer layer
i{. ..\I._.__ i-:f \..__
e ____-._.\.__r H{__\ Y1
.
L]
L
_
S 1
L >
-~ -~

Figure 2.3. LVQ neural network structure

LVQ does not need to handle input vector for normalization and orthogonal. And it only
needs to calculate the distance between input vector and competition layer directly.
Therefore, it is easy to realize the category of fault [7]. The LVQ neural network model is

shown in Figure 2.4.

Input Competitive Layer Linear Layer

nt=-ll TWu-pl a2 = purelin(LWz1a1)

al = compet (11)

Figure 2.4. The model of LVQ neural network

We refer to the classes learned by the competitive layer as subclasses and the classes of

the linear layer as target classes. Both the competitive and linear layers have one neuron per
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(sub or target) class. Each neuron in the competitive layer is assigned to a class, with several
neurons often assigned to the same class. Each class is then assigned to one neuron in the
linear layer. The number of neurons in the competitive layer S1 is always larger than the
number of neurons in the linear layer S2. In the LVQ network, the input vector P with R

neurons of the input layer will be given in by equation 2.3.

Input weights vectors that make the connection between input layer and competitive layer
are
1 — (w1 ol wl 1 1 _ (1 o1 o1 1
w = (Wl,WZ,W3 ...Wsl) wi = (Wi1:Wi2:Wi3 ...Wisl) (2.4)
Where, i=1,2 ... st

The competitive layer input will be given in vector form by equation 2.5.

[llwi —pll]
Lws =l

Where wi'represents the input weight matrix, i denotes the corresponded neuron. The output

of the competitive layer is given as follows.

al = compet(n?) (2.6)

Therefore the neuron whose weight vector is closest to the input vector will output one,
and the other neurons will output zero. Thus, the winning neuron indicates a subclasses,
rather than a class as in competitive networks. There may be several different neurons

(subclasses) that make up each class.

The linear layer in the LVQ network is used to combine subclasses into a single class
which is done by the weight matrix w?. The columns of w? represent subclasses, and the
rows represent classes. w? has a single 1 in each column, with the other elements set to
zero. The row in which the 1 occurs indicates which class the appropriate subclass belongs

to, in other words,
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wg; = 1 Subclass i is a part of class k.

Weights vectors that make the connection between competitive layer and output layer are

2
w? = (wf,wi,wi..wk) w' = (Wi, wh, wh ...stl) (2.7)
Where, j=1,2 ... s2

The output of the linear layer is.

2 = purelin(w?a?l) (2.8)
LVQ learning in the competitive layer is based on a set of input/target pairs

2.4.3. Probabilistic Neural Network

Specht (1988, 1990) developed the probabilistic neural network (PNN). PNN is used to
provide solution to pattern classification problems through an approach developed in
statistics, called Bayesian classifiers. In Bayes theory, the relative likelihood of events as

well as priori information to improve prediction is considered.

PNN uses a supervised training set to develop distribution functions within a pattern
(middle) layer. In the recall mode, the developed functions are used to determine the
likelihood of a given pattern being a member of a class or category with the criteria solely

based on the closeness of the input feature vector to the distribution function of a class.

PNN has three layers. The input layer has as many elements as there are separable
parameters needed to describe the objects to be classified. The middle layer organizes the
training set such that each input vector is represented by an individual processing element.
And finally, the output layer, also called the summation layer, has as many processing

elements as there are classes to be recognized.

PNNs are simple on design and with sufficient data are guaranteed to generalize well in
classification tasks. Training of the PNN is much simpler than with backpropagation.
However, the pattern layer can be quite huge if the distinction between categories is varied
and at the same time quite similar in special areas. In addition, PNNs are slower to operate in

the recall mode as more computations are done each time they are called.
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CHAPTER THREE

3. MODELING AND SIMULATION

3.1. Introduction

Transformer is one of the most important and costly equipment in power systems which
converts energy from one potential side to another. Transformers represent a high capital
investment in any substations at the same time as being a key element determining the
loading capability of the station within the network. With appropriate maintenance,
including insulation reconditioning at the appropriate time, the technical life of a transformer

can be in excess of 60 years.

Transformer windings are treated as an inductance when it is incorporated in the power
system computations (typically when transformer is a part of a power system network).
When the behavior of transformer winding subjected to very fast transient over-voltages
(VFTO), which causes some mechanical deformations, is to be studied, this assumption of
lumped inductance does not hold well. So, for power flow studies or even short circuits
studies its complex nature is represented as an inductance. However, for the purpose of

diagnostics, such simplification cannot be made.

The Fast transient over-voltages (FTO) and VFTO or generally electromagnetic
transients, are the main causes of transformer outages, have wavelengths which are
comparable to the dimension of the winding. Hence, it is more appropriate to model the
transformer winding as a distributed parameter transmission line for the study of very fast
transients. The detailed transformer transient models can be employed during the design
stage to predetermine those over-voltages. Using these models, the proper insulation can be

designed.

There has been a great deal of research work done on transformer modeling [33]. Due to
different purposes for the models, different types of transformer models have been
constructed and used. Generally, Transformer models usually fall into one of two categories.

1. Black Box or “Terminal Model”.
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2. Gray Box or “Physical Model”.

One is the Black Box or “Terminal Model”, which is necessary for the insulation
coordination of power system and can be employed to evaluate the current and voltage wave
shapes at the terminals of the transformer (i.e. provides the terminal characteristics of a
transformer). The Black Box model is not necessarily related to a transformer internal
condition and physical configuration. This type of model mainly describes the terminal
performance and characteristics, and can be constructed by various methods (e.g.,

mathematical equations or network analysis (poles and zeros)).

The other type of transformer model is the Gray Box or physical model. The physical
model can either model all parts of the transformer in great detail or can be constructed
according to gross physical components such as the winding layers. These types of models
use network equivalent parameters (resistances, inductances and capacitances) to construct
the model and focus on the frequency range of interest. Transformer models can be classified
as power frequency range, medium frequency range (kHz) or high frequency range (MHz).
The Gray Box models can be used by designers to study the resonance behavior of
transformer winding and the distribution of electrical stresses along the transformer
windings. .The Gray Box models can be categorized as Lumped models and Transmission

line models.

This thesis is studying what influence the transformer internal changes have on the (AV -
I, ) locus signature changes. In the case of the monitoring, it is desirable to see small
changes in the transformer so that any movement can be detected as early as possible. To
model this situation, a terminal model is not suitable as it is mainly used for system
performance studies rather than being focused on transformer internal condition changes. A
detailed model is preferred, but detailed design information for a transformer is very difficult
to obtain, as it needs detailed proprietary manufacturing design data that manufacturers do

not want to divulge. A reduced model is more suitable for the work in this thesis.

3.2. Adopted diagnostic technique

In the present work, we use the novel online technique for diagnosis of power

transformer faults by constructing the voltage - current (AV- lin) locus diagram to provide a
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current state of the transformer, which have been previously detected. This technique relies
on constructing locus diagram between lin (X-axis) and AV (Y-axis) for the transformer
under test. Basically, this relationship between AV and Iin represents an Ellipse [6]. The
relationship of this locus can be derived using the 1- ¢ transformer equivalent circuit and its

vector diagram shown in Figure 3.1.

(b)

Figure.3.1. (a) Per-unit equivalent circuit of the transformer. (b) Vector diagram.
Let:
V2 is a reference, § is the power angle, and it is the phase shift between V1 and V2, which
is normally small value, y is the load impedance phase angle, ¢ represent the phase shift

between i, and vz, @ =y. The phase shift between i1 and v is ¢ because the phase shift

between i1 and iz is approximately zero.

So,
v1(t) = Vy1sin(wt + 6)
v, (t) = Vsin(wt)
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i1(t) = L,;sin(wt — @)

For simplicity, assume that V,;,; = Vy2 = V.

Since (x — axis) - I;,,(t) and (y — axis) = AV = vy, — Vout

~ X = iy (1) = Iy;sin(wt — @) (3.1)

sy = v1(t) — vy (t)= Vp{sin(wt + §) — sin(wt)}
sy = 2V, cos(wt + g). cos 6 (3.2)

The Cartesian formula relating x and y can be obtained from parametric (3.1) and (3.2)

by eliminating wt as following. From equations (3.1) and (3.2), we get:

wt = {sin_l(i)} +o= {cos—l(L)} 90

It 2V, cos d 2
. L}_{_}z( §)
"{COS (Vcose) T (T =9ty

. sin {cos_l(L) — sin_l(i)} = sin( + é)
2V cos 6 - 73

<\/(2Vm c0s8)2 — y2/1,% — x2 — xy) _ ( 5)
= sin

+ —
2V, 1,1 cos b 4

2
, )
22V, €08 8)2 — y2 [1,% — x2 — xy = 2V I, cOS S sin (go + E)
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)
o/ (2Vy €05 8)2 — y2 |1, — x2 = 2V, 1,5 cos 8 sin ((p + E) + xy

Squaring the both sides, we get:

5 2
- {(2V,, cos )2 — y2}{1m12 — xZ} = {valml cos  sin ((p + E) + xy}

o (2Vy, €08 8)?1,1% — (2Vy, cos 8)2x2% — 1,1 %y? + x%y? =

<

{ZVmIml cos 6 sin (go + g)}z + {4lem1 cos 6 sin (go + g) xy} +

x2y2

- {2V, cos §}?x? + {4lem1 cos § sin ((p + g)} xy + L1 °y? +
: 5\)2
{ZVmIml cos d sin ((p + E)} — 2V, cos81,1)2=0 (3.3)
Equation (3.3) can be written as:
Ax?> +Bxy+Cy?+D =0 (3.4)
Where:

A={2V,, cos §}>
B=4V 1,1 cos 6 sin ((p + g)

C=l,,,°
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D:{Zleml cos § sin ((p + g)}z — (2Vy, cos 8 151)?

The quadratic (3.18) represents by:

1. Ancellipse if B2 —4AC < 0
2. Aparabolaif B2—4AC=0
3. A hyperbola if B2 — 4AC > 0

From equation (3.3), we get:

8 2
B2 — 4AC = 16V,,*I,;*(cos §)? <sin ((p + E)) — 16V,,%I,,;*(cos §)?

5 2
R

6 2
~ B%Z — 4AC = 16V,,%I,,;%(cos 8)?2 {— (COS (‘P T E)) }

~ B2 —4AC = —16V,,°1,,;*(cos §)? (cos ((p + g))z (3.5)
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Figure 3.2 Graphical illustration of V-I relationship

Equation 3.5 is always a negative term regardless of the values of I,;, Vi, 6, and, .
Hence, the Cartesian relationship between AV and lin represents an Ellipse. The graphical
illustration of the proposed technique is shown in Figure 3.2, where the instantaneous values
of AV and li, are measured at a particular time to calculate the corresponding point on the
(AV- lin) locus. The graph in Figure 3.2 is drawn with some assumptions such as (0.8
lagging power factor, the power angle 6 can be neglected because the phase shift between V:
and V2 is normally small, and the angle ® between i1 and V2 is almost equal to the load

impedance phase angle because the phase shift between i1 and i2 is negligible).

3.3. Undertaken transformer model

The purpose of the transformer modeling for this study is to analyze the principal
changes in (AV -I;, ) locus diagram, which are caused by transformer internal factors. The
undertaken transformer for this study is 3 MVA, 33/11 KV, three phase, ONAN, Dyl1l
power transformer. The adopted model [34] separates the winding into identical sections that

simulate individual winding discs. The number of sections is a compromise between
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closeness to the real transformer and limitations of capability of the program to perform the
calculations. An R, L, C equivalent network circuit simulates the transformer winding. Each
section of the circuit consists of a ground or shunt capacitance (Cg), series capacitance (Cs),
series inductance (L) and resistance (R). The number of sections used in this model is 88,
which simulate the number of transformer discs. The series inductance represents the
winding lead inductance, the parallel ground capacitance represents the capacitance between
the discs and ground, the series capacitance represents the turn-to-turn or disc-to-disc

capacitance and the series resistance represents the winding resistance. Figure 3.3 shows the

basic model.
L 3 L R » L R 3 88 L. R
p——o oMo Joss/ Mo Joe oo Mool Jo e
L L L L 3 L 4
Via @ ; ||{:5 . “CS ™ - IlCS 3
_._Cg _Cg _._Cg ——Cg ——Cg Load
= - = = _ _—

Figure 3.3 Equivalent circuit of a single transformer winding.

The transformer model equivalent circuit shown in Figure 3.3 has been used in this work;
the delta-connected disc winding of the HV sides of the transformer has been represented by
a network with lumped parameters. The model consists of sequentially arranged 88 discs
from line end to earth end of high voltage winding. The model parameters used were based

on those used in reference [1]. They were as follows:

R - Resistance per disc 10.151 Q
L - Total inductance per disc :0.324 mH
Cs - Series capacitance per disc :1.04 nF
Csh - Ground capacitance per disc : 22.13 pF
S - Total number of sections : 88

These parameters have been calculated from the practical design data of a 3 MVA, 33/11
kV, three-phase, 50 Hz, ONAN, Dy11 power transformer [34].
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3.4. Simulation structure

An integrated model utilizing PSIM Software and MATLAB program was used for
simulate the transformer model shown in Figure 3.3. The entire simulation process involved

three main stages sequentially run as following:

e Transformer model construction.
e Running Simulations.

e Data file generation.

Figure 3.4 shows the detailed steps for the developed simulation process. The program

requires the user to construct the transformer model and input the following data:

e Amplitude of signal.

e Inter turn resistance.

e Inter turn inductance.
e Inter turn capacitance.
e Capacitance to ground.
e Frequency.

e The load impedance.

e Recorded time.

e Time step.

In the proposed model, a 50-Hz ac voltage source of low amplitude is utilized and the
instantaneous values of AV, Ii, are recorded at a particular time 0.02 sec. and time step of 10
usec. The (AV- lin) locus diagram of the transformer model under test can be constructed for
healthy condition at load impedance (8+j6) Q. The locus diagram analysis and
discrimination will be conducted using MATLAB program and not in the PSIM program.
So, we need two sets of data so that we can construct a transformer locus diagram as (AV -

time) and (lin - time).
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[ Start PSIM program ]
v

Constructing the circuit
of the transformer under
test

v

Set all the settings
needed by the PSIM

program
v
Run PSIM program
!
Plot (AV - t) and (I;,- t)
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v
Extract data from (AV - t) and [ Start MATLAB program ]
(I;- t) curves —
¢ i /
] Read input data “*.txt” files
Save the extracted data with
extension “*.txt” !
Construct the (AV -I;,) locus
diagram
End

Figure 3.4 Algorithm for developed simulation

3.5. Simulation result

3.5.1. Healthy condition

In this study, the (AV- lin) locus diagram of the transformer model under test can be
constructed for healthy condition. This locus diagram of a healthy transformer can be shown

in Figure 3.5 and is considered as a reference or fingerprint of this transformer.
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fingerprint of 3MWVA, 33/11KV, three-phase, 50 Hz, OMNAN, Dy11 power transfarmer
15 T T T T T T T

10r A

VinVout  (Wolt)

10 - 4

_15 1 1 1 1 1 1 1
0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

lin  [Amp)

Figure 3.5. Locus diagram of 3BMVA, 33/11KV transformer power in healthy condition

3.5.2. Fault conditions

During impulse testing of power transformer, insulation failure/ faults may occur
anywhere along the entire length of the transformer winding. The important winding faults,

tested via (AV- lin) locus analysis, are as follows:

e Partial Discharge (PDF).
e Inter disk fault (IDF).
e Series short circuit  (SEF).
e Shunt short circuit ~ (SHF).
e Axial Displacement (ADF).

These faults have been simulated and each faulty locus is compared with the healthy

locus (fingerprint) of the proposed transformer.

3.5.2.1. PDF within transformer winding

Partial discharges can cause incipient insulation faults, if allowed to develop over time,
may lead the insulation to a total breakdown and result in catastrophic failure of power

transformers. As an important entity of power plant, loss of a power transformer in operation
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can lead to economic penalties due to loss of power supply and the capital expenditure for
replacement. PD monitoring therefore forms an important part of online condition
monitoring and is used as a diagnostic tool for quality of insulation. If during the monitoring
process an excessive amount of discharge activity has been detected, the location of
discharge needs to be sought in aid of making the decision of either taking the transformer
out of service for further investigation or keeping it in operation with increased monitoring
[35].

In this work the (AV- lin) locus is used for monitoring process of PD. The PD can be
simulated by injecting current pulse of shape equivalent to practical PD pulses into probable

positions of the windings.

The PD pulse can be approached as different equivalent pulses; such as Gaussian pulse

[36] and double exponential [37]. The Gaussian pulse is defined as the following equation:

—t2

i(t) = [pax (em) (3.6)

Where, 1,,.« IS the magnitude of the peak current in (amperes), t is the time in (seconds),
and O Denotes the pulse width which is chosen to fit the pulse shape with measured pulses

and measured at half of the maximum value.

While the double exponential pulse equation can be written as:
i(t) = Lax[(1 + at)e™* — (1 + e PY (3.7)

Where, 1,,,.« IS the magnitude of the peak current in (amperes), t is the time in (seconds),

and a, 3 are the time coefficients (reciprocal seconds).

The graphs of Gaussian and double exponential pulses are shown in Figures 3.6 and 3.7

using equations 3.6 and 3.7 respectively.
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Figure 3.6. PD pulse waveforms using Gaussian pulses of similar current magnitude value

but different pulse width

PD current (A)

time (s)

%107

Figure 3.7. PD pulse waveforms using the double exponential pulse equation where
(a = 108 sec™,B =8 * 107sec™?)
In the proposed model under study, The PD occurrence can be simulated as a current

pulse injected into the network nodes 1, 2, 3... N+1 as shown in Figure 3.3.
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The PD current pulse is simulated by a Gaussian pulse of 1V peak, pulse width 5 ps as
shown in Figure 3.6. Figure 3.8 shows the (Av -I;,) locus for injecting PD pulse for line-end

numbers 44 and 48 compared to the healthy locus.
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=
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lin (Amp)
Figure 3.8. The (AV -I;,) locus for injecting PD pulse at nodes 44 and 48 compared to the

healthy locus.

Figure 3.8 shows that PDF will increase the area of the faulty locus compared with the
healthy one. Increasing the number of faulty disks will further decrease the locus area and
the major axis is rotating in anti-clockwise direction until aligning with the healthy major

axis.

3.5.2.2. IDF within transformer winding

One of the most common faults of power transformers is the inter disc fault or (Turn to
turn short circuit), as in practice, around 80% of transformer breakdowns are attributed to its
occurrence [38]. This fault can be simulated by short circuiting series resistors. In the
proposed model under study, during IDF simulation, the series resistors of different number
of disks have been short circuited to find their effect on the (AV- lin) locus. Figure 3.9 shows

the locus for 20 and 60 faulty disks compared to the locus in healthy condition. As the
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number of faulty disks increases, the locus rotates clockwise and its area increases as

illustrated in Figure 3.9.

18

= Healthy
=== 20 disks
10 | =60 disks

3
5 0Of 1
=
5l 4
A0t 4
_15 1 1 1 1 1
5 1 05 0 05 1 15
lin (Amp)
Figure 3.9 Effect of IDF on the (AV- lin) locus
3.5.2.3. SEF within transformer winding

Series fault implies insulation failure between the discs. In the proposed model, during
SEF simulation, the faulted disc has been short-circuited to find its effect on the (AV- lin)
locus as shown in Figure 3.10. Figure 3.11 shows the locus for 20 and 80 faulty disks

compared to the locus in healthy condition.

Figure 3.10 Series fault at disc one
It can be observed from Figure 3.11 that as the number of faulty disks increase, the locus

rotates in the clockwise direction and its entire area decreases.
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Figure 3.11 Effect of SEF on the (AV- lin) locus
3.5.2.4. SHF within transformer winding

Insulation damage, ground shield damage, abrasion, high moisture content in the
winding, hotspot and aging insulation, (which reduces its dielectric strength, therefore
reducing the resistance to ground) are the main reasons for leakage fault or disc to ground

fault inside a transformer [39].

So, shunt fault represents insulation failure between the winding and earthed
components, such as tank, core, etc. In the proposed model, this type of fault can be
simulated by connected the faulty disc to ground as shown in Figure 3.12. Figure 3.13 shows

the locus for 20 and 60 faulty disks compared to the locus in healthy condition.

It can be observed from Figure 3.13 that as the number of faulty disks increase, the locus

rotates in the clockwise direction and its entire area increases.
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Figure 3.13 Effect of SHF on the (AV- lin) locus
3.5.2.5. ADF within transformer winding

In the case of short circuit currents, ADF occurs due to the magnetic imbalance between
low and high voltage windings. The axial displacement between the magnetic centers of the
windings will result in unbalanced magnetic force components in each half of the winding
which leads to a change in its relative position. Leaving this fault without monitoring can
cause winding collapse or failure of the end-supporting structure due to its progressive

nature [6].

Generally, this type of fault can be simulated by changing the mutual and self-

inductances of particular disks. The change in capacitance can be neglected [38].
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In the proposed model under study, The ADF is simulated by decrease the inductance by
30% of its value. The effect of axial displacement of 60 and 88 disks on the (AV- lin) locus
compared to the locus in healthy condition is illustrated in Figure 3.14. Axial displacement
will decrease the area of the faulty locus compared with the healthy one as Increasing the
number of faulty disks will further decrease the locus area but with a very slight decrease in
the locus major axis and thus can be neglected. So, approximately no rotation in the locus

major axis.

18
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Figure 3.14 Effect of ADF on the (AV- lin) locus
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CHAPTER FOUR

4. FAULT DISCRIMINATION

4.1. Visual discrimination

Discrimination between different types of faults can be visibly observed from the (AV -
Iin) locus area and major axis rotation. To show this, different types of faults discussed
before are simulated on 40 disks of the transformer model, and the (AV -I;,) loci for all of

them with respect to the healthy locus are compared as shown in Figure 4.1.
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)
151 ] .
‘\ -
D0E T e _
_25 1 1 1 | |
-3 -2 -1 0 1 2 3
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Figure 4.1 Comparison of the effect of each fault on the (AV- lin) locus (40 disks)

Figure 4.1 shows that the locus area is increasing in all faulty cases with respect to the
area of the healthy locus except in cases of axial displacement and series short circuit where
the area is decreased. The locus major axis in case of axial displacement is aligning with the
healthy major axis but in other cases the major axis will rotate in the clockwise or anti
clockwise directions (according to the type of the applied fault) in the case of the number of

faulty disks increases.
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Table 4.1 summarizes the effect of studied faults on the locus area and locus major axis

rotation in relation to the healthy locus for visual discrimination.

Table 4.1 Effect of faults on locus area and axis rotation

N Fault type -

o Area Rotation
Simulation 1 PDF S!gnlﬁcant Very large

increase

Simulation 2 IDF increase large
Simulation 3 SEF decrease Large
Simulation 4 SHF increase large
Simulation 5 ADF decrease none

4.2. Fault discrimination using traditional techniques

This section reviews two methods used for fault discrimination within transformer
windings based on image processing. These methods tested by applying the most types of
fault winging that produced within transformer winding such as turn to turn short circuit,

axial displacement, disk to ground fault and buckling stress of inner winding.

4.2.1. Image pixels discrimination

This method has been introduced by [38], and by using that a rough approximation of the
contour length can be measured by counting the number of pixels along the contour. A
MATLAB code has been introduced to measure the number of pixels for healthy and faulty
loci [40]. Same axes scales were used in plotting all loci. Results in [38] shows that the turn
to turn short circuit fault has significant increase in number of pixels as the number of faulty

disks increases compared to the healthy case.

4.2.2. Mean square error

This method has concentrated on determining the root mean square (RMS) error of the
locus diagram. A MATLAB code has been developed to measure the RMS error of the faulty
loci compared to the healthy locus. The images are converted into a two dimensional array
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with values representing pixel colors. The faulty image array and healthy image array are
then used to calculate the RMS error.

Results in [38] shows that the RMS error for all types of faults increases as the number of
faulty disks increases. Results also shows that the turn to turn short circuit has the largest

RMS error while the disk to ground fault has the minimum RMS error.

The main problem in these two techniques that the image may contain noise in the case
of fault occurrence. Thus, this work undertakes feature extraction from the faulty loci
compared to the healthy locus to improve the discrimination process and this is described in
the following section.

4.3. Feature extraction

After simulation of insulation failures; as has been shown in the mathematical proof and
simulation results before, the (AV - I;,) locus is always representing an ellipse. The next goal
of the present thesis is identification and location of fault characteristics, i.e. type and
location of failures. So, some unique features of the ellipse can be used to compare different
loci and to identify the type of fault within the power transformer. Some of significant
features are extracted from each of 440 loci. These features include ellipse centroid, the
major axis length (a), the minor axis length (b), the angle between the major axis, and the
horizontal axis (8) as shown in Figure 4.2, and hence calculate ellipse focus (f), eccentricity

(e), flattering (g), and area (Aquipse), and circumference (Cepipse)-

Basically, the ellipse which depicts in Figure 4.3 is constructed from two waves (Ex, Z)
and (Ey, Z) illustrated in Figure 4.2.
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Figure 4.2 Uniform plan wave.
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Figure 4.3 General ellipse

Two options are provided for the calculating of the ellipse axes lengths A’, and B’. The
first is presented by [41] and it is present a MATLAB function to calculate the ellipse axes
A’, and B’ by using the magnitude of the two waves (A, B) and the phase shift between them

(). This function carried out by using the following equations:

A= \/% (a2 +b?) + %J(az —b?)2 + 4a%b? cos? @ (4.1)

B = \/% (a2 + b?) — E\/(a2 —b?)? + 4a%b?cos? @ (4.2

Where s=sign (a-b).

The second option is development a MATLAB code to also calculate the ellipse axes a,
and b by using the ellipse (x-y) data. The two options have been tested on a different
numbers of ellipse and table 4.2 gives the output ellipse axes.as follows:

Ellipse 1: E,(t) = 4 cos(wt +m), E,,(t) = 3 cos(wt)
Ellipse 2:  E,(t) = 3 cos(wt +§),Ey(t) = 3 cos(wt)
Ellipse 31 E(t) = 4 cos(wt), Ey(t) = 3 cos(wt — )

Ellipse 4: E,(t) = 4 cos(wt + 2), Ey(t) = 3 cos(wt — )
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Table 4.2 Ellipse axes output

) Method no. 1 Method no. 2
Ellipse no.
A B A B
1 5.0000 0 5 0.001018366018475
2 3.6742 2.1213 3.674234614128865 | 2.121320426347296
3 4.6560 1.8224 4.619553796225180 | 1.913303292001840
4 4.6560 1.8224 4.619350467616694 | 1.913794857248074

In this thesis. It was found that the second option is sufficiently suitable with the type of
data of ellipses. The other ellipse features as mentioned before can be calculated from the

following relations [42]:

g =L 2AB
= - atan {AZ_BZ cos (p} (4.3)

The first and second ellipse eccentricity e, €’ and its relation between them are given by

equations 4.4, 4.5, and 4.6 respectively.

f VAZ2-B2
e = ; = T (4.4)
e B
? = X (4.6)

The ellipse focus (f) and flattering (g) can be calculated from equations 4.7, and 4.8. While

the ellipse area and circumference are given by equations 4.9, and 4.10.

f=+vA%2 — B2 (4.7)

(4.8)
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Acniipse = TAB (4.9)

Cellipse = T{3(A + B) —/10AB + 3(A? + B2)} (4.10)

Moreover, to get better fault identification accuracy, three features are also extracted using
statistical analysis of the load voltage. These features are given by:

Vi, = % fozn Vi, sin(wt) dwt (4.11)

Viewo = \/i fozn(Vm sin(wt))? dwt (4.12)
_ |1 2w .

Labs = |35 Jo Ve sin(wt) dwt (4.13)

A MATLAB code is developed to extract and calculate all of these features. Table 4.3

represents general ellipse features of healthy condition for the transformer under test.

Table 4.3: General ellipse features for healthy condition.

Ellipse features

e
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4.4. Computational discrimination

Locus area and locus angle of rotation can be measured by equations 4.9 and 4.3
respectively. A MATLAB code is developed to measure the locus area and the angle of
rotation of the faulty loci compared to the healthy locus. Figures 4.4 and 4.5 shows the effect

of faults on locus area and locus angle of rotation.
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Figure 4.4 Effect of faults on locus area
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Figure 4.5 Effect of faults on locus angle of rotation

Table 4.4 shows the difference in locus area (A.;pse) and the locus major axis rotation
(6) for different types of faults for the whole winding of the transformer under test with
respect to the healthy locus for computational discrimination. Unlike the series fault and
axial displacement fault, the locus area for the inter disk fault and shunt fault increase as the
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number of faulty disks increases while the partial discharge fault has a significant increase of

locus area as the number of faulty disks increases and this can be shown in Figure 4.4 and

table 4.4. Also as can be shown in Figure 4.4 and table 4.4, the locus angle of rotation for the

axial displacement fault remains constant as the number of faulty disks increases. While in

the case of partial discharge fault, the locus angle of rotation increase so much as the number

of faulty disks increases. In the case of the inter turn fault occurrence, the locus angle of

rotation increase as the number of faulty disks increases. And this is coherent with the locus

displayed in section 4.1.

Table 4.4 Effect of different faults on locus area and axis rotation

Axial Inter turn Partial discharge Series fault Shunt fault
Faulty displacement
disc
Aellipse 0 Aellipse 0 Aellipse 0 Aellipse 0 Aellipse 0
4 131.5466 | 86.41504 | 134.1752 | 86.31839 | 1530.998 | 28.66675 | 129.3579 | 86.25782 | 351.4018 | 86.26255
8 130.139 | 86.39844 | 135.3264 | 86.19759 | 566.8361 | 51.90776 | 124.2314 | 86.07269 | 351.5562 | 86.07625
12 128.7262 | 86.3819 | 136.524 | 86.07033 | 437.7482 | 63.48843 | 118.9168 | 85.86827 | 351.7357 | 85.87043
16 127.4266 | 86.36678 | 137.773 | 85.93623 | 397.1408 | 69.9069 | 113.4079 | 85.64136 | 351.9459 | 85.64187
20 124.7598 | 86.35694 | 138.0936 | 85.80478 | 379.3423 | 73.89136 | 108.6955 | 85.37921 | 352.1942 | 85.38659
24 123.3313 | 86.34053 | 139.5141 | 85.65673 | 369.9902 | 76.58161 | 102.7293 | 85.09404 | 352.4905 | 85.09961
28 121.8977 | 86.32419 | 140.123 | 85.5124 | 364.4769 | 78.51231 | 96.55348 | 84.77131 | 352.8481 | 84.77467
32 120.4589 | 86.30794 | 140.9122 | 85.36192 | 360.9564 | 79.9623 | 90.16724 | 84.40308 | 353.285 | 84.40372
36 119.0149 | 86.29176 | 141.8893 | 85.20539 | 358.5723 | 81.0899 | 84.33919 | 83.96753 | 353.8266 | 83.97629
40 116.3145 | 86.28197 | 143.062 | 85.04302 | 356.8837 | 81.99124 | 77.48012 | 83.47298 | 354.5091 | 83.47848
44 114.8596 | 86.26592 | 144.4378 | 84.87522 | 355.6447 | 82.72787 | 70.42852 | 82.89013 | 355.3861 | 82.89143
48 113.3995 | 86.24996 | 145.1795 | 84.70262 | 354.7074 | 83.34096 | 63.77555 | 82.17827 | 356.5392 | 82.18895
52 111.9343 | 86.23411 | 147.2846 | 84.54534 | 353.9813 | 83.85907 | 56.34134 | 81.32846 | 358.0976 | 81.33359
56 110.464 | 86.21837 | 148.8905 | 84.38902 | 353.4094 | 84.30264 | 49.24094 | 80.25398 | 360.2764 | 80.26988
60 108.9886 | 86.20274 | 150.8593 | 84.23591 | 352.9485 | 84.68661 | 41.60863 | 78.90438 | 363.4543 | 78.91223
64 106.248 | 86.19314 | 153.2117 | 84.08884 | 352.5737 | 85.02222 | 34.33012 | 77.1016 | 368.3506 | 77.12168
68 104.7615 | 86.17769 | 155.3069 | 83.9513 | 352.2634 | 85.31803 | 26.89909 | 74.65107 | 376.471 | 74.65791
72 103.2699 | 86.16236 | 159.5512 | 83.85686 | 352.0032 | 85.58073 | 20.02041 | 71.05106 | 391.4197 | 71.07068
76 101.7732 | 86.14718 | 162.2543 | 83.7222 | 351.7835 | 85.81557 | 13.70214 | 65.39216 | 423.7163 | 65.42706
80 100.2715 | 86.13213 | 166.9466 | 83.67567 | 351.2628 | 86.01913 | 8.345536 | 55.55381 | 515.9915 | 55.5539
84 97.49592 | 86.12277 | 170.7752 | 83.59042 | 351.4365 | 86.21766 | 4.675599 | 36.08834 | 1014.27 | 36.09104
88 95.98299 | 86.10795 | 309.0184 | 86.55706 | 351.2997 | 86.39108 | 0.006661 | 5.73E-05 | 695070.8 | 5.73E-05

44




CHAPTER FIVE

5. ARTIFICIAL INTELLIGENCE BASED FAULT
IDENTIFICATION

Fault identification and location according to FRA can be performed by experienced
engineers. However, the problem is the relations and patterns based FRA, although present,
are too complex to humanly discern so that a rule base cannot be built manually. As so far,
there is no standard code for FRA interpretation worldwide. To solve this problem, various
artificial intelligence techniques have been proposed in the literature. The techniques include
expert systems, back propagation artificial neural network (BPANN), radius function
network (RBF), propagations neural network (PNN), self-organizing map (SOM) network,
and learn vector quantization (LVQ) algorithm [1-6].
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Figure 5.1. Block diagram representation of fault identification and localization
scheme
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In this thesis, the problem is to assign “unknown” fault patterns to known there
classifications and locations. In this approach the identification scheme, as shown in Figure
5.1, will be developed and employed to perform the detection and location tasks of the
diagnostic system using two different structures of intelligent techniques which can be

summarized as follows:

5.1. Conventional fault classification technique (if-condition based image
comparator).

Any mechanical fault within transformer winding will alter the locus in a unique way
and, hence, fault detection as well as fault type can be identified. A new classification
technique based on measuring and comparing some features of the loci to identify the
possible fault type is developed. These features include locus area, and the locus angle of
rotation.

As mentioned before, the used FRA technique does not call for any new hardware since it
uses the existing metering devices attached with the power transformer and can be
implemented online as it is performed at the power frequency. The proposed locus can be
plotted every cycle (20 ms based on a 50-Hz network). And compared with the healthy locus
using the developed image-processing code to immediately identify any changes, it generates
an early warning signal.

To identify the type of fault based on locus area, angle of rotation, the proposed model is
divided into twenty two sections, viz. S1, S2... S22. Each fault has been simulated on a
different number of discs starting from one section to 22 sections, and these parameters are
calculated for each fault. Each section consists of sequentially arranged 4 disks and covers
approximately 4.5 % of winding length, i.e., the developed algorithm had localized and
identified different five types of insulation failures within 4.5 % of winding length. This +
4.5 % of the localization length has been obtained by trial and error method. It was observed
that, higher value of fault identification accuracy may be obtained with minimum number of

winding section, like, three sections and each covers 33% of winding length [3].

Based on the range of the percentage differences of these parameters for each fault, the

MATLAB code is developed to identify and locate fault within the transformer windings.
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The logic flow diagram of fault identification using their extracted features is shown in

Figure 5.2.
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It may be observed that the algorithm work in two levels. In the first level of classifier,
the insulation failure is identified as (SEF) or (IDF) or (ADF) or (PDF) or (SHF). Then, the
location of insulation failure within 22 sections of the winding is predicted in the level 2
classifier as S1 or S 2 or S3... or S22.

Usage of intelligence techniques is the challenge of this trend to get more accuracy for
fault identification. The next section discusses ANNS, the tool that is being explored to

develop the advanced diagnostic framework for frequency response fault diagnoses (FRFD).

5.2. Results and discussion

The preconditioning of the input data is the important facet of classification based neural
network. The features that has been extracted from the frequency response of a transformer
is essentially a series of values corresponding to the state of the winding. As mentioned
before, the used FRA technique relies on recording the (AV- lin) diagram by using the
metering devices that already attached to the transformer. Thus, this technique is conducts on
line at the nominal power frequency. The locus diagram can be recorded every 20 ms
(cycle). Any type of fault produced inside the transformer winding will affect the locus,
hence, the new locus can be used to identify the type of fault. A new LVQ classification
technique based on identify the extracted features from the faulty loci to get the type of fault
is introduced. The extracted features from ellipse general proportion of various faulted
conditions forms thirteen-dimensional data matrix Xmxn where m is the fault cases and n is
the features of each case of fault. These features contain the fault characteristics. In this
work, m is 440 case corresponding to five different abnormal conditions at 88 different
location within transformer winding. So, the data matrix that used for the identification
contains 440 fault classes (rows) and 13 features (columns). The LVQ algorithm is
performed to find classes. The fault identification results based on LVQ show that this

number of features are sufficient to get a reasonably good accuracy in the identification task.

According to the transformer model under study, an 88 different locations apt to five
types of fault conditions along the transformer winding. So, we have five classes. To show
this classes, each two features are plotted together for all five classes. Figure 5-3 to 5-14

depicts the first feature (ellipse area) against the residual features.
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Figure 5-3 the five classes according to two features (area and theta)
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Figure 5-9 the five classes according to two features (area and second eccentricity)
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Figure 5-10 the five classes according to two features (area and ratio between eccentricities)
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Figure 5-11 the five classes according to two features (area and flattering)
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Figure 5-12 the five classes according to two features (area and average value of load

voltage)
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Figure 5-14 the five classes according to two features (area and average of the absolute value

of load voltage)

As stated before, the data matrix that used for the identification task is 440 raw x 13

columns. In this work, 50% of the data 220 x 13 are used for train the LVVQ algorithm and
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remaining are used for validate and test the algorithm share equally. As shown in Figure 5.3
to 5.14, it is clear that the similarity between the PDF and SHF with the IDF features. Thus,
the classification algorithm should be worked in four levels due to this similarity. Figure

5.15 show the logic flow chart that describe the fault classification.
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Figure 5.15. Fault identification flow chart
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The first level identifies the type of insulation failure, viz. ‘series fault’ (SEF) or ‘axial
displacement fault’ (ADF) or any type of ‘partial discharge’ (PDF),‘shunt short circuit’
(SHF) and ‘inter disk fault’ (IDF). The first level output is “1” for SEF, “2” for IDF or PDF
or SHF, and “3” for ADF. Figure 5.16 showing the errors in the first network, illustrates that
the network was able to achieve near perfect classification of the validation data, with the

sum squared error of the output data being in the order of 0.0808 at time 1 sec. and 29 min.
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Figure 5.16: Errors in layer one classification of validation data

All training values of features for SEF, IDF, and ADF can be used directly as an inputs to
the first classifier network. So, in total the data set matrix that used for fault identification
based on learn vector quantization LVQ has form 44x3= 132 case (row) and 13 features
(column). If the output of the first level is “2”, this means that the fault type may be IDF or
PDF or SHF. And that chivied by the second level of classification. In the second level, the
network identifies the type of insulation failure, viz. ‘inter disk fault’ (IDF) or any type of
‘partial discharge’ (PDF), and ‘shunt short circuit’ (SHF). The second level output is “1” for
IDF and “2” for PDF or SHF. In the second network the performance goal met after only
one of 100 epochs and this takes one sec. so the overall time of the first and second network

that able to achieve near perfect classification of the validation data is 1 min and 30 sec. the
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features that used as inputs to the second network are all features values of IDF and PDF.
This values forms 44x2= 88 case (row) and 13 features. If the output of the second network
is “2”, this means that the type of fault may be PDF or SHF. The fault can be identified
either as (PDF) or (SHF) by the third level. The output of the third network is “1” for the
PDF type and “2” for the SHF type. In this level of classifier we use only features number
11, 12 and 13 of PDF and SHF as an input to train this network. This values forms 44x2= 88
case (row) and 3 features. The minor similarity between SEF and IDF will effect on the
accuracy if we use only three level. Thus, forth level is used to increase the whole accuracy.
In The fourth level, we use the probabilistic neural network. In this level we use only SESC
and ADF features as an input to train this network. With these classifier levels, the ANN
algorithm successfully for identify the insulation winding failure under any type of the

proposed fault condition.

As mentioned before, for insulation failure identification, thirteen significant features are
extracted from each of 440 locus. Among that, 50% of the data are used as a training
samples. While the remaining 50% of the data samples are used to validate and test the
identification accuracy of LVQ algorithm. This algorithm has successfully identified 432
fault loci from 440 total faulty loci after 1 min and 32 sec by using 13 features. Thus, an
entire identification accuracy of about 98.1818% has been obtained from this identification
algorithm. Figure 5.17, 5.18, 5.19, 5.20, and 5.21 shows the actual and predicted locus when
we test the algorithm at different fault locations with all types of faults. The fault

identification accuracies of the proposed algorithm are given in table 5.1.
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Table 5.1. Confusion matrix showing identification accuracy of train, validation and test data
points
Predicted cases
SEF | IDE | ADF | PDF | SHF | No. of obj. | Accuracy | OVeral
Accuracy
2/ SEF| 4| 0] 0 | 0] O 44 100%
Ig IDF| 0 |44 o | 0 | O 44 100%
S|ADF| 0 [0 [ 44 [ 0 | 0O 44 100% 100%
PDE| 0 | 0 | 0 | 44 | © 44 100%
SHE| 0 | 0 | 0 | 0 | 44 44 100%
0| 0 22 90.91%
8 ol oo 22 100%
k| 210 | 0 | O 22 95.45% | 95.45%
[ 0] o [ 20 BN 22 90.91%
SHF| 0 | 0| 0 | 0 | 22 22 100%
SEF[21 [ o ] o] o0 22 95.45%
w IDF| 0 [22] 0 [ 0] 0 22 100%
Z/ADF| 0 [ 0] 2] 0 | 0 22 100% | 97.27%
~|PDF| 0 [ 0| 0o [21 ] 22 95.45%
SHF 0| 0 | 0|21 22 95.45%
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CONCLUSION

The simulation of five different types of insulation failures in PSIM based model of 33
KV winding, 3MVA power transformer is undertaken. Successful discrimination between
these insulation failures was performed utilizing a neural network approach. The input
voltage - output voltage and input currents are utilized to construct the (AV- lin) locus. The
change in the (AV- lin) locus for different types of insulation failure was constructed. A
multi-level neural network approach based on analytical features training sets was developed
to identify such deformations in power transformers. The system comprised three learn
vector guantization levels in addition to a probabilistic neural network level in order to

discriminate between all types of faults efficiently.

The fault identification results based on the used algorithm show that thirteen features are
sufficient to get a reasonably good accuracy in the identification task. The proposed
algorithm has successfully identified 432 fault loci from 440 total faulty loci after 1 min and
32 sec by using the extracted features. The results showed that the developed classifier has
successfully identified and localized all five different types of insulation failures within *

4.55% winding length with acceptable accuracy of about 98.1818%.

Such a system would be a useful tool for preventive maintenance of transformers
enabling power management system to spot the ones requiring immediate periodic
maintenance or exchange without the interruption of supply. Integrate this study into
studying the performance of an online internal transformer fault detection approach for non-
sinusoidal operating conditions (that produced due to noise and harmonics), and developing
an overall smart automated tool that localized the internal condition of the transformers
under this conditions.
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APPENDIX

MATLAB CODEs:

1. ANN classification code.

clear all
close all
clc

ALL FEATURES DATA=xlsread('ALL FEATURES DATA.xlsx');

(
SESC=ALL_FEATURES_DATA(:,[1113]);
IDF=ALL_FEATURES_DATA(:,[14 26]1);
ADF=ALL_FEATURES_DATA(:,[27:39]);
PDF=ALL_FEATURES_DATA(:,[40:52]);
SHSC=ALL_FEATURES_DATA(:,[53:65]);
test no=[];
validation no=[];
train no=[];

for 1=4:4:88
test no=[test no i];
validation no=[validation no i-3];
train no=[train no i-2 i-1];
end
% Train Data %
SESC_train=SESC(train no,:);
IDF train=IDF (train no, :);
ADF train=ADF (train no, :);
PDF train=PDF (train no,:);
SHSC train=SHSC(train no,:);

% Validation Data %

SESC validation=SESC(validation no, :);
IDF validation=IDF (validation no, :);
ADF validation=ADF (validation no, :);
PDF validation=PDF (validation no, :);
SHSC validation=SHSC(validation no, :);

% Test Data %

SESC test=SESC(test no,:);
IDF test=IDF (test no,:);
ADF test=ADF (test no,:);
PDF test=PDF (test no,:);
SHSC test=SHSC(test no,:);

ANN#1 to identify class 1 (for SESC) or 2 (for IDF or PDF or SHSC) or 3

(for ADF) %
P=[SESC train' IDF train' ADF train'];
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tl=ones (1,44);t2=ones (1,44)*2;t3=ones (1,44)*3;td4d=ones (1,44)*4;t5=ones (1,44)
*5;

Te=[ tl t2 t3 ];

T = ind2vec (Tc);

targets = full(T);

net = lvgnet (30);

net = configure(net,P,T);
net.trainParam.epochs = 1000;
net = train(net,P,T);

Ycll = vec2ind(net ([SESC_train']l));
Yc21l = vec2ind(net ([IDF train']));
Yc31l = vec2ind(net ([ADF train']));
Yc4l = vec2ind(net ([PDF _train']));
Yc51 = vec2ind(net ([SHSC train'l));

Ycl=[Ycll;Yc21;Yc31;Ycd4l;Ych1]; % (5*44) output of ANN#1 by using input
train no

% ANN#2 to identify class 1 (for IDF) or 2 (for PDF or SHSC) %
Pl=[ IDF train' PDF train' ];
P1=P1((ll:end), :);

Tcl=[ tl t2 ];

Tl = ind2vec (Tcl);

targetsl = full(T1l);

netl = lvgnet (10);

netl = configure (netl,P1l,T1);
net.trainParam.epochs = 100;

netl = train(netl,P1l,T1);

Yc21 1 = vec2ind(netl([IDF _train(:, (1l:end))]")
Ycd4l 1 vec2ind (netl ([PDF _train(:, (11l:end))]1"));
Yc51 1 = vec2ind(netl ([SHSC train(:, (1l:end))]’

Il
—_—

— —

% ANN#3 to identify class 1 (for PDF) or 2 (for SHSC) %
P2=[ PDF _train' SHSC train' ];

P2=P2 ((1ll:end), :);

Tc2=[ t4 t5 1;

T2 = ind2vec (Tc2);

targets2 = full(T2);

net2 = lvgnet (10);

net2 = configure (net2,P2,T2);
net.trainParam.epochs = 100;

net?2 = train(net2,P2,T2);

Ycd4l 2 = vec2ind(net2 ([PDF _train(:, (1l:end))]"'));
Yc51 2 = vec2ind(net2 ([SHSC train(:, (1l:end))]1"));

% ANN#4 to identify class 1 (for SESC) or 2 (for ADF) %

P3=[SESC _train' ADF train'];
tl=ones(1l,44);t2=ones (1,44)*2;t3=ones (1,44)*3;td4=ones (1,44)*4;t5=ones (1,44)
*5;

Tc3=[ tl t3];

T3 = ind2vec(Tc3);

net3 = newpnn (P3,T3);
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Y =
Yc =

Ycll
Yc31

Yc_train=[Ycll 3;¥Yc21l;Yc31 3;Ycd4l 2;Y¥c51l 2]

Ycl2
Yc22
Yc32
Yc42
Yc52

sim(net3, P3);

vec2ind (Y)

3
3

= vec2ind(sim(net3, [SESC train']));

vec2ind(sim(net3, [ADF _train']));

vec2ind (net ([SESC validation']));
vec2ind(net ([IDF _validation']));
vec2ind (net ([ADF _validation']));
vec2ind (net ([PDF_validation']));
vec2ind (net ([SHSC validation']));

Yc validation=[Ycl2;Yc22;Yc32;Yc42;Yc52];

Ycl3
Yc23
Yc33
Yc43
Yc53

vec2ind (net ([SESC test']));
vec2ind (net ([IDF_test']));
vec2ind (net ([ADF _test']));
vec2ind (net ([PDF_test']));
vec2ind (net ([SHSC test']));

Yc test=[Ycl3;Yc23;Yc33;Ycd43;YcH3];

for i=1:5
for j=1:22
if Yc validation(i,j)==2&i==
PB=SESC validation';
PA=PB(:,]);
Y=vec2ind(netl (PA((ll:end), :)));
if Y==
Yc validation (i, j)=2;
else
Z=vec2ind (net2 (PA((1ll:end), :)));
if z==
Yc validation (i, j)=4;
else
Yc validation (i, j)=5;
end
end
elseif Yc validation(i,j)==2&i==
PB=IDF validation';
PA=PB(:,3);
Y=vec2ind(netl (PA((ll:end), :)));
if Y==
Yc validation (i, j)=2;
else
Z=vec2ind (net2 (PA((ll:end),:)));
if z==
Yc validation (i, ])=4;
else
Yc validation (i, j)=5;
end
end
elseif Yc validation(i,j)==2&i==

PB=ADF validation';
PA=PB(:,7);
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Y=vec2ind(netl (PA((ll:end), :)));
if y==
Yc _validation (i, ])=2;

else
Z=vec2ind (net2 (PA((ll:end),:)));
if z==4
Yc validation (i, ])=4;
else
Yc validation (i, j)=5;
end
end
elseif Yc validation(i,Jj)==2&i==

PB=PDF validation';
PA=PB(:,]);

Y=vec2ind (netl (PA((1ll:end),:)));
if Y==
Yc validation (i, j)=2;
else
Z=vec2ind (net2 (PA((ll:end),:)));
if z==4
Yc validation (i, j)=4;
else
Yc validation (i, j)=5;
end
end
elseif Yc validation(i,j)==2&i==5

PB=SHSC validation';
PA:PB(:Ij);

Y=vec2ind (netl (PA((1ll:end),:)));
if Y==
Yc validation (i, j)=2;
else
Z=vec2ind (net2 (PA((ll:end),:)));
if z==4
Yc validation (i, j)=4;
else
Yc validation (i, j)=5;
end
end
end
end
end
for i=1:5
for j=1:22

if Yc _test(i,]j)==26&i==
PB=SESC test';
PA=PB(:,7]);

Y=vec2ind(netl (PA((ll:end), :)));

if Y==
Yc_test(i,])=2;

else
Z=vec2ind (net2 (PA((1ll:end), :)));
if z==

Yc_test(i,])=4;
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else
Yc test(i,]J)=5;
end
end
elseif Yc test(i,j)==2&i==2
PB=IDF test';
PA=PB(:,]);

Y=vec2ind (netl (PA((1ll:end),:)));
if Y==
Yc_test(i,])=2;
else
Z=vec2ind (net2 (PA((1ll:end), :)));
if z==
Yc_test(i,])=4;
else
Yc_ test(i,]J)=5;
end
end

elseif Yc test(i,j)==2&1i==3
PB=ADF test';
PA=PB(:,]);

Y=vec2ind(netl (PA((ll:end), :)));
if Y==
Yc_test(i,])=2;
else
Z=vec2ind (net2 (PA((1ll:end), :)));
if z==
Yc_test(i,])=4;
else
Yc_test(i,])=5;
end
end

elseif Yc test(i,j)==2&i==4
PB=PDF test';
PA=PB(:,73);

Y=vec2ind(netl (PA((1ll:end),:)));
if Y==
Yc_test(i,])=2;
else
Z=vec2ind (net2 (PA((ll:end),:)));
if Z==
Yc_ test(i,])=4;
else
Yc_ test(i,]J)=5;
end
end

elseif Yc test(i,j)==2&i==
PB=SHSC test';
PA=PB(:,]);
Y=vec2ind(netl (PA((ll:end), :)));
if Y==
Yc_test(i,])=2;
else
Z=vec2ind (net2 (PA((1ll:end), :)));
if z==
Yc_test(i,])=4;
else
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Yc test(i,]J)=5;
end
end
end
end
end

for i=1:5
for j=1:22
if (Yc_validation(i,j)==1&i==1)| (Yc_validation (i, ]J)==3&i==1)
PB=SESC validation';
PA=PB(:,7J);
Y=vec2ind (net3(PA((l:end),:)));
if Y==
Yc _validation(i,j)=1;
else
Yc validation (i, j)=3;
end
elseif (Yc validation(i,j)==1&i==2) | (Yc validation(i,])==3&1i==2)
PB=IDF validation';
PA=PB(:,7);
Y=vec2ind (net3(PA((l:end),:)));
if Y==
Yc validation(i,j)=1;
else
Yc validation (i, j)=3;
end
elseif (Yc validation(i,j)==1&i==3) | (Yc validation(i,]j)==3&1i==3)
PB=ADF validation';
PA=PB(:,73);
Y=vec2ind (net3 (PA((l:end),:)));
if Y==
Yc validation(i,j)=1;
else
Yc validation (i, j)=3;
end
elseif (Yc validation(i,j)==1&i==4) | (Yc validation(i,]j)==3&1i==4)
PB=PDF validation';
PA=PB(:,7);
Y=vec2ind (net3(PA((l:end),:)));
if Y==
Yc _validation(i,j)=1;
else
Yc _validation (i, ])=3;
end
elseif (Yc validation(i,J)==1&1i==5)| (Yc _validation(i,j)==3&i==5)
PB=SHSC validation';
PA=PB(:,7])
Y=vec2ind (net3 (PA((l:end),:)));
if Y==
Yc validation (i, 3j)=1;
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else

end
end
end
end

for i=1:5
for j=1:22
if (Yc test(i,j)==1l&i==1)| (Yc_test(i,]j)==3&i==1)
PB=SESC test';
PA=PB(:,73);

Y=vec2ind (net3(PA((l:end),:)));
if Y==
Yc_test (i, ]J)=1;
else
Yc_test(i,])=3;
end

elseif (Yc test(i,])==1&i==2) | (Yc_ test(i,])==3&1i==2)
PB=IDF test';
PA=PB(:,73);

Y=vec2ind (net3 (PA((l:end),:)));
if Y==
Yc_test (i, ]J)=1;
else
Yc_test(i,])=3;
end

elseif (Yc test(i,]j)==1&i==3) | (Yc test(i,])==3&1i==3)
PB=ADF test';
PA=PB(:,73);

Y=vec2ind (net3 (PA((l:end),:)));
if Y==
Yc_test(i,]J)=1;
else
Yc test(i,])=3;
end

elseif (Yc test(i,j)==1&i==4) | (Yc test(i,])==3&i==4)
PB=PDF test';
PA=PB(:,7J);

Y=vec2ind (net3 (PA((l:end),:)));
if Y==
Yc _test(i,])=1;
else
Yc_test(i,])=3;
end

elseif (Yc_test(i,J)==1&1i==5)| (Yc_test(i,])==3&i==5)
PB=SHSC test';
PA=PB(:,7);
Y=vec2ind (net3 (PA((l:end),:)));
if Y==
Yc test(i,j)=1;
else

end
end
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end
end

Yc validation
Yc_ test
Yc _overall=[Yc train Yc validation Yc test];

acc_train=((length(find(Yc train(l,:)==1))+length(find(Yc_train(2,:)==2))+1
ength (find(Yc_train(3,:)==3))+length(find(Yc_train(4,:)==4))+length(find(Yc
_train(5,:)==5)))/(length (find(Yc_train(l, :)))+length(find(Yc_train(2,:)))+
length (find(Yc_train(3,:)))+length(find(Yc train(4,:)))+length(find(Yc trai
n(5,:)))))*100
acc_validation=((length(find(Yc validation(l,:)==1
ion(2,:)==2))+length(find(Yc_validation (3, )==3))+length(flnd(Yc validation
(4,:)==4))+length(find(Yc validation(5,:)= )))/(length(flnd(Yc validation (
1,:)))+length(find(Yc_validation(2,:)))+length(flnd(Yc_valldatlon(3 1)) ) +1le
ngth (find (Yc validation(4,:)))+length(find(Yc validation(5,:)))))*100
acc_test=(length(find(Yc test(l,:)==1))+length(find(Yc test(2,:)==2))+lengt
h(find(Yc_test (3, :)==3))+length(find(Yc test(4,:)==4))+length(find(Yc test(
5,:)==5)))/(length(find(Yc_test(l,:)))+length(find(Yc_test(2,:)))+length(fi
nd(Yc test(3,:)))+length(find(Yc_test(4,:)))+length(find(Yc test(5,:))))*10
0
acc_overall=((length(find(Yc overall(l,:)==1))+length(find(Yc overall(2,:)=
=2))+length(find(Yc overall(3,:)==3))+length(find(Yc overall (4, :)==4))+leng
th(find(Yc_overall (5, :)== )))/(length(find(Yc_overall(1,:)))+length(find(Yc
_overall(2,:)))+length(find(Yc overall(3,:)))+length(find(Yc overall(4,:)))
+length(find(Yc overall(5,:)))))*100

))+length (find (Yc_validat

The program output is:
acc_train =

100

acc_validation =

95.4545

acc_test =

97.2727

acc_overall =

98.1818
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2. Code to draw the five classes.

clear all
close all
clc

format long

IDF=xlsread ('IDF.xlsx");
SESC=xlsread ('SESC.x1lsx");
ADF=xlsread ('ADF.xlsx");
PDF=xlsread ('PDF.xlsx");
SHSC=xlsread('SHSC.xlsx");

figurel = figure('Color',[1 1 1]);
plot (IDF(:,1),IDF(:,2),'+")

hold on

plot (SESC(:,1),SESC(:,2),'0OK")
plot (ADF (:,1), ADF( , ),'OR )
plot (PDF(:,1),PDF(:,2),'0")
plot (SHSC(:,1), SHSC(.,Z) TRKT)
xlabel ('Ellipse area')

ylabel ('Angle between the semi-major axis,

")
axis ([0 1000 50 907)

and the horizontal axis

(Theta)

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)' '"PDF (class
4)','"SHF (class 5)',4)

figure2 = figure('Color',[1 1 1]);

plot (IDF(:,1),IDF(:,3),'+")

hold on

plot (SESC(:,1),SESC(:,3),'0OK")

plot (ADF (:,1),ADF(:,3 ),'OR )

plot (PDF (:,1),PDF(:,3),'0")

plot (SHSC(:,1),SHSC(: 3) TXFK'")

xlabel ('Ellipse area')

ylabel ('Ellipse circumference')

axis ([50 400 50 901])

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)',

(class 5)',4)

' SHF

figure3 = figure('Color',[1 1 1]);
plot (IDF(:,1),IDE(:,4),'+")

hold on

plot (SESC(:,1),SESC(:,4),'0K")
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plot (ADF(:,1),ADF(:,4),'0OR")

plot (PDF(:,1),PDE(:,4),'0")

plot (SHSC(:,1),SHSC(:,4),"'*K")

xlabel ('Ellipse area')

ylabel ('Semi major axis length')

axis ([0 2000 0 50])

legend ('IDF (class 1)','SEF (class 2)
(class 5)',4)

o\

', 'ADF

(class 3)

', 'PDF

(class 4)

', 'SHF

figured4 = figure('Color',[1 1 11]);
plot (IDF(:,1),IDF(:,5), " '+")

hold on

plot (SESC(:,1),SESC(:,5),'0OK")
plot (ADF(:,1),ADF(:,5 ),'OR )
plot (PDF(:,1),PDF(:,5),'0")

plot (SHSC(:,1),SHSC(:,5), '*K')
xlabel ('Ellipse area')

ylabel ('Semi minor axis length')
axis ([0 1000 0 127])

legend ('IDF (class 1)','SEF (class 2)',

(class 5)',4)

'ADF

(class 3)',

' PDF

(class 4)',

' SHF

figure5 = figure('Color',[1 1 1]);
plot (IDF(:,1),IDF(:,6),'+")

hold on

plot (SESC(:,1),SESC(:,6), '0OK")
plot (ADF (:,1),ADF(:,6 ),'OR )
plot (PDF(:,1),PDF(:,6),'0")
plot (SHSC(:,1),SHSC(:,6), '*K')
xlabel ('Ellipse area )

ylabel ('Ellipse focus')

axis ([0 1000 -4 40])

legend ('IDF (class 1)','SEF (class 2)',

(class 5)',4)

o

'ADF

(class 3)',

' PDF

(class 4)',

' SHF

figure6 = figure('Color',[1 1 1]);
plot (IDF(:,1),IDF(:,7),'+")

hold on

plot (SESC(:,1),SESC(:,7),'0OK")
plot (ADF (:,1),ADF (:, ),'OR )
plot (PDF(:,1),PDF(:,7),'0")
plot(SHSC(.,l),SHSC(.,7) '*K')

xlabel ('Ellipse area')

ylabel ('First ellipse eccentricity')
axis ([0 1000 -0.4 1])

legend ('IDF (class 1)','SEF (class 2)
(class 5)',4)

o\°

', 'ADF

(class 3)

', 'PDF

(class 4)

', 'SHF

figure7 = figure('Color',[1 1 1]);
plot (IDF(:,1),IDF(:,8),'+")
hold on
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plot (SESC(:,1),SESC(:,8),'0K")
plot (ADF(:,1),ADF(:,8 ),'OR )
plot (PDF(:,1),PDF(:,8),'0")
plot (SHSC(:,1),SHSC(: 8) AR

xlabel ('Ellipse area )

ylabel ('Second ellipse eccentricity')
axis ([0 1000 0 10])

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)',

(class 5)")

o\°

' SHF

figure8 = figure('Color',[1 1 1]);
plot (IDF(:,1),IDF(:,9),"'+")
hold on

plot (SESC(:,1),SESC(:,9),'OK")

( ’
plot (ADF(:,1),ADF(:,9 ),'OR )
plot (PDF(:,1),PDF(:,9),'0")
plot (SHSC(:,1),SHSC(:, ),'*K'>

axis ([0 1000 0 1.51)
xlabel ('Ellipse area')
ylabel ('ratio between first and second ellipse eccentricity')

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)',

(class 5) ")

o°

' SHF

figure9 = figure('Color',[1 1 1]);
plot (IDF(:,1),IDF(:,10),'+")

hold on

plot (SESC(:,1),SESC(:,10),"'OK")
plot (ADF (:,1),ADF(:,10), 'OR")

plot (PDF (:,1),PDF(:,10),'0")

plot (SHSC(:,1),SHSC(:,10), "*K")
xlabel ('Ellipse area')

ylabel ('Ellipse flattering')

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)',

(class 5) ")
axis ([0 1000 0 1.5])

o

°

' SHF

figurelO = figure('Color',[1 1 11);
plot (IDF(:,1),IDF(:,11),"+")

hold on

plot (SESC(:,1),SESC(:,11),"'OK")
plot (ADF(:,1),ADF (: 11) "OR")
plot (SHSC(:,1),SHSC(:,11),"*K")
plot (SHSC(:,1),SHSC(:,11),"'OK")

xlabel ('Ellipse area')
ylabel ('Average value of the load voltage')

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)',

(class 5) ")
axis ([0 1000 -2.5e-3 20e-4])

Q

o

' SHF

figurell = figure('Color',[1 1 17]);
plot (IDF(:,1),IDF(:,12),"'+")
hold on
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plot (SESC(:,1),SESC(:,12),"OK")
plot (ADF(:,1),ADF(:,12),'0OR")
plot (PDF(:,1),PDF(:,12),'0")

plot (SHSC(:,1),SHSC(:,12),"'*K")

xlabel ('Ellipse area')

ylabel ('"Root mean square value of the load voltage')

legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF
(class 5)")

axis ([0 1000 0 15])

o

]

figurel2 = figure('Color',[1 1 11]);

plot (IDF(:,1),IDF(:,13),"'+")

hold on

plot (SESC(:,1),SESC(:,13),"'OK")

plot (ADF (:,1),ADF(:,13), 'OR")

plot (PDF(:,1),PDF(:,13),'0")

plot (SHSC(:,1),SHSC(:,13),"*K")

axis ([0 1000 0 15])

xlabel ('Ellipse area')

ylabel ('Average of the absolute value of the load voltage')
legend ('IDF (class 1)','SEF (class 2)','ADF (class 3)','PDF (class 4)','SHF
(class 5) ")
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